

Fig. 1: Known experimental values for heavy particle emission of the odd-Z T_z = +7 nuclei.

Last updated 3/23/23

Table 1

Observed and predicted β -delayed particle emission from the odd-Z, $T_z = +7$ nuclei. Unless otherwise stated, all Q-values are taken from [2021Wa16] or deduced particle emission from the odd-Z, $T_z = +7$ nuclei.	uced
from values therein. All J^{π} values are taken from ENSDF.	

Nuclide	Ex	J^{π}	$T_{1/2}$	$Q_{\mathcal{E}}$	$Q_{\varepsilon p}$	$BR_{\beta p}$	$Q_{\epsilon 2p}$	$Q_{\varepsilon \alpha}$	Experimental
¹¹⁶ Sb		3+	16.2(12) m	4.704(5)	-4.575(5)		-11.385(5)	1.328(5)	[1967Ha27]
^{120}I		2^{-}	81.7(2) m	5.615(15)	-1.561(17)		-6.672(15)	5.354(15)	[2000Ho19]
¹²⁴ Cs		1^{+}	30.9(5) m	5.926(9)	-1.087(10)		-6.006(9)	5.196(9)	[1993Al03]
¹²⁸ La*		(5^+)	5.2(4) m	6.740(50)	0.326(55)		-4.057(54)	6.617(54)	[1977Zo02]
¹³² Pr		(2^{-})	1.6(3) m	7.240(40)	1.253(40)		-2.549(29)	7.717(29)	[1987Ko24]
¹³⁶ Pm*		(2^{+})	30-150 s	8.030(70)	2.477(70)		-0.915(72)	8.874(72)	[1989Vi04]
¹⁴⁰ Eu		1^{+}	1.51(2) s	8.470(50)	3.226(53)		0.453(53)	9.788(53)	[1991Fi03]
¹⁴⁴ Tb			1.5(10) s	9.390(40)	4.584(30)		2.036(28)	10.663(31)	[1982No08]
¹⁴⁸ Ho		(1^{+})	2.2(1) s	9.870(80)	5.463(84)		3.517(84)	11.343(88)	[1982No08]
^{148m} Ho	х	(5 ⁻)	9.59(15) s	9.870(80)+x	5.463(84)+x	0.08(1)%	3.517(84)+x	11.343(88)+x	[1988To03]
¹⁵² Tm		(2^{-})	8.0(10) s	8.780(50)	4.613(55)		3.011(54)	13.714(55)	[1982No13]
¹⁵⁶ Lu		(2^{-})	494(12) ms	9.570(50)	5.637(55)		4.327(54)	14.376(55)	[1996Pa01]
^{156m} Lu	х	(10^{+})	198(2) ms	9.570(50)+x	5.637(55)+x		4.327(54)+x	14.376(55)+x	[1996Pa01]
¹⁶⁰ Ta*			1.7(2) s	10.120(60)	6.596(66)		5.608(55)	15.017(55)	[1996Pa01]
^{160m} Ta	х		1.55(4) s	10.120(60)+x	6.596(66)+x		5.608(55)+x	15.017(55)+x	[1996Pa01]
¹⁶⁴ Re			848^{+140}_{-105} ms	10.760(60)	7.773(67)		7.118(55)	16.041(55)	[2009Ha42]
^{164m} Re	х		864^{+150}_{-110} ms	10.760(60)+x	7.773(67)+x		7.118(55)+x	16.041(55)+x	[2009Ha42]
¹⁶⁸ Ir			155(40) ms**	11.330(60)#	8.879(68)#		8.643(56)#	17.144(56)	[2009Ha42, 1996Pa01]
^{168m} Ir	х		161(21) ms	11.330(60)#	8.879(68)#		8.643(56)#	17.144(56)+x	[2009Ha42, 1996Pa01]
¹⁷² Au			22^{+6}_{-4} ms	11.790(60)	9.805(68)		10.030(57)	18.252(57)	[2009Ha42]
^{172m} Au	х		$\frac{-4}{5(1)}$ ms***	11.790(60)	9.805(68)		10.030(57)	18.252(57)+x	2009Ha42, 1996Pa01, 1993Se09]
¹⁷⁶ T1			$5.2^{+3.0}$ ms	12.370(80)	10.699(92)		11.324(84)	19.266(84)	[2004Ke06]
			-1.4					= ()	

* Possibly isomeric state. ** Weighted average of 222_{-45}^{+60} ms [2009Ha42] and 125(40) ms [1996Pa01].

