

Last updated 3/22/23

Table 1

Observed and predicted β -delayed particle emission from the odd-Z, $T_z = +6$ nuclei. Unless otherwise stated, all Q-values are taken from [2021Wa16] or deduced
from values therein. $J^{ p }$ values for ¹¹⁰ In, ¹¹⁴ Sb, ¹¹⁸ I, ¹²² Cs, ¹²⁶ La, ¹³⁰ Pr, ¹³⁴ Pm, ¹³⁸ Eu are taken from ENSDF.

Nuclide	Ex	J^{π}	$T_{1/2}$	Qε	$Q_{\varepsilon p}$	$BR_{\beta p}$	$Q_{\epsilon 2p}$	$Q_{\varepsilon \alpha}$	Experimental
110-		-		2 0 5 0 (1 2)	5.040(10)		11.50.((10))		
110 In		7+	4.9(1) h	3.878(12)	-5.040(12)		-11.524(12)	1.013(12)	[1975Bu24]
114Sb		3+	3.51(4) m	6.063(20)	-2.418(20)		-8.500(20)	3.426(20)	[1976Wi10]
I ¹¹⁸ I		2^{-}	14.3(1) m	6.720(27)	0.380(21)		-4.023(20)	7.164(20)	[1969Ha03]
^{122}Cs		1^{+}	21.18(19) s	7.210(40)	0.812(34)		-3.361(34)	7.121(38)	[1993Al03]
¹²⁶ La			54(2) s	7.700(90)	1.827(91)		-1.884(91)	7.957(91)	[2002Ko02]
¹³⁰ Pr		(5^+)	40.0(4) s	8.250(70)	2.859(68)		-0.384(64)	9.070(65)	[1988Ba42]
¹³⁴ Pm		(2^{+})	$\approx 5 \text{ s}$	8.880(40)	3.885(44)		1.127(47)	10.234(50)	[1988KeZX]
¹³⁸ Eu		(6-)	12.1(6) s	9.750(30)	5.034(31)		2.872(30)	11.472(30)	[1985Ch25]
¹⁴² Tb		1^{+}	597(17) ms	10.40(70)	6.08(70)	0.0022(11)%	4.32(70)	12.51(70)	[1991Fi03]
¹⁴⁶ Ho		(6-)	2.8(5) s	11.317(9)	7.87(11)	obs	5.943(29)	13.296(29)	[2010Ma37, 2011MaZL,
									1986Wi05, 1988ToZW,
									1988WiZN, 1986Wi15,
									1987WiZM]
¹⁵⁰ Tm		(6 ⁻)	2.20(7) s	11.34(20)#	7.87(20)#	1.2(3)%	6.79(20)#	13.64(20)#	[1988Ni02]
¹⁵⁴ Lu		(2^{-})		10.27(20)#	7.02(20)#		6.26(20)#	15.74(20)#	
^{154m} Lu	х	(9^{+})	1.16(5) s	10.27(20)#+x	7.02(20)#+x	$\approx 0.06\%$	6.26(20)#+x	15.74(20)#+x	[1988Vi02]
¹⁵⁸ Ta		(2^{-})	46(4) ms	10.98(20)#	8.03(20)#		7.57(20)#	16.39(20)#	[2014Ca03]
^{158m1} Ta	0.1408(87)	(9^{+})	35(1) ms	11.12(20)#	8.17(20)#		7.74(20)#	16.53(22)#	[1996Pa01]
^{158m2} Ta	2.8055(4)	(19 ⁻)	6.1(1) μs	13.79(20)#	10.84(20)#		10.38(20)#	19.20(20)#	[2014Ca04]
¹⁶² Re		(2^{-})	107(13) ms	11.55(20)#	9.04(20)#		8.91(20)#	17.22(20)	[1997Da07]
^{162m} Re	0.1723(80)	(9^{+})	76(6) ms*	11.72(20)#	9.21(20)#		9.08(20)#	17.39(22)	[2016Ca15]
¹⁶⁶ Ir		(2^{-})	10.5(22) ms	12.13(20)#	10.07(20)#		10.35(20)#	18.27(20)	[1997Da07]
^{166m} Ir	0.1715(61)	(9+)	15.1(9) ms	12.30(20)#	10.24(20)#		10.52(20)#	18.44(20)	[1997Da07]
¹⁷⁰ Au		(2^{-})	$286^{+50}_{-40} \mu s$	12.60(20)#	11.10(20)#		11.71(20)#	19.30(20)	[2004Ke06]
^{170m} Au	0.282(10)	(9 ⁺)	$617^{+50}_{-40} \ \mu s$	12.82(20)#	11.38(20)#		11.99(20)#	19.58(20)	[2004Ke06]

