

Fig. 1: Known experimental values for heavy particle emission of the odd-Z T_z = +9 nuclei.

last updated 1/23/23

Table 1

Observed and predicted β -delayed particle emission from the odd-*Z*, $T_z = +9$ nuclei. Unless otherwise stated, all Q-values are taken from [2021Wa16] or deduced from values therein. J^{π} values for ¹²⁴I, ¹²⁸Cs, ¹³²La, ¹³⁶Pr, ¹⁴⁰Pm, ¹⁴⁴Eu, ¹⁴⁸Tb, ¹⁶⁴Ta, are taken from ENSDF.

		_						
Nuclide	Ex	J^{π}	$T_{1/2}$	Qε	$Q_{\varepsilon p}$	Qεα	$BR_{\beta F}$	Experimental
124-		_						
¹²⁴ I		2-	4.1760(3) d	0.303(1.9)	-5.431(2)	1.308(2)		[1992Wo03]
¹²⁸ Cs		1^{+}	3.66(2) m	3.929(5)	-4.238(6)	2.167(6)		[1976He04]
¹³² La		2^{-}	4.8(2) h	4.710(40)	-2.957(36)	3.712(36)		[1960Wa03]
¹³⁶ Pr		2^{+}	13.1(1) m	5.168(11)	-1.986(15)	4.670(12)		[1971Ke07]
¹⁴⁰ Pm			9.2(2) s	6.045(24)	-0.672(24)	5.872(24)		[1968Bl14]
¹⁴⁴ Eu		1^{+}	10.1(1) s	6.346(11)	0.053(11)	6.213(11)		[1976Ke01]
¹⁴⁸ Tb		2^{-}	60(1) m	5.732(13)	-0.281(13)	9.004(13)		[1975SpZU]
¹⁵² Ho		2^{-}	161.8(3) s	6.513(13)	0.730(13)	10.240(13)		[1982Bo04]
^{152m} Ho	0.160(1)	9^{+}	49.7(3) s*	6.673(13)	0.890(13)	10.400(13)		[1987LiZY, 1987StZU,
								1982Ba75, 1982Bo04,
								1978AfZZ]
¹⁵⁶ Tm		2^{-}	82(3) s**	7.377(27)	1.916(23)	10.859(15)		[1982To14, 1981Ga36]
¹⁶⁰ Lu			34.5(15) s	7.890(60)	3.011(63)	11.517(62)		[1979Al16]
¹⁶⁴ Ta		(3 ⁺)	13.6(2) s	8.540(30)	4.220(40)	12.456(28)		[1983Sc18]
¹⁶⁸ Re		(7 ⁺)	4.4(1) s	9.100(30)	5.267(42)	13.599(35)		[1992Me10]
¹⁷² Ir		$(3^{-}, 4^{-})$	4.1(2) s	9.860(30)	6.582(43)	15.089(35)		[2023Zh03]
172m Ir	х	(7^{+})	1.89(5) s	9.860(30)+x	6.582(43)+x	15.089(35)+x		[2023Zh03]
¹⁷⁶ Au***	у	$(2^{-},3^{-})$	1.046(11) s	10.410(40)+y	7.585(35)+y	16.298(36)+y		[2021Ha37, 2004GoZZ]
^{176m} Au***	x	$(7^+, 8^+, 9^+)$	1.36(2) s	10.410(40)+x	7.585(35)+x	16.298(36)+x		[2021Ha37, 2004GoZZ]
¹⁸⁰ Tl		(5 ⁻)		10.860(70)	8.309(71)	17.119(71)	$3.2(3) \times 10^{-3}\%$	[2011El07]
¹⁸⁴ Bi***	у		13(2) ms	12.31(12)#+y	10.55(12)#+y	19.08(12)#+y		[2003An27, 2003AnZZ]
^{184m} Bi***	х		6.6(15) ms	12.31(12)#+x	10.55(12)#+x	19.08(12)#+x		[2003An27, 2003AnZZ]

* Weighted average of 49.5(3) s [1982Ba75], 49.7(4) s [1982Bo04] and 50.0(5) s [1978AfZZ]. ** Weighted average of 80(3) s [1982To14] and 86(4) s 1981Ga36]. *** The relative ordering of the 176 Au and 184 Bi isomers are unknown.

Table 2

Particle separation, Q-values, and measured values for direct particle emission of the odd-Z, $T_z = +9$ nuclei. Unless otherwise stated, all S and Q-values and separation energies are taken from [2021Wa16].

