

 $\begin{array}{ccc} 281 Nh \\ Q_{6Q} = & 0.64\pi \; MeV \\ Q_{6Q} = & 14.29\pi \; MeV \\ Q_{Q} = & 10.98\pi \; MeV \end{array}$

 $\begin{array}{c} 277 Rg \\ Q\epsilon \rho = -0.19 \# \, MeV \\ Q\epsilon \alpha = 14.22 \# \, MeV \\ Q\alpha = 11.20 \# \, MeV \end{array}$

 $\begin{array}{c} 273 Mt \\ Q_{4\alpha} = \ -1.29 \# \, MeV \\ Q_{4\alpha} = \ 12.67 \# \, MeV \\ Q_{\alpha} = \ 10.88 \# \, MeV \end{array}$

 $\begin{array}{c} 269 \\ Bh \\ Qeq = -2.87 \\ MeV \\ Qeq = 10.36 \\ WeV \\ Qq = 8.67 \\ \# MeV \end{array}$

 $\begin{array}{c} Q_{65} Db \\ Q_{60} = -3.28 \# \, MeV \\ Q_{60} = -9.50 \# \, MeV \\ Q_{0} = -8.40 \# \, MeV \end{array}$

Last updated 4/8/2025

Table 1

Observed and predicted β -delayed particle emission from the odd-Z, $T_z = +55/2$ nuclei. Unless otherwise stated, all Q-values are taken from [2021Wa16] or deduced from values therein. J^{π} values for XX are taken from ENSDF.

Nuclide	J^{π}	$T_{1/2}$	$Q_{arepsilon}$	Q _β -	Q_{β} - α	Experimental	
²²¹ Bi		obs		4 43(30)#	9.70(42)#	[2010A124]	
²²⁵ At		obs	-4.28(42)#	3.77(30)#	8.28(30)#	[2010A124]	
²²⁹ Fr		50.2(20) s	-3.694(14)	3.106(16)	6.889(12)	[1992Bo05]	
²³³ Ac	$(1/2^+)$	2.3(3) m	-3.026(16)	2.576(13)	6.501(20)	[1983Ch31]	
²³⁷ Pa	$(1/2^+)$	8.7(2) m	-2.427(21)	2.137(13)	6.551(13)	[1974Ka05]	
²⁴¹ Np	5/2+	13.9(2) m	-1.88(22)#	1.36(10)	6.69(10)	[1981Pa20]	
²⁴⁵ Am	5/2+	122.8(5) m*	-1.278(14)	0.896(2)	6.700(2)	[1968Da02, 1983Po15]	
²⁴⁹ Bk	7/2+	327.2(3) d	-0.904(3)	0.124(1)	6.597(2)	[2014Ch47]	
				$Q_{\varepsilon p}$	$Q_{\varepsilon \alpha}$		
²⁵³ Es	$7/2^{+}$	20.03(1) d	-0.291(4)			[1956Jo09]	
²⁵⁷ Md	$(7/2^{-})$	5.523(50) h	0.402(5)	-5.48(10)#	7.266(5)	[1993Mo18]	
²⁶¹ Lr		39(12) m	1.10(28)#	-4.28(37)#	8.54(20)#	[1991HeZT]	
²⁶⁵ Db			1.69(42)#	-3.28(49)#	9.50(30)#		
²⁶⁹ Bh			1.79(53)#	-2.87(65)#	10.36(52)#		
²⁷³ Mt			3.02(57)#	-1.29(68)#	12.67(56)#		
²⁷⁷ Rg			3.32(61)#	-0.19(71)#	14.22(60)#		
²⁸¹ Nh			3.86(50)#	0.64(61)#	14.29(49)#		

* Weighted average of 2.05(1) h [1968Da02] and 122.5(8) m [1983Po15].

Table 2

Particle separation, Q-values, and measured values for direct particle emission of the odd-Z, $T_z = +55/2$ nuclei. Unless otherwise stated, all S and Q-values are taken from [2021Wa16] or deduced from values therein.