* Weighted average of 66(7) ms [1996Pa01] and 84.6(62) ms [1997Da07].

Table 2

Particle emission from the odd-Z, $T_z = +6$ nuclei. Unless otherwise stated, all Q-values and separation energies are taken from [2021Wa16] or deduced from values therein.

Nuclide	S _p	BR_p	S_{2p}	Qα	BRα	Experimental
	-	-	•			
¹¹⁰ In	5.255(12)		13.44(11)	-1.952(12)		
¹¹⁴ Sb	3.457(20)		11.084(20)	-0.452(23)		
^{118}I	3.165(24)		8.727(20)	1.101(28)		
¹²² Cs	2.953(35)		8.976(37)	0.401(39)		
¹²⁶ La	2.593(91)		7.810(91)	0.746(97)		
¹³⁰ Pr	2.177(70)		7.128(84)	1.37(11)		
¹³⁴ Pm	1.720(63)		6.114(51)	1.987(77)		
¹³⁸ Eu	1.047(40)		5.158(75)	2.589(50)		
¹⁴² Tb	0.62(70)		4.15(70)	2.77(70)		
¹⁴⁶ Ho	0.285(9)		3.448(29)	2.90(70)		
¹⁵⁰ Tm	0.04(20)#		3.08(21)#	2.32(20)#		
¹⁵⁴ Lu	-0.204(14)#		2.52(21)#	4.40(28)#		
^{154m} Lu	-0.204(14)#-x		2.52(21)#-x	4.40(28)#+x		
¹⁵⁸ Ta	-0.448(13)		2.00(21)#	6.124(4)	$\approx 100\%$	[2014Ca03, 1997Da07, 1996Pa01, 1981HoZM, 1978ReZZ]
^{158m1} Ta*	-0.4589(16)		2.14(23)#	6.265(10)	$\approx 100\%$	[2019Pa27, 1996Pa01, 2014Ca03, 1997Da07, 2015Ca04, 2016Ca15,
						1981HoZM]
^{158m2} Ta**	-3.254(13)		-0.67(21)#	8.930(4)	1.4(2)%	2016Ca15, 2014Ca03, 1997Da07, 1996Pa01, 1979Ho10, 1981HoZM,
						1978ReZZ]
¹⁶² Re	-0.765(11)		1.21(21)#	6.240(5)	$\approx 100\%$ *	[1997Da07]
^{162m} Re***	-0.937(19)		1.04(22)#	6.412(9)	91(5)%**	[2016Ca15, 1997Da07, 1996Pa01, 1979Ho10, 1981HoZM, 1978ReZZ]
¹⁶⁶ Ir	-1.152(8)	6.9(29)%	0.41(21)#	6.722(6)	93.1(29)%	[1997Da07, 1996Pa01, 2004Ke06, 1981Ho10, 1995DaZX, 1981HoZM]
166mIr ^a	-1.324(10)	1.76(58)%	0.24(21)#	6.894(8)	98.24(58)%	[1997Da07, 1996Pa01, 2004Ke06, 1981Ho10, 1995DaZX, 1981HoZM]
¹⁷⁰ Au	-1.472(12)	89(10)%	-0.39(21)#	7.177(15)	11(10)%	[2004Ke06 , 2002LeZZ]
$^{170m}Au^b$	-1.754(16)	58(5)%	-0.67(21)#	7.459(18)	42(5)%	[2004Ke06, 2002Ma61, 2002LeZZ, 2003SeZZ, 2001DaZU]

* No evidence for α -decay from ¹⁶²W (arising from the β -decay of ¹⁶²Re were observed [1997Da07]. ** Weighted average of 85(9)% [1996Pa01] and 94(6)% [1997Da07].