Nuclide	\mathbf{S}_p	S_{2p}	Qα	BR_{α}	Experimental
124-					
124I	5.483(2)	13.608(3)	-1.372(8)		
¹²⁸ Cs	4.900(7)	12.599(7)	-0.992(6)		
¹³² La	4.334(36)	11.402(37)	-0.217(37)		
¹³⁰ Pr	4.013(15)	10.700(23)	-0.042(38)		
¹⁴⁰ Pm	3.484(37)	9.661(26)	0.703(27)		
¹⁴⁴ Eu	3.391(11)	9.056(26)	0.168(27)		
¹⁴⁸ Tb	2.469(13)	7.997(14)	2.657(16)		
¹⁵² Ho	2.141(13)	7.077(15)	4.507(1)	11(3)%	[1987LiZY, 1987StZU, 1982Bo04, 1982To14,
					1977Ha48, 1974Sc19, 1983Ml01, 1982Ba75,
					1981De11, 1981Ga36, 1981GaZO, 1983GaZR,
					1980BaYV, 1978AfZZ, 1975ScZG, 1974PeZS,
					1974ToZN, 1974ToZQ, 1973BoXL, 1970Ma23,
					1967Ha34, 1963Ma17, 1961Ma40, 1960Ma47]
^{152m} Ho*	1.981(13)	6.901(15)	4.667(1)	10.8(17)%*	[1987LiZY, 1987StZU, 1982Ba75, 1982Bo04,
					1981Ga36, 1979To09, 1978AfZZ, 1983Ml01,
					1981Ga36, 1981GaZO, 1980BaYV, 1975ScZG,
					1974Sc19, 1974ToZN, 1974ToZQ, 1973BoXL]
¹⁵⁶ Tm	1.914(15)	6.773(16)	4.345(7)	0.064(10)%	[1982To14, 1981Ga36, 1992Po14, 1991VaZZ
					1989KaYU, 1983Mi01, 1981GaZR, 1980AfZZ,
					1971To10, 1971ToZP, 1971ToZR, 1971ToZX,
					1970ToZS, 1970ToZY]
¹⁶⁰ Lu	1.725(59)	6.145(62)	4.140(59)	$\leq 10^{-4}\%$	[1981Ga36, 1981GaZR]
¹⁶⁴ Ta	1.302(38)	5.029(80)	4.562(63)		
¹⁶⁸ Re	0.991(36)	4.275(42)	5.063(13)	$\approx 0.005\%$	[1992Me10 , 1992MeZW]
¹⁷² Ir	0.371(37)	3.053(34)	5.991(10)	2.0(2)%	[2023Zh03, 2021Ha32, 2014An10, 1992Sc16,
					2017An16, 2004GoZZ]
^{172m} Ir***	0.371(37)-x	3.053(34)-x	5.991(10)+x	9.5(11)%	[2023Zh03, 2021Ha32, 2014An10, 1992Sc16,
					2017An16, 2014Pe02, 2004GoZZ, 1996Pa01,
					1992MeZW, 1984Gr14, 1982De11, 1982DeZA,
					1978Sc26, 1967Si02]
¹⁷⁶ Au [@]	0.101(38)-y	2.313(35)-y	6.433(7)+x	58(5)%	[2021Ha32, 2014An10, 2017An16, 2004GoZZ]
^{176m} Au [@]	0.101(38)-x	2.313(35)-x	6.433(7)+x	29(3)%	2021Ha32, 2014An10, 2017An16, 2013KoZR,
					2004GoZZ, 2002Ro17, 1990KaZI, 1990SEZW,
					1984ScZQ, 1984Gr14, 1975Ca06, 1974CaYE]
¹⁸⁰ Tl	-0.254(75)	1.665(71)	6.706(62)	6(4)%	[2017An16, 2013Le08, 2013KoZR, 2010An13
		· · ·			2003An27, 2003AnZZ, 1998To14, 1993LaZT]
¹⁸⁴ Bi	-1.55(13)#-y	-0.00(12)#-y	8.22(10)#+y	$\approx 100\%^{**}$	[2003An27, 2003AnZZ]
¹⁸⁴ Bi	-1.55(13)#-x	-0.00(12)#-x	8.22(10)#+x	$\approx 100\%^{**}$	[2003An27, 2003AnZZ]

* Weighted average of 11(2)% [1981Ga36] and 10.5(30)% [1979To09].

** Inferred from half-life.

Table 3

direct α emission from ¹⁵²Ho*, J^{π} = 2⁻, T_{1/2} = 161.8(3) s**, BR_{α} = 11(3)%***.

$E_{\alpha}(\text{c.m.})$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(\text{rel})$	$I_{\alpha}(abs)$	${ m J}_f^\pi$	$E_{daughter}(^{148}\mathrm{Tb})^{@}$	coincident γ -rays	$R_0 (fm)^{@@}$	HF
4.224	4.113	<2%	<0.2%	3+	0.281	0.110.0.102.0.086	1.566(19)	>3.3
4.308	4.195	<2%	<0.2%	3-	0.195	0.110, 0.086	1.566(19)	>11
4.326	4.212	$<\!\!2\%$	<0.2%	2^{+}	0.178	0.178	1.566(19)	> 50
4.395	4.279	$<\!\!2\%$	<0.2%	4^{-}	0.110	0.110	1.566(19)	>120
4.505(3)	4.386(3)	100%	11(3)%***	2^{-}	0.0		1.566(19)	$2.9^{+1.6}_{-1.0}$

* All Values from [1987StZU], except where noted.

** [1982Bo14].

*** From [1977Ha48]. A value of 3(1)% was reported in [1982To14], which would result in a HF = 11^{+7}_{-4} for the 4.386 MeV α transition.

[@] [2014Ni05]. [@] [@] Interpolated between 1.565(6) fm 150 Dy and 1.556(18) fm 154 Er.

Table 4				
direct α emission from	152m Ho*, Ex = 1	60(1) keV. $J^{\pi} = 9^{+1}$	$^{+}$. T _{1/2} = 49.7(3) s**.	$BR_{\alpha} = 10.8(17)\%^{**}$

$E_{\alpha}(c.m.)$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(\text{rel})$	$I_{\alpha}(abs)$	J_f^π	Edaughter(¹⁴⁸ Tb) [@]	coincident γ -rays	$R_0 (fm)^{@@}$	HF
4.258	4.146	$<\!\!2\%$	$<\!0.2\%$	8+	0.406	0.318, 0.238, 0.078	1.566(19)	>1.7
4.336	4.222	$<\!\!2\%$	<0.2%	7+	0.328	0.238	1.566(19)	>16
4.574(3)	4.454(3)	100%	10.8(17)%***	(9^{+})	0.0901(7)		1.566(19)	$2.1^{+1.0}_{-0.7}$

* All Values from [1987StZU], except where noted.

** Weighted average of 49.5(3) s [1982Ba75], 49.7(4) s [1982Bo04] and 50.0(5) s [1978AfZZ].

*** Weighted average of 11(2)% [1981Ga36] and 10.5(30)% [1979To09].

@ [2014Ni05].