*** Weighted average of 9^{+2}_{-1} ms [2009Ha42], 6.3(15) ms [1996Pa01], and 4(1) ms [1993Se09].

Table 2

Particle emission from the odd-Z, Tz = +7 nuclei. Unless otherwise stated, all Q-values and separation energies are taken from [2021Wa16] or deduced from values therein.

Nuclide	\mathbf{S}_p	BR_p	S_{2p}	Qα	BR_{α}	Experimental
¹¹⁶ Sb	4.077(5)		12.830(5)	-1.257(7)		
^{120}I	3.854(17)		10.329(15)	0.650(16)		
¹²⁴ Cs	3.782(13)		10.240(11)	-0.419(18)		
¹²⁸ La*	3.096(56)		8.853(55)	0.691(55)		
¹³² Pr	2.808(44)		8.178(39)	0.973(62)		
¹³⁶ Pm*	2.245(72)		7.220(72)	1.633(75)		
¹⁴⁰ Eu	1.895(53)		6.650(53)	1.759(86)		
¹⁴⁴ Tb	1.43(20)		5.637(41)	2.193(59)		
¹⁴⁸ Ho	1.084(84)		4.805(95)	1.952(88)		
^{148m} Ho	1.084(84)-x		4.805(95)-x	1.952(88)+x		
¹⁵² Tm	0.743(56)		4.352(56)	3.85(10)		
¹⁵⁶ Lu	0.486(57)		3.850(56)	5.596(3)	pprox 100%	[1996Pa01, 1991PoZZ, 1981HoZM, 1979Ho10]
^{156m} Lu**	0.486(57)-x		3.850(56)-x	5.596(3)+x	$98^{+2}_{0}\%$	[2019Pa27, 1996Pa01, 1991PoZZ, 1981HoZM, 1979Ho10]
¹⁶⁰ Ta	0.260(57)		3.189(56)	5.451(5)	obs	[1996Pa01]
^{160m} Ta	0.260(57)-x		3.189(56)-x	5.451(5)+x	obs	[1996Pa01, 1992Ha10, 1988MeZY, 1987HaZO, 1987ScZH,
						1986Ru05, 1981HoZM, 1979Ho10
¹⁶⁴ Re	-0.147(80)		2.269(84)	5.926(5)	obs	[2009Ha42, 1996Pa01, 1979Ho10 , 1981Ho10, 1979Ho10]
164mRe**	-0.147(80)-x		2.269(84)-x	5.926(5)+x	3(1)%	[2009Ha42]
¹⁶⁸ Ir	-0.544(98)		1.41(10)	6.381(9)	obs	[2009Ha42, 1996Pa01, 1982De11, 1981DeZA, 1981DeZL,
						1978Ca11, 1978CaZF]
^{168m} Ir	-0.544(98)-x		1.41(10)-x	6.381(9)+x	78(11)%**	[2009Ha42, 1996Pa01]
¹⁷² Au	-0.860(99)		0.71(12)	6.923(10)	100%	[2009Ha42]
^{172m} Au	-0.860(99)-x	<2%	0.71(12)-x	6.923(10)+x	100%	[2009Ha42, 1996Pa01, 1993Se09]
¹⁷⁶ Tl	-1.265(18)	100%	-0.07(13)	7.48(10)		[2004Ke06]

* Possibly isomeric state.