Table 3

arect α emis	sion from ¹¹ Ia	*, $J^{n} = (2), I_{1/2} =$	= 40(4) ms, BK_{α}	≈ 100%.					
$E_{\alpha}(c.m.)$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(absb)$	${f J}_f^{m \pi}$	$E_{daughter}(^{154}L$	u) coincide	ent γ-rays	R ₀ (fm)**	Н	F
6.123(5)	5.968(5)	100%	(2^{-})	0.0			1.5534(83)	1	.76(34)
* All val ** Interp	ues from [20140 polated between	Ca03] 1.5535(31) fm ¹⁵⁶ l	Hf and 1.5533(77)) fm ¹⁶⁰ W.					
Table 4 direct α emis	sion from ^{158m1}	Ta*, Ex = 140.8(87	(J) keV, $J^{\pi} = , T_{1/2}$	$= 35(1) \text{ ms}^{**}, BR_{c}$	$\alpha \approx 100\%.$				
$E_{\alpha}(\text{c.m.})$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(\text{rel})$	$I_{\alpha}(abs)$	${\sf J}_f^{{m \pi}}$	<i>E</i> _{daughter} (¹⁵⁴ Lu)	coincident y	-rays R_0 (i	~m)@	HF
6.136(4) 6.177(4)	5.981(4) 6.021(4)	0.1031(25)% 2.8(5)%	0.099(24)% 2.7(5)%	(8,9,10 ⁺) (8 ⁺)	0.126(11)*** 0.088(11)***	0.060 0.022	1.55 1.55	34(83) 34(83)	$1.5^{+0.7}_{-0.5} \times 10$ 78^{+27}_{-21}
6.198(4)	6.041(4)	100%	$96^{+2}_{-13}\%$	(9 ⁺)	0.066(11)***		1.55	34(83)	$2.7^{+0.8}_{-0.6}$
Table 5 direct α emission	sion from ^{158m2}	Ta*, Ex = 2805.5(4	$keV, J^{\pi} = (19^{-})$, $T_{1/2} = 6.1(1) \ \mu s$,	$BR_{\alpha} = 1.4(2)\%.$				
$E_{\alpha}(c.m.)$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(abs)$	J_f^{π}	$E_{daughter}(^{154}Lu)$) coincident	γ-rays	R ₀ (fm)***	HF	
8.869(11)	8.644(11)	1.4(2)%	(9+)	0.066(11)**			1.5534(83)	6.5(1	1)×10 ³
* All val ** Deduc *** Inter Table 6	ues from [20140 ced from α ener rpolated between	Ca03]. ;gy. n 1.5535(31) fm ¹⁵⁰	⁶ Hf and 1.5533(7	7) fm ¹⁶⁰ W.					
direct α emis	sion from ¹⁰² Re	$\mathbf{J}^{n} = (2^{-}), \mathbf{T}_{1/2} =$	= 107(13) ms, BR	$a = \approx 100\%.$					
$E_{\alpha}(c.m.)$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(abs)$	J_f^π	$E_{daughter}(^{158}T)$	a) coincid	ent γ-rays	$R_0 (fm)^{**}$]	HF
6.239(5)	6.086(5)	100%	(2 ⁻)	0.0			1.5519(83)		$1.7^{+0.4}_{-0.3}$
* All val ** Interp	ues from [1997] polated between	Da07]. 1.5533(77) fm ¹⁶⁰ 1	W and 1.5504(56)	¹⁶⁴ Os.					
Table 7									
direct α emis	sion from ^{162m} R	$Re^*, Ex = 172.3(80)$) keV***, $J^{\pi} = , T$	$\Gamma_{1/2} = 76(6) \text{ ms}^{**},$	$BR_{\alpha} = 91(5) \%^{\textcircled{0}}.$				
$E_{\alpha}(c.m.)$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(\text{rel})$	$I_{\alpha}(abs)$	$J_f^{\boldsymbol{\pi}}$	$E_{daughter}(^{158}\mathrm{Ta})$	coincident	γ-rays R	0 (fm) ^{@@}	@ HF
6.190(16) 6.271(5)	6.037(16) 6.116(5)	pprox 0.3% 100%	$\approx 0.3\%^{@@}$ 100%	(10 ⁺) (9 ⁺)	0.207(18) 0.141(9)	0.066	1. 1.	5519(83) 5519(83)	≈24 1.7(4
5.190(16) 6.271(5) * All val ** Weigh *** Dedu	6.037(16) 6.116(5) ues from [20160 hted average of the evaluate	$\approx 0.3\%$ 100% Ca15], except wher 66(7) ms [1996Pa0 or from Fig 2 in [2]	≈ 0.3% ^{@@} 100% e noted. 1] and 84.6(62) m	(10 ⁺) (9 ⁺) ns [1997Da07].	0.20 0.14	7(18) 1(9)	7(18) 0.066 1(9) —	7(18) 0.066 1. 1(9) — 1.	7(18) 0.066 1.5519(83) 1(9) — 1.5519(83)