[@] Interpolated between 1.565(6) fm 150 Dy and 1.556(18) fm 154 Er.

Table 5

direct α emission from ¹⁵⁶Tm, J^{π} = 2⁻, T_{1/2} = 82(3) s*, BR_{α} = 0.064(10)%**.

$E_{\alpha}(c.m.)$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(abs)$	$\mathbf{J}_f^{m{\pi}}$	$E_{daughter}(^{152}\text{Ho})$	coincident γ -rays	$R_0 (fm)^@$	HF
4.341(10)	4.230(10)	0.064(10)%**	2^{-}	0.0		1.540(54) [@]	$1.5^{+2.7}_{-1.0}$

* Weighted average of 80(3) s [1982To14] and 86(4) s and [1981Ga36].

** [1981Ga36].

*** [1982To14].

[@] Interpolated between 1.556(18) fm ¹⁵⁴Er and 1.523(51) ¹⁵⁸Yb.

Table 6

direct α emission from ¹⁶⁸	${}^{8}\text{Re}^{*}, J^{\pi} = (7^{+}), T_{1/2}$	$A_2 = 4.4(1) \text{ s}, BR_{\alpha} = \approx 0.005\%$
--	---	---

$E_{\alpha}(\text{c.m.})$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(abs)$	${\sf J}_f^\pi$	$E_{daughter}(^{164}\mathrm{Ta})$	coincident γ -rays	$R_0 (fm)^@$	HF	
4.951(13)	4.833(13)	$\approx 0.005\%$		0.1118	0.1118	1.611(23)@	≈ 11	

* All values from [1992Me10].

** Interpolated between 1.660(23) fm ¹⁶⁶W and 1.562(4) ¹⁷⁰Os.

Table 7

direct α emission from ¹⁷²Ir*, J^{π} = (3⁻, 4⁻), T_{1/2} = 4.1(2) s, BR_{α} = 2.0(2)%**.

$E_{\alpha}(\text{c.m.})$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(abs)$	J_f^{π}	$E_{daughter}(^{168}\mathrm{Re})$	coincident γ -rays	$R_0 (fm)^@$	HF	
5.636(5)	5505(5)	31(8)%	0.36(6)%		0.1360(2) +x	0.1360(2)	1.559(5)@	13^{+5}_{-4}
5.648(5)	5.517(5)	13(3)%	0.15(3)%		0.1230(2) + x	0.1230(2)	1.559(5)@	37^{+18}_{-10}
5.669(5)	5.537(5)	100(17)%	1.15(2)%		0.1028(3) + x	0.1028(3)	1.559(5)@	$5.9^{+2.0}_{-1.4}$
5.679(5)	5.547(5)	30(7)%	0.34(6)%		0.0894(3) +x	0.0894(3)	1.559(5)@	23^{+10}_{-6}

* All values from [2023Zh03], unless otherwise noted.

** [1992Sc16].

*** Interpolated between 1.562(4) ¹⁷⁰Os and 1.5553(31) ¹⁷⁴Pt.

Table 8

direct α emission from ^{172m}Ir*, Ex = unk., J^{π} = (7⁺), T_{1/2} = 2.0(1) s**, BR_{α} = 9.5(11)%***.

$E_{\alpha}(c.m.)$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(\text{rel})$	$I_{\alpha}(abs)$	J_f^{π}	$E_{daughter}(^{168}\mathrm{Re})$	coincident γ -rays	$R_0 (fm)^@$	HF
5.892(7)	5.755(7)	<0.05%	<0.004%		0.224(1)	0.224(1)	1.559(5) ^{@@}	$>7 \times 10^{3}$
6.125(15)	5.818(4) 5.983(15) [@]	100% 8(2)%	8.8(10)% 0.8(2)%	(7 ⁺)	0.1621(2) 0.0	0.1621(2)	1.559(5) ^{@@}	$7.1_{-1.3}^{+1.5}$ 420_{-13}^{+23}

* All values from [2023Zh03], unless otherwise noted.

** [1992Sc16].

*** [2014An10].

[@] Only observed in [2021Ha32].

[@] Interpolated between 1.562(4) ¹⁷⁰Os and 1.5553(31) ¹⁷⁴Pt.

Table 9					
direct α emission from	176 Au*, J ^{π}	$=(2^{-},3^{-})$), $T_{1/2} =$	1.046(11) s**,	$BR_{\alpha}=58(5)\%.$

$E_{\alpha}(c.m.)$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(\text{rel})$	$I_{\alpha}(abs)$	$\mathbf{J}_f^{m{\pi}}$	$E_{daughter}($ ¹⁷² Ir)	coincident γ-rays	$R_0 (fm)^{@}$	HF
5.933	5.798	<0.44%	< 0.25%		0.500	0.500	1.5488(41)***	>12
6.192(15)	6.052(15)	3.1(2)%	1.6(2)%		0.2366	0.2366	1.5488(41)***	21(3)
6.281(10)	6.138(10)	6.7(6)%	3.5(4)%		0.1515	0.1515	1.5488(41)***	21^{+4}_{-2}
6.300	6.157	<0.9%	0.46(4)%		0.1266	0.1266	1.5488(41)***	>200
6.406(5)	6.260(5)	100%	52(5)%	$(2^{-}, 3^{-})$	0.025		1.5488(41)***	4.4(5)

* All values from [2021Ha32], unless otherwise noted. The relative ordering of the ¹⁷⁶Au isomers in unknown.

** [2004GoZZ].

*** Interpolated between $1.5553(31)^{174}$ Pt and $1.5422(27)^{178}$ Hg.

Table 10

direct α emission from ^{176m}Au*, Ex = unk., J^{π} = (7⁺, 8⁺, 9⁺), T_{1/2} = 1.36(2) s**, BR_{α} = 29(5)%.