Nuclide	S_p	Qα	BRα	BR _{SF}	Experimental
221					
²²¹ Bi	7.22(50)#	3.12(50)#			
²²⁵ At	6.90(36)#	3.68(42)#			
²²⁹ Fr	6.864(18)	2.94(30)#			
²³³ Ac	6.478(16)	3.215(14)			
²³⁷ Pa	6.017(19)	3.795(18)			
²⁴¹ Np	5.69(10)	4.36(10)			
²⁴⁵ Am	5.195(3)	5.16(10)			
²⁴⁹ Bk	4.835(3)	5.521(1)	$1.37(10) \times 10^{-3}\%$	$4.8(2) \times 10^{-8}\%$	[2013Ah03, 1969Mi08, 2024Du12, 2014Ch47, 1999Po35, 1994Po30,
			. ,		1993Po20, 1985Po26, 1975Ba27, 1972Ko53, 1971Bb10, 1969Ba57,
					1966Ah02, 1957Ea01, 1956Ch77, 1954Di11]
²⁵³ Es	4.313(3)	6.739	100%	$8.7(3) \times 10^{-6}\%$	[2005Ah03, 1975Ah01, 1971Gr17, 1965Me02, 2005AhZZ, 1987Po22,
	~ /				1982Po13, 1976Fl03, 1972HaWR, 1971Ba49, 1971BaZB, 1966Rg01,
					1963Le17, 1960As06, 1960As08, 1954Fi14]
²⁵⁷ Md	3.781(3)	7.557(1)	15.2(26)%		[1993Mo18 , 1986HaYZ, 1971Ho16, 1970Fi12, 1965Si14]
²⁶¹ Lr	3.34(28)#	8.14(20)#		obs	[1991HeZT , 1989HuZU]
²⁶⁵ Db	2.98(42)#	8.40(10)#			
²⁶⁹ Bh	2.61(60)#	8 67(30)#			
²⁷³ Mt	1 51(66)#	10.88(20)#			
277 Rg	1.21(00)#	11.20(20)#			
281 Nh	1.12(72)#	10.98(56)#			
1411	1.15(00)#	10.20(30)#			

Table 3	
lirect α emission from ²⁴⁹ Bk*, $J^{\pi} = 7/2^+$, $T_{1/2} = 327.2(3) \text{ d**}$, $BR_{\alpha} = 1.37(10) \times 10^{-3}$	%***.

$E_{\alpha}(c.m.)$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(\text{rel})$	$I_{\alpha}(abs)$	$\mathbf{J}_{f}^{\pi***}$	E _{daughter} (²⁴³ Pu)***	coincident γ-rays (keV)***	R ₀ (fm)	HF
5.046(4)	4.965(4)	$\approx 0.014\%$	$\approx 1.4 \times 10^{-5}\%$	$11/2^{+}$	0.4755		1.48944(52)	≈ 61
5.124(2)	5.042(2)	0.17(1)%	$1.6(2) \times 10^{-4}$	9/2+	0.3959	348.8, 376.7, 395.9	1.48944(52)	$20.3^{+2.6}_{-2.1}$
5.193(2)	5.110(2)	3.87(7)%	$3.7(3) \times 10^{-3}\%$	$7/2^{+}$	0.3274	280.4, 308.3, 327.5	1.48944(52)	$2.2^{+0.6}_{-0.4}$
5.229(2)	5.145(2)	0.026(7)%	$2.5(7) \times 10^{-5}\%$	(9/2-)	0.2927		1.48944(52)	550^{+230}_{-130}
5.290(2)	5.205(2)	0.069(10)%	$6.6(1) \times 10^{-5}\%$	$(7/2^{-})$	0.2317		1.48944(52)	510^{+100}_{-70}
5.335(2)	5.249(2)	0.129(14)%	$1.2(2) \times 10^{-4}\%$	$(5/2^{-})$	0.1870		1.48944(52)	520_{-60}^{+80}
5.367(2)	5.281(2)	0.129(14)%	$1.2(2) \times 10^{-4}\%$	(3/2 ⁻)	0.1545		1.48944(52)	5840^{+130}_{-100}
5.388(2)	5.301(2)	0.066(10)%	$6.3(1) \times 10^{-5}\%$	$(13/2^+)$	0.1345		1.48944(52)	$2.2^{+5}_{-3} \times 10^{3}$
5.398(2)	5.311(2)	0.043(14)%	$4.1(1) \times 10^{-5}\%$	(9/2-	0.1247		1.48944(52)	$3.8^{+2.0}_{-1.0} \times 10^3$
5.433(2)	5.346(2)	3.73(2)%	$3.6(3) \times 10^{-3}\%$	$(11/2^+)$	0.0877		1.48944(52)	75(6)
5.451(2)	5.363(2)	0.11(1)%	$1.1(1) \times 10^{-4}\%$	$(7/2^{-})$	0.0704		1.48944(52)	$1.2^{+0.5}_{-0.4} \times 10^3$
5.474(2)	5.386(2)	25.7(3)%	0.025(2)%	9/2+	0.0471		1.48944(52)	19.1(14)
5.502(2)	5.414(2)	100.0(6)%	0.095(7)%	7/2+	0.0192		1.48944(52)	7.2(5)
5.522(2)	5.433(2)	9.43(15)%	$9.0(7) \times 10^{-3}\%$	5/2+	0.0		1.48944(52)	100(8)

* All values from [2013Ah03], except where noted *** [2014Ch47] **** [1969Mi08]. @ [2023Ne07].