*** Deduced by evaluator from Fig 2 in [2016Ca15]. ^(a) Weighted average of 85(9)% [1996Pa01] and 94(6)% [1997Da07]. ^(a) ^(a) ^(a) ^(a) ^(a) ^(a) ^(b) ^(b)

Table 8

direct p emiss	ion from ¹⁶⁶ Ir*, J^{π} =	$(2^{-}), T_{1/2} = 10.5(22)$) ms, $BR_p = 6$	5.9(29)%.			
$E_p(\text{c.m.})$	$E_p(\text{lab})$	$I_p(abs)$	J_f^{π}	E_{daugi}	_{tter} (¹⁶⁵ Os) coir	ncident γ-rays	
1.152(8)	1.145(8)	6.9(29)%	(7/2-	-) 0.0			
* All valu	ues from [1997Da07].						
Table 9 direct α emiss	sion from ¹⁶⁶ Ir*, J ^{π} =	, $T_{1/2} = 10.5(22)$ ms	$BR_{\alpha} = 93.1$	(29)%.			
$E_{\alpha}(c.m.)$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(abs)$	${\sf J}_f^{{m \pi}}$	$E_{daughter}(^{162}\mathrm{Re})$	coincident γ -rays	$R_0 (fm)^{**}$	HF
6.724(6)	6.562(6)	93.1(29)%	(2 ⁻)	0.0		1.5541(72)	1.6(4)
* All valu ** Interp	ues from [1997Da07]. olated between 1.550	4(56) ¹⁶⁴ Os and 1.55	78(45) ¹⁶⁸ Pt.				
direct p emiss	ion from ^{166m} Ir*, Ex :	$= 171.5(61) \text{ keV}, \text{ J}^{\pi} =$	$= (9^+), T_{1/2} =$	= 15.1(9) ms, BR_p =	1.76(58)%.		
$E_p(c.m.)$	$E_p(\text{lab})$	<i>I_p</i> (abs)	E_{d}	_{aughter} (¹⁶⁵ Os)	coincident γ-rays		
1.340(8)	1.316(8)	1.76(58)%	(2-	-)	0.0		
* All valu	ues from [1997Da07].						
Table 11 direct α emiss	sion from ^{166m} Ir*, Ex	$= 171.5(61) \text{ keV}, \text{ J}^{\pi}$	$= (9^+), T_{1/2} =$	= 15.1(9) ms, BR_{α} =	98.24(58)%.		
$E_{\alpha}(\text{c.m.})$	$E_{\alpha}(lab)$	$I_{\alpha}(abs)$	J_f^π	$E_{daughter}(^{162}\mathrm{Re})$	coincident γ-ray	s R ₀ (fm)**	HF
6.723(5)	6.561(5)	98.24(58)%	(9 ⁺)	0.172(8)		1.5541(72)	2.2(4)
* All valu	ues from [1997Da07].	4(56) 164 Op and 1 55	79(45) 1680+				
Table 12 direct p emiss	ion from ¹⁷⁰ Au*, J ^{π} =	$= (2^{-}), T_{1/2} = 286^{+50}_{-40}$	$\frac{1}{2}\mu s, BR_p = 8$	39(10)%.			
$E_p(\text{c.m.})$	$E_p(\text{lab})$	$I_p(abs)$		\mathbf{J}_f^{π}	$E_{daughter}(^{169}\mathrm{Pt})$	coincident γ-rays	
1.472(12)	1.463(12)	89(10)%	1	(7/2-)	0.0		
* All valu	ues from [2004Ke06].						
Table 13 direct α emiss	sion from ¹⁷⁰ Au*, J ^{π} :	= (2 ⁻), $T_{1/2} = 286^{+5}_{-4}$	$_{0}^{0} \mu s, BR_{\alpha} =$	11(10)%.			
$E_{\alpha}(\text{c.m.})$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(abs)$	J_f^π	$E_{daughter}(^{166}\mathrm{Ir})$	coincident γ-ray	s R ₀ (fm)**	HF
7.170(10)	7.001(10)	89(10)%	(2 ⁻)	0.0		1.5576(55)	2^{+25}_{-1}
* All valu ** Interp	nes from [2004Ke06]. olated between 1.557	8(45) ¹⁶⁸ Pt and 1.557	74(32) ¹⁷² Hg.				
Table 14 direct p emiss	ion from ^{170m} Au*, Ex	$x = 282(10) \text{ keV}, J^{\pi} =$	$(9^+), T_{1/2} =$	$617^{+50}_{-40} \ \mu s, BR_p = 5$	8(5)%.		
$E_p(\text{c.m.})$	$E_p(\text{lab})$	$I_p(abs)$	J	π f	$E_{daughter}(^{169}\mathrm{Pt})$	coincident γ-rays	
1.753(6)	1.743(6)	58(5)%	(7/2-)	0.0		