$E_{\alpha}(\text{c.m.})$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(\text{rel})$	$I_{\alpha}(abs)$	${ m J}_f^\pi$	$E_{daughter}($ ^{172m} Ir)	coincident γ -rays	$R_0 \; (fm)^@$	HF
6.221(5)	6.080(5)	55(4)%	9.6(17)%	$(7^+, 8^+, 9^+)$	0.2116+x	0.2116	1.5488(41)***	$5.6^{+1.4}_{-1.0}$
6.256(5) 6.426(10)	6.114(5) 6.280(10)	100% 12(2)%	17(3)% 2.0(5)%		0.1752+x x	0.1752	1.5488(41)*** 1.5488(41)***	$4.3_{-0.8}^{+1.1}$ 170_{-40}^{+60}

* All values from [2021Ha32], unless otherwise noted. The relative ordering of the 176 Au isomers in unknown.

** [2004GoZZ]. *** Interpolated between 1.5553(31) ¹⁷⁴Pt and1.5422(27) ¹⁷⁸Hg.

Table 11

direct α emission from ¹⁸⁰Tl*, J^{π} = (5⁻), T_{1/2} = 1.09(1) s**, BR_{α} = 6(4)%**.

$E_{\alpha}(c.m.)$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(\text{rel})$	$I_{\alpha}(abs)$	${ m J}_f^{\pi}$	Edaughter(¹⁷⁶ Au)	coincident γ-rays (keV)	R ₀ (fm)***	HF
6.006(8)	5.873(8)	0.25(6)%	0.006(4)%		0.695	695.1(5), 491.2(4), 486.1(3), 361.7(2), 333(1), 209.9(2), 204.8(2)	1.5293(67)	100_{-40}^{+230}
6.021(8)	5.887(8)	0.30(6)%	0.0072(50)%		0.678	677.5(7), 570.3(3), 472.5(4), 467.9(4), 209.9(2), 204.8(2)	1.5293(67)	100^{+220}_{-40}
6.113(8)	5.977(8)	0.40(6)%	0.0096(66)%		0.596	595.9(5), 391.2(3), 386.5(3), 317.1(2), 279.6(3), 209.9(2), 204.8(2)	1.5293(67)	160^{+180}_{-40}
6.131(8)	5.995(8)	0.18(3)%	0.0042(29)%		0.570	570.3(3), 317.1(2), 253(1), 209.9(2), 204.8(2)	1.5293(67)	500^{+1350}_{-70}
6.152(8)	6.015(8)	0.13(3)%	0.003(2)%		0.553	553.2(3)	1.5293(67)	800^{+180}_{-40}
6.186(9)	6.049(9)	0.08(3)%	0.0018(14)%		0.526	526.1(4)	1.5293(67)	$1.7^{+5.0}_{-0.8} \times 10^3$
6.226(9)	6.088(9)	0.08(3)%	0.0018(14)%		0.473	473.4(4)	1.5293(67)	$3.0^{+8.0}_{-1.0} \times 10^3$
6.307(8)	6.167(8)	0.23(5)%	0.00054(38)%		0.398	397.9(3)	1.5293(67)	$1.9^{+4.5}_{-0.8} \times 10^3$
6.333(7)	6.192(7)	2.26(32)%	0.054(37)%		0.372	204.8(2), 167.6(2)	1.5293(67)	200^{+50}_{-10}
6.340(7)	6.199(7)	43.5(50)%	1.0(7)%		0.362	361.7(2), 317.1(2), 209.9(2), 204.8(2), 151.7(2), 112.2(2), 107.1(2)	1.5293(67)	13^{+28}_{-6}
6.387(7)	6.245(7)	63(7)%	1.5(10)%		0.317	317.1(2), 209.9(2), 204.8(2), 112.2(2), 107.1(2)	1.5293(67)	14^{+29}_{-6}
6.492(7)	6.348(7)	9.1(11)%	0.22(15)%		0.210	209.9(2)	1.5293(67)	30^{+50}_{-10}
6.498(7)	6.354(7)	100(9)%	2.4(16)%		0.205	204.8(2)	1.5293(67)	20^{+50}_{-10}
6.702(7)	6.553(7)	32(3)%	0.77(0.52)%	$(2^-, 3^-)$	0.0		1.5293(67)	400_{-200}^{+900}

* All Values from [2017An16], except where noted.

** [2011El07].

*** Interpolated between 1.5422(27) ¹⁷⁸Hg and 1.5163(61) ¹⁸²Pb.

Table 12

$E_{\alpha}(c.m.)$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(abs)$	${f J}_f^{m \pi}$	$E_{daughter}($ ¹⁸⁰ Tl)	coincident γ-rays (keV)
7.28-7.51	7.12-7.35***				
7.354(20)	7.194(20)			0.124	
Table 13 direct α emission	n from ^{184<i>m</i>} Bi*, J ^{π} = , T _{1/2} =	$= 6.6(15) \text{ ms}, BR_{\alpha} = \approx$	100%**.		
$E_{\alpha}(c.m.)$	$E_{\alpha}(lab)$	$I_{\alpha}(abs)$	$J_f^{\boldsymbol{\pi}}$	$E_{daughter}($ ¹⁸⁰ Tl)	coincident γ-rays (keV)
7.90-8.02	7.73-7.85***				
7.380(15)	7.220(15)			0.449	
7 610(35)	7 445(35)				

direct α emission from ¹⁸⁴Bi*, J^{π} = , T_{1/2} = 13(2) ms, BR_{α} = $\approx 100\%$ **.

* All Values from [2003An27], except where noted. The relative ordering of the ¹⁸⁴Bi isomers in unknown.