** Weighted average of 75(11)% [2009Ha42] and 82(14)% [1996Pa01].

Table 3

direct α emiss	sion from ¹⁵⁶ Lu*, J^{π} =	$(2^{-}), T_{1/2} = 494(12)$) ms, $BR_{\alpha} = \approx 100^{\circ}$	%.			
$E_{\alpha}(\text{c.m.})$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(abs)$	${\rm J}_f^{\pi}$	$E_{daughter}(^{152}\mathrm{Tr})$	n) coincide	ent γ-rays	
5.593(10)	5.450(10)	$\approx 100\%$	(2 ⁻)	0.0			
* All valu	ues from [1996Pa01].						
Table 4 direct α emiss	tion from ^{156m} Lu*, Ex	$=$ unk., $J^{\pi} = (10^+), T$	$G_{1/2} = 198(2) \text{ ms}, B$	$R_{\alpha} = 98^{+2}_{0}\%^{**}.$			
$E_{\alpha}(c.m.)$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(\text{rel})$	$I_{\alpha}(abs)$	J_f^π	$E_{daughter}(^{152}\mathrm{Tm})$	coincident γ -rays	
5.589(5) 5.707(4)	5.446(5) 5.561(4)	0.057(10)% 100%	0.056(10)% $98^{+2}_{-9}\%$	(9+)	0.1148(5) 0.0	0.115	
* All valu ** [1996]	ues from [2019Pa27], (Pa01].	except where noted.					
Table 5 direct α emiss	sion from ¹⁶⁰ Ta*, J ^{π} =	, $T_{1/2} = 1.7(2)$ s, <i>BR</i>	$\alpha = \text{obs.}$				
$E_{\alpha}(\text{c.m.})$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(abs)$	${\rm J}_f^{\pi}$	Edaughter(¹⁵⁶ Lu)	coinciden	tγ-rays	
5.449(5)	5.313(5)	obs					
Table 6 direct α emiss	ion from ^{160m} Ta*, Ex	= unk., J^{π} = , $T_{1/2}$ =	198(2) ms, $BR_{\alpha} = 0$	obs.			
$E_{\alpha}(\text{c.m.})$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(abs)$	\mathbf{J}_f^{π}	<i>E</i> _{daughter} (¹⁵⁶ Lu)	coincident	t γ-rays	
5.552(5)	5.413(5)	obs		**			
* All valu ** α - α co	nes from [1996Pa01]. oincident with 5.561 M	MeV α from ^{156m} Lu.					
Table 7 direct α emiss	sion from ¹⁶⁴ Re*, J^{π} =	$T_{1/2} = 848^{+140}_{-105} \text{ ms}$	**, BR_{α} = obs.				
$E_{\alpha}(c.m.)$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(abs)$	$J_f^{\boldsymbol{\pi}}$	$E_{daughter}(^{160}\mathrm{Ta})$) coincide	nt γ-rays	
5.926(7)	5.781(7)***	obs					
* All valu ** Other *** Weig	ues from [2009Ha42], values: 38(16) ms [19 hted average of 5.780	except where noted. 96Pa01], 880(240) m (10) MeV [2009Ha42	s [1979Ha10]. e], 5.784(7) MeV [1	996Pa01], and 5.778(10) MeV [1979H010]		
Table 8 direct α emiss	tion from ^{164m} Re*, Ex	= unk., J^{π} = , $T_{1/2}$ =	864^{+150}_{-110} ms, BR_{α} =	= 3(1)%.			
$E_{\alpha}(\text{c.m.})$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(abs)$	$\mathbf{J}_{f}^{\boldsymbol{\pi}}$	$E_{daughter}(^{160}$ Ta)	coincider	tt γ-rays	
5.764(10)	5.623(10)	3(1)%		**			

* All values from [2009Ha421]. ** α - α coincident with 5.413 MeV α from ^{160m}Ta.