* All values from [2004Ke06].

Table 15

direct α emission from ^{170m} Au*, Ex = 282(10) keV, J ^{π} = (9 ⁺), T _{1/2} = 617 ⁺⁵⁰ ₋₄₀ μ s, BR _{α} = 42(5)%.	
---	--

$E_{\alpha}(\text{c.m.})$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(abs)$	J_f^π	$E_{daughter}(^{166}\mathrm{Ir})$	coincident γ-rays	R ₀ (fm)**	HF
7.278(6)	7.107(6)	42(5)%	(9 ⁺)	0.172(6)		1.5576(55)	1.2(4)

* All values from [2004Ke06].

** Interpolated between 1.5578(45) ¹⁶⁸Pt and 1.5574(32) ¹⁷²Hg.

References used in the Tables

- [1] 1969Ha03 P. G. Hansen, P. Hornshoj, H. L. Nielsen, K. Wilsky, H. Kugler, G. Astner, E. Hagebo, J. Hudis, A. Kjelberg, F. Munnich, P. Patzelt, M. Alpsten, G. Andersson, A. Appelqvist, B. Bengtsson, R. A. Naumann, O. B. Nielsen, E. Beck, R. Foucher, J. P. Husson, J. Jastrzebski, A. Johnson, J. Alstad, T. Jahnsen, A. C. Pappas, T. Tunaal, R. Henck, P. Siffert, G. Rudstam, Phys. Lett. 28B, 415 (1969); Erratum Phys. Lett. 28B, 663 (1969). https://doi.org/10.1016/0370-2693(69)90337-2
- [2] 1975Bu24 B. Bulow, M. Eriksson, G. G. Jonsson, E. Hagebo, Z. Phys. A275, 261 (1975).
- [3] 1976Wi10 M. E. J. Wigmans, R. J. Heynis, P. M. A. van der Kam, H. Verheul, Phys. Rev. C14, 229 (1976). https://doi.org/10.1103/PhysRevC.14.229
- [4] 1978ReZZ W. Reisdorf, GSI-M-2-78 (1978).
- [5] 1979Ho10 S Hofmann, W Faust, G Munzenberg, W Reisdorf, P Armbruster, K Guttner, H Ewald, Z Phys A291, 53 (1979). https://doi.org/10.1007/BF01415817
- [6] 1981Ho10 S. Hofmann, G. Munzenberg, F. Hessberger, W. Reisdorf, P. Armbruster, B. Thuma, Z. Phys. A299, 281 (1981). https://doi.org/10.1007/BF01443948
- [7] 1981HoZM S. Hofmann, G. Munzenberg, W. Faust, F. Hessberger, W. Reisdorf, J. R. H. Schneider, P. Armbruster, K. Guttner, B. Thuma, Proc. Int. Conf. Nuclei Far from Stability, Helsingor, Denmark, Vol. 1, p. 190 (1981); CERN-81-09 (1981).
- [8] 1985Ch25 A. Charvet, T. Ollivier, R. Beraud, R. Duffait, A. Emsallem, N. Idrissi, J. Genevey, A. Gizon, Z. Phys. A321, 697 (1985). https://doi.org/10.1007/BF01432449