** Inferred from half-life.

*** Complex structure with contributions from many α -decays.

References used in the Tables

- [1] **1960Ma47** R. D. Macfarlane, UCRL-9566, p. 46 (1960).
- [2] 1960Wa03 A. R. Ware, E. O. Wiig, Phys. Rev. 117, 191 (1960). https://doi.org/10.1103/PhysRev.117.191
- [3] 1961Ma40 R. D. Macfarlane, R. D. Griffioen, UCRL-10023, p. 45 (1961).
- [4] 1963Ma17 R. D. Macfarlane, R. D. Griffioen, Phys. Rev. 130, 1491 (1963). https://doi.org/10.1103/PhysRev.130.1491
- [5] 1967Ha34 R. L. Hahn, K. S. Toth, T. H. Handley, Phys. Rev. 163, 1291 (1967). https://doi.org/10.1103/PhysRev.163.1291
- [6] 1967Si02 A. Siivola, Nucl. Phys. A92, 475 (1967). https://doi.org/10.1016/0375-9474(67)90230-8
- [7] 1968Bl14 H. -J. Bleyl, H. Munzel, G. Pfennig, Radiochim. Acta 10, 106 (1968).
- [8] 1970ToZS K. S. Toth, R. L. Hahn, Proc. Int. Conf. Prop. Nuclei Far from Region of Beta-Stability, Leysin, Switzerland, Vol. 1, p. 533 (1970); CERN-70-30 (1970).
- [9] 1970ToZY K. S. Toth, CONF Leysin Vol1 P533, CERN 70-30.
- [10] 1970Ma23 I. Mahunka, Acta Phys. 28, 229 (1970); BNL-TR-356 (1970).
- [11] 1971Ke07 B. H. Ketelle, A. R. Brosi, J. R. Van Hise, Phys. Rev. C4, 1431 (1971). https://doi.org/10.1103/PhysRevC.4.1431
- [12] 1971To10 K. S. Toth, R. L. Hahn, M. A. Ijaz, Phys. Rev. C4, 2223 (1971). https://doi.org/10.1103/PhysRevC. 4. 2223
- [13] 1971ToZP K S Toth, JOUR BAPSA 16 1162, (1971).
- [14] 1971ToZR K. S. Toth, R. L. Hahn, M. A. Ijaz, ORNL-4706, p. 15 (1971).
- [15] 1971ToZX K. S. Toth, REPT ORNL 4649 P65 (1971).
- [16] 1973BoXL J. D. Bowman, E. K. Hyde, R. E. Eppley, LBL-1666, p. 4 (1973).
- [17] 1974CaYE C. Cabot,, REPT Univ Paris, IPN 1974 Annual, PR1 (1974).
- [18] 1974PeZS I. Penev, K. Zuber, Y. Zuber, A. Lyatushinskii, A. V. Potempa, Program and Thesis, Proc. 24th Ann. Conf. Nucl. Spectrosc. Struct. At. Nuclei, Kharkov, p. 106 (1974).
- [19] 1974Sc19 W-D. Schmidt-Ott, K. S. Toth, E. Newman, C. R. Bingham, Phys. Rev. C10, 296 (1974). https://doi.org/10.1103/PhysRevC.10.296
- [20] 1974ToZN K. S. Toth, R. L. Hahn, E. Newman, C. R. Bingham, W. -D. Schmidt-Ott, ORNL-4937, p. 53 (1974).
- [21] 1974ToZQ K. S. Toth, CONF Nashville(Reactions Between Complex Nuclei), Vol1 P156 (1974).
- [22] 1975Ca06 C. Cabot, C. Deprun, H. Gauvin, B. Lagarde, Y. Le Beyec, M. Lefort, Nucl. Phys. A241, 341 (1975). https://doi.org/10.1016/0375-9474(75)90323-1