Table 9

direct α emission	on from ¹⁶⁸ Ir, $J^{\pi} = , T_1$	$_{/2} = 155(40) \text{ ms}^*, BH$	$R_{\alpha} = \text{obs.}$				
$E_{\alpha}(c.m.)$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(abs)$	${\sf J}_f^{\pi}$	$E_{daughter}(^{164}\mathrm{F})$	Re) coir	ncident γ-rays	
6.381(10)	6.229(10)**	obs					
* Weighted ** Weighte	l average of 222^{+60}_{-45} ms ed average of 6.230(10)	5 [2009Ha42] and 12:) MeV [2009Ha42], a	5(40) ms [1996Pa0 and 6.227(15) MeV	1]. [1996Pa01].			
Table 10 direct α emission	on from 168m Ir*, Ex = u	ank., $J^{\pi} = , T_{1/2} = 16$	$1(21) \text{ ms}^{**}, BR_{\alpha} =$	= 78(11)%***.			
$E_{\alpha}(c.m.)$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(\text{rel})$	$I_{\alpha}(abs)$	$\mathbf{J}_f^{m{\pi}}$	$E_{daughter}(^{164}\mathrm{Re})$	coincident γ-rays	
6.474(10) 6.413(10)	6.320(10) 6.260(10)	42(11)% 100%	22(10)% 53(5)%		@ @	0.069	
* All value ** [1996Pa *** Weigh @ α-α coi Table 11 direct α emissio	s from [2009Ha421], e a01]. ted average of 75(11)% ncident with 5.623 Me on from ¹⁷² Au, $J^{\pi} = , T$	except where noted. (b) [2009Ha42] and 82 V α from ^{164m} Re. $\Gamma_{1/2} = 22^{+6}_{-4}$ ms, BR_{α}	(14)% [1996Pa01]. = 100%.				
$E_{\alpha}(\text{c.m.})$	$E_{\alpha}(lab)$	$I_{\alpha}(abs)$	${ m J}^{\pi}_{f}$	$E_{daughter}(^{168}$ Ir) coinc	ident γ-rays	
6.923(10)	6.762(10)	100%					
* All value	s from [2009Ha42].						
Table 12direct α emission	on from ^{172m} Au*, Ex =	unk., J $^{\pi}$ = , T $_{1/2}$ = 5	(1) ms**, $BR_{\alpha} = 1$	00%.			
$E_{\alpha}(\text{c.m.})$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(\mathrm{rel})^{***}$	$I_{\alpha}(abs)^{***}$	$\mathbf{J}_{f}^{\boldsymbol{\pi}}$	$E_{daughter}(^{168}\mathrm{Ir})$	coincident γ -rays	
6.962(10) 7.034(10)	6.800(10) 6.870(10)	18(8)% 100%	15(7)% 85(7)%		@ @	0.073, 0.065	
* All value ** Weighte *** Based @ α-α coi Table 13	s from [2009Ha421], e ed average of 9^{-1}_{-1} ms [2 on Fig. 2e of [2009Ha ncident with 6.260 Me	except where noted. 009Ha42], 6.3(15) m 42]. V α from ^{168m} Ir.	us [1996Pa01], and	4(1) ms [1993Se09	9].		
urect p emissio	$11, J'' = , T_1$	$/2 = 5.2_{-1.4}$ ms, BR_p	= 100%.				
$E_p(\text{c.m.})$	$E_p(\text{lab})$	$I_p(abs)$	J_f^{π}	$E_{daughter}(^{175}\mathrm{Hg}$	g) coine	cident γ-rays	
1.265(18)	1.258(18)	100%		0.0			
* All value	s from [2004Ke06].						

References used in the Tables

- [1] 1967Ha27 E. Hagebo, J. Inorg. Nucl. Chem. 29, 2515 (1967). https://doi.org/10.1016/0022-1902(67)80177-5
- [2] 1977Zo02 D. R. Zolnowski, T. T. Sugihara, Phys. Rev. C16, 408 (1977). https://doi.org/10.1103/PhysRevC.16.408
- [3] **1978Ca11** C. Cabot, S. Della Negra, C. Deprun, H. Gauvin, Y. Le Beyec, Z. Phys. A**287**, 71 (1978). https://doi.org/10.1007/BF01408363
- [4] 1978CaZF C. Cabot, S. Della Negra, C. Deprun, H. Gauvin, Y. Le Beyec, Univ. Paris, Inst. Nucl. Phys., Ann. Rept., p. R3 (1978).