- [9] 1986Wi05 J. S. Winfield, N. Anantaraman, S. M. Austin, L. H. Harwood, J. van der Plicht, H. -L. Wu, A. F. Zeller, Phys. Rev. C33, 1333 (1986). https://doi.org/10.1103/PhysRevC.33.1333
- [10] **1986Wi15** P. A. Wilmarth, J. M. Nitschke, R. B. Firestone, J. GilatZ. Phys. A**325**, 485 (1986).
- [11] 1987WiZM P. A. Wilmarth, J. M. Nitschke, J. Gilat, R. B. Firestone, (unpublished) LBI-22820, p. 62 (1987).
- [12] 1988Ba42 D. Barneoud, J. Blachot, J. Genevey, A. Gizon, R. Beraud, R. Duffait, A. Emsallem, M. Meyer, N. Redon, D. Rolando-Eugio, Z. Phys. A330, 341 (1988).
- [13] 1988KeZX B. D. Kern, R. A. Braga, G. A. Leander, R. W. Fink, R. L. Mlekodaj, P. B. Semmes, M. O. Kortelahti, W. Nazarewicz, ORNL-6420, p. 133 (1988).
- [14] 1988Ni02 J. M. Nitschke, P. A. Wilmarth, J. Gilat, K. S. Toth, F. T. Avignone III, Phys. Rev. C37, 2694 (1988). https://doi.org/10.1103/PhysRevC.37.2694
- [15] 1988ToZW K. S. Toth, J. M. Nitschke, P. A. Wilmarth, Y. A. Ellis-Akovali, D. C. Sousa, K. Vierinen, D. M. Moltz, J. Gilat, N. M. Rao, Proc. 5th Int. Conf. Nuclei Far from Stability, Rosseau Lake, Canada 1987, Ed., I. S. Towner, p. 718 (1988).
- [16] 1988Vi02 K. S. Vierinen, A. A. Shihab-Eldin, J. M. Nitschke, P. A. Wilmarth, R. M. Chasteler, R. B. Firestone, K. S. Toth, Phys. Rev. C 38, 1509 (1988). https://doi.org/10.1103/PhysRevC.38.1509
- [17] 1988WiZN P. A. Wilmarth, unpublished (thesis), LBI-26101 (1988).
- [18] 1991Fi03 R. B. Firestone, J. Gilat, J. M. Nitschke, P. A. Wilmarth, K. S. Vierinen, Phys. Rev. C43, 1066 (1991). https://doi.org/10.1103/PhysRevC.43.1066
- [19] 1993Al03 G. D. Alkhazov, L. H. Batist, A. A. Bykov, F. V. Moroz, S. Yu. Orlov, V. K. Tarasov, V. D. Wittmann, Z. Phys. A344, 425 (1993). https://doi.org/10.1007/BF01283198
- [20] 1995DaZX C. N. Davids, P. J. Woods, J. C. Batchelder, C. R. Bingham, D. J. Blumenthal, L. T. Brown, B. C. Busse, L. F. Conticchio, T. Davinson, S. J. Freeman, M. Freer, D. J. Henderson, R. J. Irvine, R. D. Page, H. T. Penttila, A. V. Ramayya, D.