- [23] 1975ScZG REPT ORNL-5025 P49
- [24] 1975SpZU B. Spoelstra, B. J. Meijer, P. Koldewijn, Univ. Zululand Rept. Ser. III, No. 15 (1975).
- [25] 1976He04 R. G. Helmer, R. J. Gehrke, R. C. Greenwood, C. W. Reich, L. D. McIsaac, Nucl. Phys. A258, 83 (1976). https://doi.org/10.1016/0375-9474(76)90529-7
- [26] 1976Ke01 G. G. Kennedy, S. C. Gujrathi, S. K. Mark, Z. Phys. A276, 103 (1976). https://doi.org/10.1007/BF01437704
- [27] 1977Ha48 E.Hagberg, P.G.Hansen, J.C.Hardy, P.Hornshoj, B.Jonson, S.Mattsson, P.Tidemand-Petersson, The ISOLDE Collaboration, Nucl. Phys. A293, 1 (1977). https://doi.org/10.1016/0375-9474(77)90472-9
- [28] 1978AfZZ V.P.Afanasev, L.Kh.Batist, E.E.Berlovich, K.Ya.Gromov, V.G.Kalinnikov, T.Kozlovski, Ya.Kormitski, K.A.Mezilev, F.V.Moroz, Yu.N.Novikov, V.N.Panteleev, A.G.Polyakov, V.I.Raiko, E.Rurarz, V.K.Tarasov, Yu.V.Yushkevich, Program and Theses, Proc.28th Ann.Conf.Nucl.Spectrosc.Struct.At.Nuclei, Alma-Ata, p.70 (1978).
- [29] 1978Sc26 U. J. Schrewe, W. -D. Schmidt-Ott, R. -D. v. Dincklage, E. Georg, P. Lemmertz, H. Jungclas, D. Hirdes, Z. Phys. A288, 189 (1978). https://doi.org/10.1007/BF01408649
- [30] 1979Al16 G. D. Alkhazov, L. K. Batist, E. Y. Berlovich, Y. S. Blinnikov, Y. V. Yelkin, K. A. Mezilev, Y. N. Novikov, V. N. Pantelejev, A. G. Polyakov, N. D. Shchigolev, V. N. Tarasov, V. P. Afanasjev, K. Y. Gromov, M. Jachim, M. Janicki, V. G. Kalinnikov, J. Kormicki, A. Potempa, E. Rurarz, F. Tarkanyi, Y. V. Yushkevich, Z. Phys. A291, 397 (1979). https://doi.org/10.1007/BF01408391
- [31] 1979To09 K. S. Toth, C. R. Bingham, H. K. Carter, B. G. Ritchie, D. C. Sousa, D. R. Zolnowski, Phys. Rev. C20, 298 (1979). https://doi.org/10.1103/PhysRevC.20.298
- [32] 1980AfZZ V. P. Afanasev, L. Kh. Batist, E. E. Berlovich, Yu. S. Blinnikov, V. A. Bystrov, K. Ya. Gromov, Yu. V. Elkin, V. G. Kalinnikov, T. Kozlovski, Ya. Kormitski, K. A. Mezilev, F. V. Moroz, Yu. N. Novikov, V. N. Panteleev, A. G. Polyakov, V. I. Raiko, E. Rurarz, V. K. Tarasov, N. D. Shchigolev, Yu. V. Yushkevich, M. Yanitski, M. Yakhim, GSI-tr-80/3 (1980).
- [33] 1980BaYV CONF Leningrad, P113, Batist (1980).
- [34] 1981De11 R. De Leo, G. D'Erasmo, A. Pantaleo, M. N. Harakeh, S. Micheletti, M. Pignanelli, Phys. Rev. C23, 1355 (1981). https://doi.org/10.1103/PhysRevC.23.1355
- [35] 1981Ga36 N. Ganbaatar, Ya. Kormitski, K. A. Mezilev, Yu. N. Novikov, Yu. P. Prokofev, A. Potempa, F. Tarkani, Izv. Akad. Nauk SSSR, Ser. Fiz. 45, 2107 (1981).
- [36] 1981GaZO N. Ganbaatar, Program and Theses, Proc. 31st Ann. Conf. Nucl. Spectrosc. Struct. At. Nuclei, Samarkand, p. 110 (1981)
- [37] 1981GaZR N. Ganbaatar, Ya. Kormitski, K. A. Mezilev, Yu. N. Novikov, A. Potempa, Yu. P. Prokofev, F. Tarkanyi, Program and Theses, Proc. 31st Ann. Conf. Nucl. Spectrosc. Struct. At. Nuclei, Samarkand, p. 114 (1981).
- [38] 1982Ba75 L. Kh. Batist, Yu. S. Blinnikov, N. Ganbaatar, Yu. V. Elkin, Ya. Kormicki, K. A. Mezilev, Yu. N. Novikov, A. M. Nurmukhamedov, A. G. Polyakov, A. Potempa, E. Senyavski, V. K. Tarasov, F. Tarkani, Izv. Akad. Nauk SSSR, Ser. Fiz. 46, 2200 (1982); Bull. Acad. Sci. USSR, Phys. Ser. 46, No. 11, 136 (1982).
- [39] 1982Bo04 J. D. Bowman, R. E. Eppley, E. K. Hyde, Phys. Rev. C25, 941 (1982). https://doi.org/10.1103/PhysRevC.25.941
- [40] 1982De11 S. Della Negra, C. Deprun, D. Jacquet, Y. Le Beyec, Ann. Phys. (Paris) 7, 149 (1982).
- [41] 1982DeZA M. de Saint-Simon, S. Haan, G. Audi, A. Coc, M. Epherre, P. Guimbal, M. Langevin, A. C. Mueller, C. Thibault, F. Touchard, Univ. Paris, Inst. Phys. Nucl., Ann. Rept., pE135 (1982).
- [42] 1982To14 K. S. Toth, Y. A. Ellis-Akovali, D. M. Moltz, R. L. Mlekodaj, Phys. Lett. 117B, 11 (1982). https://doi.org/10.1016/0370-2693(82)90863-2
- [43] 1983GaZR N. Ganbataar, Ya. Kormitski, K. A. Mezilev, Yu. N. Novikov, A. M. Nurmukhamedov, A. Potempa, E. Cenyavski, F. Tarakin, Program and Theses, Proc. 33rd Ann. Conf. Nucl. Spectrosc. Struct. At. Nuclei, Moscow, p. 113 (1983).
- [44] 1983Mi01 V. K. Mittal, D. K. Avasthi, I. M. Govil, J. Phys. (London) G9, 91 (1983). https://doi.org/10.1088/0305-4616/9/1/014
- [45] 1983Sc18 U. J. Schrewe, E. Hagberg, H. Schmeing, J. C. Hardy, V. T. Koslowsky, K. S. Sharma, Z. Phys. A310, 295 (1983). https://doi.org/10.1007/BF01419515
- [46] 1984Gr14 K. Ya. Gromov, ATOMKI Kozlem, 26, 43 (1984).
- [47] 1984ScZQ J. Schneider, GSI-84-3 (1984).
- [48] 1987LiZY P. W. Lisowski, J. L. Ullmann, S. B. Balestrini, A. D. Carlson, O. A. Wasson, N. W. Hill, Bull. Am. Phys. Soc. 32,

No. 4, 1035, BG7 (1987).