- [5] 1979Ho10 S. Hofmann, W. Faust, G. Munzenberg, W. Reisdorf, P. Armbruster, K. Guttner, H. Ewald, Z. Phys. A291, 53 (1979). https://doi.org/10.1007/BF01415817
- [6] 1981DeZA S. Della Negra, C. Deprun, D. Jacquet, Y. Le Beyec, Univ. Paris, Inst. Phys. Nucl., Ann. Rept., p. R5 (1981).
- [7] 1981DeZL Della Negra, REPT IPNO-RC-81-07.
- [8] 1981Ho10 S. Hofmann, G. Munzenberg, F. Hessberger, W. Reisdorf, P. Armbruster, B. Thuma, Z. Phys. A299, 281 (1981). https://doi.org/10.1007/BF01443948
- [9] 1981HoZM S. Hofmann, G. Munzenberg, W. Faust, F. Hessberger, W. Reisdorf, J. R. H. Schneider, P. Armbruster, K. Guttner, B. Thuma, Proc. Int. Conf. Nuclei Far from Stability, Helsingor, Denmark, Vol. 1, p. 190 (1981); CERN-81-09 (1981).
- [10] 1982De11 S.Della Negra, C.Deprun, D.Jacquet, Y.Le Beyec, Ann.Phys.(Paris) 7, 149 (1982).
- [11] 1982No08 E. Nolte, S. Z. Gui, G. Colombo, G. Korschinek, K. Eskola, Z. Phys. A306, 223 (1982). https://doi.org/10.1007/BF01415124
- [12] 1982No13 E. Nolte, G. Korschinek, Ch. Setzensack, Z. Phys. A309, 33 (1982). https://doi.org/10.1007/BF01420148
- [13] 1986Ru05 E. Runte, T. Hild, W. -D. Schmidt-Ott, U. J. Schrewe, P. Tidemand-Petersson, R. Michaelsen, Z. Phys. A324, 119 (1986).
- [14] 1987HaZO E. Hagberg, X. J. Sun, V. T. Koslowsky, H. Schmeing, J. C. Hardy, Contrib. Proc. 5th Int. Conf. Nuclei Far from Stability, Rosseau Lake, Canada, A4 (1987).
- [15] 1987Ko24 M. Kortelahti, E. F. Zganjar, R. L. Mlekodaj, B. D. Kern, R. A. Braga, R. W. Fink, C. P. Perez, Z. Phys. A327, 231 (1987).
- [16] 1987ScZH W. -D. Schmidt-Ott, E. Runte, T. Hild, U. J. Schrewe, P. Tidemand-Petersson, R. Michaelsen, HMI-437, p. 23 (1987).
- [17] 1988MeZY F. Meissner, T. Hild, W. -D. Schmidt-Ott, E. Runte, H. Salewski, V. Freystein, R. Michaelsen, Proc. 5th Int. Conf. Nuclei Far from Stability, Rosseau Lake, Canada 1987, Ed., I. S. Towner, p. 509 (1988).
- [18] 1988T003 K. S. Toth, D. C. Sousa, J. M. Nitschke, P. A. Wilmarth, Phys. Rev. C37, 1196 (1988). https://doi.org/10.1103/PhysRevC.37.1196
- [19] 1989Vi04 K. S. Vierinen, J. M. Nitschke, P. A. Wilmarth, R. B. Firestone, J. Gilat, Nucl. Phys. A499, 1 (1989). https://doi.org/10.1016/0375-9474(89)90266-2
- [20] 1991Fi03 R. B. Firestone, J. Gilat, J. M. Nitschke, P. A. Wilmarth, K. S. Vierinen, Phys. Rev. C43, 1066 (1991). https://doi.org/10.1103/PhysRevC.43.1066