Seweryniak, K. S. Toth, W. B. Walters, A. H. Wuosmaa, B. E. Zimmerman, Proc. Intern. Conf on Exotic Nuclei and Atomic Masses, Arles, France, June 19-23, 1995, p. 263 (1995).

- [21] 1996Pa01 R. D. Page, P. J. Wood, R. A. Cunningham, T. Davinson, N. J. Davis, A. N. James, K. Livingston, P. J. Sellin, A. C. Shotter, Phys. Rev. C53, 660 (1996). https://doi.org/10.1103/PhysRevC.53.660
- [22] 1997Da07 C. N. Davids, P. J. Woods, J. C. Batchelder, C. R. Bingham, D. J. Blumenthal, L. T. Brown, B. C. Busse, L. F. Conticchio, T. Davinson, S. J. Freeman, D. J. Henderson, R. J. Irvine, R. D. Page, H. T. Penttila, D. Seweryniak, K. S. Toth, W. B. Walters, B. E. Zimmerman, Phys. Rev. C55, 2255 (1997). https://doi.org/10.1103/PhysRevC.55.2255
- [23] 2001DaZU C. N. Davids, A. Heinz, G. L. Poli, D. Seweryniak, T. Davinson, H. Mahmud, J. J. Ressler, K. Schmidt, J. Shergur, A. A. Sonzogni, W. B. Walters, P. J. Woods, ANL-01/19, p. 17 (2001).
- [24] 2002Ko02 Y. Kojima, M. Asai, M. Shibata, K. Kawade, A. Taniguchi, A. Osa, M. Koizumi, T. Sekine, Appl. Radiat. Isot. 56, 543 (2002). https://doi.org/10.1016/S0969-8043(01)00248-2
- [25] 2002LeZZ M. Leino, J. Uusitalo, T. Enqvist, C. Scholey, H. Kettunen, P. Kuusiniemi, A. -P. Leppanen, JYFL Ann. Rept. 2001, p. 18 (2002).
- [26] 2002Ma61 H. Mahmud, C. N. Davids, P. J. Woods, T. Davinson, A. Heinz, J. J. Ressler, K. Schmidt, D. Seweryniak, J. Shergur, A. A. Sonzogni, W. B. Walters, Eur. Phys. J. A 15, 85 (2002). https://doi.org/10.1140/epja/i2001-10231-y
- [27] 2003SeZZ D. Seweryniak, C. N. Davids, P. J. Woods, T. Davinson, A. Heinz, H. Mahmud, G. Mukherjee, P. Munro, J. J. Ressler, A. Robinson, J. Shergur, W. B. Walters, A. Wohr, Proc. Frontiers of Nuclear Structure, Berkeley, California, P. Fallon and R. Clark, Eds., p. 71 (2003); AIP Conf. Proc. 656 (2003).
- [28] 2004Ke06 H. Kettunen, T. Enqvist, T. Grahn, P. T. Greenlees, P. Jones, R. Julin, S. Juutinen, A. Keenan, P. Kuusiniemi, M. Leino, A. -P. Leppanen, P. Nieminen, J. Pakarinen, P. Rahkila, J. Uusitalo, Phys. Rev. C 69, 054323 (2004). https://doi.org/10.1140/epja/i2002-10338-7
- [29] 2010Ma37 F. Ma, X. -H. Zhou, Y. Zheng, S. -W. Xu, Y. -X. Xie, L. Chen, X. -G. Lei, Y. -X. Guo, Y. -H. Zhang, Z. -K. Li, S. Guo, B. Ding, H. -B. Zhou, G. -S. Li, H. -X. Wang, Chin. Phys. C 34, 1082 (2010). https://doi.org/10.1088/1674-1137/34/8/008