- [49] 1987StZU J. Styczen, P. Kleinheinz, W. Starzecki, B. Rubio, G. de Angelis, C. F. Liang, P. Paris, R. Rainhard, P. von Brentano, J. Blomqvist, Contrib. Proc. 5th Int. Conf. Nuclei Far from Stability, Rosseau Lake, Canada, G4 (1987)
- [50] 1989KaYU K. Katori, T. Ohshima, H. Miyatake, A. Shinohara, S. Hatori, I. Katayama, S. Morinobu, RCNP (Osaka), Ann. Rept., 1988, p. 92 (1989).
- [51] 1990KaZI K. Katori, T. Ohshima, H. Miyatake, A. Shinohara, S. Hatori, I. Katayama, S. Morinobu, RCNP (Osaka), Ann. Rept., 1989, p. 75 (1990).
- [52] 1990SeZW P. J. Sellin, P. J. Woods, S. J. Bennett, M. Freer, B. R. Fulton, R. D. Page, A. N. James, M. A. C. Hotchkis, R. A. Cunningham, Daresbury Labs., 1989-1990 Ann. Rept., Appendix, p. 80 (1990).
- [53] 1991VaZZ Ya. Vavryshchuk, K. Ya. Gromov, V. G. Kalinnikov, N. Yu. Kotovsky, V. V. Kuznetsov, M. Levandovsky, A. V. Potempa, N. Rashkova, Ya. A. Saidimov, Zh. Sehrehehtehr, V. I. Fominykh, M. B. Yuldashev, Yu. V. Yushkevich, M. Yanitski, Program and Thesis, Proc. 41st Ann. Conf. Nucl. Spectrosc. Struct. At. Nuclei, Minsk, p. 83 (1991).
- [54] 1992Me10 F. Meissner, H. Salewski, W. -D. Schmidt-Ott, U. Bosch-Wicke, R. Michaelsen, Z. Phys. A343, 283 (1992). https://doi.org/10.1007/BF01291527
- [55] 1992MeZW F. Meissner, W. -D. Schmidt-Ott, H. Salewski, U. Bosch-Wicke, R. Michaelsen, Contrib. 6th Intern. Conf. on Nuclei Far from Stability + 9th Intern. Conf. on Atomic Masses and Fundamental Constants, Bernkastel-Kues, Germany, PE42 (1992).
- [56] 1992Po14 A. V. Potempa, K. Ya. Gromov, J. Wawryszczuk, V. G. Kalinnikov, V. V. Kuznetsov, M. Levandovsky, J. Saraatar, Ya. Saidimov, V. I. Fominykh, Yu. V. Yushkevich, M. B. Yuldashev, Bull. Rus. Acad. Sci. Phys. 56, 666 (1992).
- [57] 1992Sc16 W. -D. Schmidt-Ott, H. Salewski, F. Meissner, U. Bosch-Wicke, P. Koschel, V. Kunze, R. Michaelsen, Nucl. Phys. A545, 646 (1992). https://doi.org/10.1016/0375-9474(92)90297-W
- [58] 1992Wo03 D. H. Woods, S. A. Woods, M. J. Woods, J. L. Makepeace, C. W. A. Downey, D. Smith, A. S. Munster, S. E. M. Lucas, H. Sharma, Appl. Radiat. Isot. 43, 551 (1992). https://doi.org/10.1016/0883-2889(92)90138-5
- [59] 1993LaZT Yu. A. Lazarev, Yu. Ts. Oganessian, I. V. Shirokovsky, S. P. Tretyakova, V. K. Utyonkov, G. V. Buklanov, Proc. 6th Intern. Conf. on Nuclei Far from Stability + 9th Intern. Conf. on Atomic Masses and Fundamental Constants, Bernkastel-Kues, Germany, 19-24 July, 1992, R. Neugart, A. Wohr, Eds., p. 739 (1993).
- [60] 1996Pa01 R. D. Page, P. J. Wood, R. A. Cunningham, T. Davinson, N. J. Davis, A. N. James, K. Livingston, P. J. Sellin, A. C. Shotter, Phys. Rev. C53, 660 (1996). https://doi.org/10.1103/PhysRevC.53.660
- [61] 1998To14 K S Toth, X -J Xu, C R Bingham, J C Batchelder, L F Conticchio, W B Walters, L T Brown, C N Davids, R J Irvine, D Seweryniak, J Wauters, E F Zganjar, Phys Rev C58, 1310 (1998). https://doi.org/10.1103/PhysRevC.58.1310
- [62] 2002Ro17 M. W. Rowe, J. C. Batchelder, T. N. Ginter, K. E. Gregorich, F. Q. Guo, F. P. Hessberger, V. Ninov, J. Powell, K. S. Toth, X. J. Xu, J. Cerny, Phys. Rev. C 65, 054310 (2002). https://doi.org/10.1103/PhysRevC.65.054310
- [63] 2003An27 A. N. Andreyev, D. Ackermann, F. P. Hessberger, S. Hofmann, M. Huyse, I. Kojouharov, B. Kindler, B. Lommel, G. Munzenberg, R. D. Page, K. Van de Vel, P. Van Duppen, K. Heyde, Eur. Phys. J. A 18, 55 (2003). https://doi.org/10.1140/epja/i2003-10051-1
- [64] 2003AnZZ A. N. Andreyev, D. Ackermann, F. P. Hessberger, S. Hofmann, M. Huyse, B. Kindler, I. Kojouharov, B. Lommel, G. Munzenberg, R. D. Page, K. Van de Vel, P. Van Duppen, GSI 2003-1, p. 9 (2003).
- [65] 2004GoZZ J. T. M. Goon, Thesis, University of Tennessee, Knoxville (2004).
- [66] 2010An13 A N Andreyev, J Elseviers, M Huyse, P Van Duppen, S Antalic, A Barzakh, N Bree, T E Cocolios, V F Comas, J Diriken, D Fedorov, V Fedosseev, S Franchoo, J A Heredia, O Ivanov, U Koster, B A Marsh, P Van den Bergh, J Van De Walle, K Nishio, R D Page, N Patronis, M Seliverstov, I Tsekhanovich, M Venhart, S Vermote, M Veselsky, C Wagemans, T Ichikawa, A Iwamoto, P Moller, A J Sierk, Phys Rev Lett 105, 252502 (2010). https://doi.org/10.1103/PhysRevLett.105.252502
- [67] 2011El07 J. Elseviers, A. N. Andreyev, S. Antalic, A. Barzakh, N. Bree, T. E. Cocolios, V. F. Comas, J. Diriken, D. Fedorov, V. N. Fedosseyev, S. Franchoo, J. A. Heredia, M. Huyse, O. Ivanov, U. Koster, B. A. Marsh, R. D. Page, N. Patronis, M. Seliverstov, I. Tsekhanovich, P. Van den Bergh, J. Van De Walle, P. Van Duppen, M. Venhart, S. Vermote, M. Veselsky, C. Wagemans, Phys. Rev. C 84, 034307 (2011). https://doi.org/10. 1103/PhysRevC.84.034307
- [68] 2013KoZR F. G. Kondev, M. P. Carpenter, S. Zhu, R. V. F. Janssens, I. Ahmad, B. B. Back, P. F. Bertone, J. Chen, C. J. Chiara, C. A. Copos, J. P. Greene, C. R. Hoffman, B. P. Kay, T. L. Khoo, T. Lauritsen, E. A. McCutchan, C. Nair, A. M. Rogers, D. Seweryniak, D. J. Hartley, Heavy Ion Accelerator Symposium 2013, Canberra, Australia, April 8-12, 2013, C. Simenel, M. Evers, T. Kibedi, et al. (Eds.) p. 01013 (2013); EPJ Web of Conf. v. 63 (2013). https://doi.org/10.1051/epjconf/20136301013