Table 4			
direct α emission from ²⁵³ Es*, $J^{\pi} = 7/2^+$, $T_{1/2}$	$_2 = 20.03(1) d^{**},$	$BR_{\alpha} = 100\%.$ (1)	of 2)

$E_{\alpha}(\text{c.m.})$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(\text{rel})$	$I_{\alpha}(abs)$	$\mathbf{J}_{f}^{\boldsymbol{\pi} @}$	E _{daughter} (²⁴⁹ Bk) [@]	coincident γ-rays (keV)***	HF ^{@@}
5.512(2)*** 5.517(2)***	5.425(2) 5.429(2)	$\begin{array}{c} 1.0(1) \times 10^{-6}\% \\ 8.7(5) \times 10^{-6}\% \end{array}$	$9.0(9) \times 10^{-7}\% ***$ $7.8(5) \times 10^{-6}\% ***$	(15/2 ⁻) (7/2 ⁺)	1.2275 1.2230	41.8, 52.0, 62.1, 73.4, 93.8, 114.0, 135.5, 998.3 30.8, 30.9, 41.8, 43.0, 52.0, 55.1, 73.8, 82.6, 93.8, 95.9, 98.1, 137.7, 291.3, 306.6, 335.2, 346.4, 347.3, 349.6, 387.2, 389.2, 429.0, 794.0, 833.8, 1181.3, 1223.0	69^{+8}_{-6} 8.5(6)
5.589(2)***	5.500(2)	6.0(4)×10 ⁻⁶ %	5.4(4)×10 ⁻⁶ %***	(5/2-)	1.1506	30.8, 30.9, 41.8, 43.0, 52.0, 55.1, 73.8, 82.6, 93.8, 95.9, 98.1, 137.7, 291.3, 306.6, 335.2, 346.4, 347.3, 349.6, 387.2, 389.2, 429.0, 1150.7	23.6(25)
5.596(2)***	5.507(2)	$2.0(2) \times 10^{-6}\%$	$1.8(2) \times 10^{-6}\%$ ***	$11/2^{+}$	1.1438	41.8, 52.0, 93.8, 1050.0, 1102.0	111^{+14}_{-11}
5.606(2)***	5.517(2)	$3.3(2) \times 10^{-6}\%$	$3.0(2) \times 10^{-6}\% ***$	$(13/2^{-})$	1.1339	41.8, 52.0, 93.8, 1040.2	76(5)
5.664(2)***	5.575(2)	$7.7(5) \times 10^{-6}\%$	$6.9(4) \times 10^{-6}\%$ ***	9/2+	1.0751	41.8, 52.0, 93.8, 981.3, 1075.1	74(4)
5.684(2)***	5.594(2)	8.5(6)×10 ⁻⁶ %	$7.6(5) \times 10^{-6}\%$ ***	(11/2 ⁻)	1.0558	41.8, 52.0, 62.1, 93.8, 114.0, 899.9, 962.1, 1014.4	88(6)
5.751(2)***	5.661(2)	$1.4(8) \times 10^{-5}\%$	$1.3(1) \times 10^{-5}\%$ ***	(9/2-)	0.9881	41.8, 52.0, 93.8, 894.5, 946.3	124(10)
5.805(2)***	5.713(2)	4.3(2)×10 ⁻⁶ %	3.9(2)×10 ⁻⁶ %***		0.9346*	30.8, 30.9, 41.8, 43.0, 52.0, 55.1, 73.8, 82.6, 93.8, 95.9, 98.1, 137.7, 244.0, 261.7, 283.7, 291.3, 306.6, 335.2, 346.4, 347.3, 349.6, 387.2, 389.2, 429.0, 590.1, 633.0, 664.0, 672.8, 852.1	830(40)
5.807(2)***	5.716(2)	$7.1(3) \times 10^{-5}\%$	$6.4(3) \times 10^{-5}\%$ ***	(7/2-)	0.9322	41.8, 52.0, 93.8, 164.4, 726.1, 767.9, 838.5, 890.5, 932.2	52.3(25)
5.828(2)***	5.736(2)	6.9(6)×10 ⁻⁶ %	6.2(5)×10 ⁻⁶ %***	(13/2 ⁻)	0.9112	41.8, 52.0, 62.1,93.8, 114.0, 755.3, 817.4	710(60)
5.840(2)***	5.747(2)	≈1.2×10 ⁻⁵ %	≈1.1×10 ⁻⁵ %***	(3/2-)	0.8996	30.8, 30.9, 41.8, 43.0, 52.0, 55.1, 73.8, 82.6, 93.8, 95.9, 98.1, 137.7, 227.0, 244.0, 283.7, 291.3, 306.6, 335.2, 346.4, 347.3, 349.6, 387.2, 389.2, 429.0, 590.1, 633.0, 664.0,672.8, 860.3, 890.5	$\approx 460^{+100}_{-70}$