- [21] 1991PoZZ A. V. Potempa, E. Beltsazh, Ya. Vavryshchuk, K. Ya. Gromov, S. V. Evtisov, V. G. Kalinnikov, V. V. Kuznetsov, M. Levandovsky, Ya. A. Saidimov, Zh. Sehrehehtehr, V. I. Fominykh, M. B. Yuldashev, Yu. V. Yushkevich, M. Yanitski, Program and Thesis, Proc. 41st Ann. Conf. Nucl. Spectrosc. Struct. At. Nuclei, Minsk, p. 85 (1991).
- [22] 1992Ha10 E. Hagberg, X. J. Sun, V. T. Koslowsky, H. Schmeing, J. C. Hardy, Phys. Rev. C45, 1609 (1992). https://doi.org/10.1103/PhysRevC.45.1609
- [23] 1993Al03 G. D. Alkhazov, L. H. Batist, A. A. Bykov, F. V. Moroz, S. Yu. Orlov, V. K. Tarasov, V. D. Wittmann, Z. Phys. A344, 425 (1993). https://doi.org/10.1007/BF01283198
- [24] 1993Se09 P. J. Sellin, P. J. Woods, T. Davinson, N. J. Davis, A. N. James, K. Livingston, R. D. Page, A. C. Shotter, Z. Phys. A346, 323 (1993). https://doi.org/10.1007/BF01292526
- [25] 1996Pa01 R. D. Page, P. J. Wood, R. A. Cunningham, T. Davinson, N. J. Davis, A. N. James, K. Livingston, P. J. Sellin, A. C. Shotter, Phys. Rev. C53, 660 (1996). https://doi.org/10.1103/PhysRevC.53.660
- [26] 2000Ho19 A. Hohn, H. H. Coenen, S. M. Qaim, Radiochim. Acta 88, 139 (2000).
- [27] 2004Ke06 H. Kettunen, T. Enqvist, T. Grahn, P. T. Greenlees, P. Jones, R. Julin, S. Juutinen, A. Keenan, P. Kuusiniemi, M. Leino, A. -P. Leppanen, P. Nieminen, J. Pakarinen, P. Rahkila, J. Uusitalo, Phys. Rev. C 69, 054323 (2004). https://doi.org/10.1103/PhysRevC.69.054323
- [28] 2009Ha42 B. Hadinia, B. Cederwall, R. D. Page, M. Sandzelius, C. Scholey, K. Andgren, T. Back, E. Ganioglu, M. B. Gomez Hornillos, T. Grahn, P. T. Greenlees, E. Ideguchi, U. Jakobsson, A. Johnson, P. M. Jones, R. Julin, J. Juutinen, S. Ketelhut, A. Khaplanov, M. Leino, M. Niikura, M. Nyman, I. Ozgur, E. S. Paul, P. Peura, P. Rahkila, J. Saren, J. Sorri, J. Uusitalo, R. Wyss, Phys. Rev. C 80, 064310 (2009). https://doi.org/10.1103/PhysRevC.80.064310
- [29] 2019Pa27 E. Parr, R. D. Page, D. T. Joss, F. A. Ali, K. Auranen, L. Capponi, T. Grahn, P. T. Greenlees, J. Henderson, A. Herzan, U. Jakobsson, R. Julin, S. Juutinen, J. Konki, M. Labiche, M. Leino, P. J. R. Mason, C. McPeake, D. O'Donnell,

J. Pakarinen, P. Papadakis, J. Partanen, P. Peura, P. Rahkila, J. P. Revill, P. Ruotsalainen, M. Sandzelius, J. Saren, C. Scholey, J. Simpson, J. F. Smith, M. Smolen, J. Sorri, S. Stolze, A. Thornthwaite, J. Uusitalo, Phys. Rev. C **99**, 054307 (2019). https://doi.org/10.1103/PhysRevC.99.054307

[30] 2021Wa16 M. Wang, W. J. Huang, F. G. Kondev, G. Audi, S. Naimi, Chin. Phys. C 45, 030003 (2021). https://doi.org/ 10.1088/1674-1137/abddaf