- [30] 2011MaZL F. Ma, S. W. Xu, X. H. Zhou, Y. X. Xie, Y. Zheng, Proc. of the 4th Inter. Conf. Proton Emitting Nuclei and Related Topics (PROCON 2011), Bordeaux, France, 6-10 June 2011, LB. Blank Ed. p. 185 (2011); AIP Conf. Proc. 1409 (2011)
- [31] 2014Ca03 R. J. Carroll, R. D. Page, D. T. Joss, J. Uusitalo, I. G. Darby, K. Andgren, B. Cederwall, S. Eeckhaudt, T. Grahn, C. Gray-Jones, P. T. Greenlees, B. Hadinia, P. M. Jones, R. Julin, S. Juutinen, M. Leino, A. -P. Leppanen, M. Nyman, D. O'Donnell, J. Pakarinen, P. Rahkila, M. Sandzelius, J. Saren, C. Scholey, D. Seweryniak, J. Simpson, Phys. Rev. Lett. 112, 092501 (2014). https://doi.org/10.1103/PhysRevLett.112.092501
- [32] 2015Ca04 R. J. Carroll, R. D. Page, D. T. Joss, J. Uusitalo, I. G. Darby, K. Andgren, B. Cederwall, S. Eeckhaudt, T. Grahn, C. Gray-Jones, P. T. Greenlees, B. Hadinia, P. M. Jones, R. Julin, S. Juutinen, M. Leino, A. -P. Leppanen, M. Nyman, D. O'Donnell, J. Pakarinen, P. Rahkila, M. Sandzelius, J. Saren, C. Scholey, D. Seweryniak, J. Simpson, Acta Phys. Pol. B46, 695 (2015). https://doi.org/10.5506/APhysPolB.46.695
- [33] 2016Ca15 R. J. Carroll, R. D. Page, D. T. Joss, D. O'Donnell, J. Uusitalo, I. G. Darby, K. Andgren, K. Auranen, S. Bonig, B. Cederwall, M. Doncel, M. C. Drummond, S. Eeckhaudt, T. Grahn, C. Gray-Jones, P. T. Greenlees, B. Hadinia, A. Herzan, U. Jakobsson, P. M. Jones, R. Julin, S. Juutinen, J. Konki, T. Kroll, M. Leino, A. -P. Leppanen, C. McPeake, M. Nyman, J. Pakarinen, J. Partanen, P. Peura, P. Rahkila, J. Revill, P. Ruotsalainen, M. Sandzelius, J. Saren, B. Saygi, C. Scholey, D. Seweryniak, J. Simpson, J. Sorri, S. Stolze, M. J. Taylor, A. Thornthwaite, Phys. Rev. C 93, 034307 (2016). https://doi.org/10.1103/PhysRevC.93.034307
- [34] 2019Pa27 E. Parr, R. D. Page, D. T. Joss, F. A. Ali, K. Auranen, L. Capponi, T. Grahn, P. T. Greenlees, J. Henderson, A. Herzan, U. Jakobsson, R. Julin, S. Juutinen, J. Konki, M. Labiche, M. Leino, P. J. R. Mason, C. McPeake, D. O'Donnell, J. Pakarinen, P. Papadakis, J. Partanen, P. Peura, P. Rahkila, J. P. Revill, P. Ruotsalainen, M. Sandzelius, J. Saren, C. Scholey, J. Simpson, J. F. Smith, M. Smolen, J. Sorri, S. Stolze, A. Thornthwaite, J. Uusitalo, Phys. Rev. C 99, 054307 (2019). https://doi.org/10.1103/PhysRevC.99.054307
- [35] 2021Wa16 M. Wang, W. J. Huang, F. G. Kondev, G. Audi, S. Naimi, Chin. Phys. C 45, 030003 (2021). https://doi.org/ 10.1088/1674-1137/abddaf