5.903(2)***	5.810(2)	4.5(4)×10 ⁻⁶ %	$4.1(3) \times 10^{-6}\%$ ***	$(11/2^{-})$	0.8361	41.8, 52.0, 93.8, 742.4, 794.2, 836.1	$2.8(2)) \times 10^3$
5.970(2)***	5.876(2)	≈3.9×10 ⁻⁶ %	≈3.5×10 ⁻⁰ %***	(9/2+)	0.7692	30.8, 30.9, 41.8, 43.0, 52.0, 55.1, 62.1, 66.9, 73.4, 73.8, 78.6, 82.6, 93.8, 95.9, 98.1, 114.0, 122.0, 135.5, 137.7, 145.4, 162.7, 189.4, 227.1, 258.9, 270.5, 291.3, 294.1, 312.7, 319.2, 335.2, 337.3, 340.2, 346.4, 381.2, 387.2, 392.4, 404.4, 429.0, 433.2, 448.3, 475.0, 500.4	≈7.6×10 ³
5.972(2)***	5.877(2)	$4.1(2) \times 10^{-5}\%$	$3.6(2) \times 10^{-5} \% ***$		0.7679	41.8, 726.1, 767.9	750(40)
6.016(2)***	5.921(2)	$3.8(3) \times 10^{-6}\%$	$3.4(3) \times 10^{-6}\%$ ***	(9/2 ⁻)	0.7232	30.8, 43.0, 73.8, 82.6, 640.6	$1.37(12) \times 10^4$
6.028(2)***	5.933(2)	≈4.0×10 ⁻⁶ %	3.6×10 ⁻⁶)%***		0.7112	30.8, 30.9, 41.8, 43.0, 52.0, 55.1, 62.1, 66.9, 73.8, 82.6, 93.8, 95.9, 98.1, 114.0, 122.0, 137.7, 162.7, 192.0, 236.1, 270.5, 282.2, 291.3, 319.2, 335.2, 337.3, 346.4, 381.2, 387.2, 392.4, 425.4, 429.0, 433.2, 436.8,475.0, 477.4	≈1.5×10 ⁴
6.030(4)	5.935(4)	≈4.5×10 ⁻⁵)%	≈4.0×10 ⁻⁵ %	(5/2-)	0.7091	30.8, 30.9, 41.8, 43.0, 52.0, 55.1, 66.9, 73.8, 82.6, 87.5, 93.8, 95.9, 98.1, 102.8, 122.0, 137.7, 162.7, 185.3, 402.0, 421.4, 425.4, 436.8, 469.0, 477.4, 524.1, 567.1, 571.0, 626.5, 669.5, 700.3	$\approx 1.4 \times 10^3$
6.036(2)***	5.941(2)	7.3(1)×10 ⁻⁶ %	6.6(1)×10 ⁻⁶ %***		0.7034	30.8, 30.9, 41.8, 43.0, 52.0, 55.1, 62.1, 66.9, 73.8, 82.6, 93.8, 95.9, 98.1, 114.0, 122.0, 137.7, 162.7, 228.4, 270.5, 274.5, 291.3, 306.6, 314.2, 319.2, 337.3, 335.2, 346.4, 347.3, 349.6, 381.2, 387.2, 389.2, 392.4, 429.0, 433.2, 475.0, 661.6, 703.6	9.0(2)×10 ³
6.039(3)	5.944(3)	1.7(6)×10 ⁻⁴ %	$1.5(5) \times 10^{-4}\%$	(15/2+)	0.7019	41.8, 52.0, 62.1, 73.4, 93.8, 114.0, 135.5, 472.6, 545.9, 608.2	400^{+0200}_{-100}
6.067(2)***	5.971(2)	$\approx 1.6(15) \times 10^{-5}\%$	≈1.5×10 ⁻⁵ %***(5/2-)		0.6728	30.8, 30.9, 41.8, 43.0, 52.0, 55.1, 73.8, 82.6, 93.8, 95.9, 98.1, 137.7, 244.0, 283.7, 291.3, 306.6, 335.2, 346.4, 347.3, 349.6, 387.2, 389.2, 429.0, 590.1, 633.0, 664.0, 672.8	$\approx 5.8^{+1.5}_{-1.0} \times 10^3$
≈6.070	≈5.974	$\approx 6.7 \times 10^{-5}\%$	6.0×10 ⁻⁵ %	(13/2+)	0.6711	30.8, 41.8, 43.0, 52.0, 62.1, 73.4, 73.8, 82.6,	$\approx 1.5 \times 10^3$
				. ,		93.8, 114.0, 135.5, 152.2, 425.4, 436.8, 441.8, 477.4, 515.5, 577.6	