- [69] 2013Le08 J. Le Bloas, N. Pillet, J. -M. Daugas, M. Dupuis, Acta Phys. Pol. B44, 299 (2013). https://doi.org/10.5506/APhysPolB.44.299
- [70] 2014An10 A. N. Andreyev, S. Antalic, D. Ackermann, T. E. Cocolios, J. Elseviers, S. Franchoo, S. Heinz, F. P. Hessberger, S. Hofmann, M. Huyse, J. Khuyagbaatar, B. Kindler, B. Lommel, R. Mann, R. D. Page, P. Van Duppen, M. Venhart, Phys. Rev. C 90, 044312 (2014). https://doi.org/10.1103/PhysRevC.90.044312
- [71] 2014Ni05 N. Nica, Nucl. Data Sheets 117, 1 (2014).
- [72] 2014Pe02 P. Peura, C. Scholey, D. T. Joss, S. Juutinen, R. Julin, T. Back, B. Cederwall, P. T. Greenlees, U. Jakobsson, P. Jones, D. S. Judson, S. Ketelhut, M. Labiche, M. Leino, M. Nyman, D. O'Donnell, R. D. Page, P. Rahkila, P. Ruotsalainen, M. Sandzelius, P. J. Sapple, J. Saren, J. Simpson, J. Thomson, J. Uusitalo, H. V. Watkins, Phys. Rev. C 89, 024316 (2014). https://doi.org/10.1103/PhysRevC.89.024316
- [73] 2017An16 B. Andel, A. N. Andreyev, S. Antalic, A. Barzakh, N. Bree, T. E. Cocolios, V. F. Comas, J. Diriken, J. Elseviers, D. V. Fedorov, V. N. Fedosseev, S. Franchoo, L. Ghys, J. A. Heredia, M. Huyse, O. Ivanov, U. Koster, V. Liberati, B. A. Marsh, K. Nishio, R. D. Page, N. Patronis, M. D. Seliverstov, I. Tsekhanovich, P. Van den Bergh, J. Van De Walle, P. Van Duppen, M. Venhart, S. Vermote, M. Veselsky, C. Wagemans, Phys. Rev. C 96, 054327 (2017). https://doi.org/10.1103/PhysRevC.96.054327
- [74] 2021Ha32 R. D. Harding, A. N. Andreyev, A. E. Barzakh, J. G. Cubiss, P. Van Duppen, M. Al Monthery, N. A. Althubiti, B. Andel, S. Antalic, T. E. Cocolios, T. Day Goodacre, K. Dockx, G. J. Farooq-Smith, D. V. Fedorov, V. N. Fedosseev, D. A. Fink, L. P. Gaffney, L. Ghys, J. D. Johnson, D. T. Joss, M. Huyse, N. Imai, K. M. Lynch, B. A. Marsh, Y. Martinez Palenzuela, P. L. Molkanov, G. G. O'Neill, R. D. Page, R. E. Rossel, S. Rothe, M. D. Seliverstov, S. Sels, C. Van Beveren, E. Verstraelen, Phys. Rev. C 104, 024326 (2021). https://doi.org/10.1103/PhysRevC.104.024326
- [75] 2021Ha37 N. Hatwar, C. R. Singh, S. Ganesh, M. Mishra, Phys. Rev. C 104, 034905 (2021). https://doi.org/10. 1103/Phys-RevC.104. 034905
- [76] 2021Wa16 M. Wang, W. J. Huang, F. G. Kondev, G. Audi, S. Naimi, Chin. Phys. C 45, 030003 (2021).
- [77] 2023Zh03 W. Zhang, B. Cederwall, M. Doncelo, Ö. Aktas, A. Ertoprak, C. Qi, T. Grahn, B. S. Nara Singh, D. M. Cullen, D. Hodge, M. Giles, S. Stolze, K. Auranen, H. Badran, T. Braunroth, T. Calverley, D. M. Cox, Y. D. Fang, P. T. Greenlees, J. Hilton, E. Ideguchi, R. Julin, S. Juutinen, M. Kumar Raju8, M. Leino, H. Li, H. Liu, S. Matta, P. Subramaniam, V. Modamio, J. Pakarinen, P. Papadakis, J. Partanen, C. M. Petrache, P. Rahkila, P. Ruotsalainen, M. Sandzelius, J. Sarén, C. Scholey, J. Sorri, M. J. Taylor, J. Uusitalo, J. J. Valiente-Dobón, Phys. Rev. C 107 014308.