* All values from [1975Ah01], except where noted. ** [1956Jo09]. *** [2005Ah03]. E_{α} and I_{α} deduced from decay scheme of this reference. [@] Ensdf ^{@@} R₀ (fm) = 1.49492(49).

Table 5	
direct α emission from ²⁵³ Es*, $J^{\pi} = 7/2^+$, $T_{1/2} = 20.03(1) d^{**}$, $BR_{\alpha} = 100\%$. (2 c	of 2)

$E_{\alpha}(\text{c.m.})$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(\text{rel})$	$I_{\alpha}(abs)$	$\mathbf{J}_{f}^{\boldsymbol{\pi}}$	E _{daughter} (²⁴⁹ Bk) [@]	coincident γ-rays (keV)***	HF ^{@@}
6.078(2)*** 6.097(2)***	5.982(2) 6.000(2)	$3.3(3) \times 10^{-6}\%$ $5.2(5) \times 10^{-6}\%$	$3.0(3) \times 10^{-6}\%^{***}$ $4.7(4) \times 10^{-6}\%^{***}$	(3/2-) (1/2-)	0.6615 0.6431	30.8, 283.7, 368.8 , 621.9, 652.8 30.8, 603.4, 634.3	$\begin{array}{c} 3.3^{+0.4}_{-0.3}{\times}10^{4}\\ 2.6(2){\times}10^{4} \end{array}$
6.116(3)	6.019(3)	2.0(6)×10 ⁻⁴ %	$1.8(5) \times 10^{-4}\%$	(5/2+)	0.6249	30.8, 30.9, 41.8, 43.0, 73.8, 82.6, 203.1, 235.1, 306.6, 347.3, 349.6, 389.2, 421.4, 624.3	850^{+330}_{-190}
6.134(3)	6.037(3)	3.2(8)×10 ⁻⁴ %	2.9(7)×10 ⁻⁴ %	(7/2-)	0.6067	30.8, 30.9, 41.8, 43.0, 52.0, 55.1, 66.9, 73.8, 82.6, 87.5, 93.8, 95.9, 98.1, 122.0, 137.7, 162.7 185.3, 402.0, 421.4, 425.4, 436.8, 469.0, 477.4, 524.1, 567.1	660^{+210}_{-140}
6.143(3)	6.046(3)	4.5(10)×10 ⁻⁴ %	4.0(9)×10 ⁻⁴ %	(13/2 ⁺)	0.5978	30.8, 30.9, 41.8, 43.0, 52.0, 55.1, 62.1, 73.4, 73.8, 82.6 93.8, 95.9, 98.1, 114.0, 135.5, 137.7, 168.8, 291.3, 335.2, 346.4, 368.8, 387.2, 429.0, 441.8, 503.9, 555.8	530 ⁺¹⁶⁰ _100
≈6.169	≈6.071	$<5.6\times10^{-5})\%$	$<5.0 \times 10^{-5}\%$	$(1/2^{-})$	0.5692	30.8, 158.6, 191.6, 368.8, 402.0, 529.7, 560.4	$> 1.2 \times 10^4$
6.182(3)	6.084(3)	$2.8(6) \times 10^{-4}\%$	2.5(5)×10 ⁻⁴ %	(3/2-)	0.5582	30.8, 30.9, 41.8, 43.0, 73.8, 82.6, 306.6, 136.8, 168.8, 180.5, 347.3, 349.6, 368.8, 389.2, 421.4, 475.4, 518.6, 549.4	$\overline{1.4^{+0.3}_{-0.2}} \times 10^3$
6.198(2)	6.100(2)	3.8(2)×10 ⁻³ %	3.4(2)×10 ⁻³ %	(11/2+)	0.5421	30.8, 30.9, 41.8, 43.0, 52.0, 55.1, 62.1, 66.9, 73.4, 73.8, 78.6, 82.6, 93.8, 95.9, 98.1, 114.0, 122.0, 135.5, 137.7, 145.4, 162.7, 189.4, 258.9, 312.7, 404.4, 448.3, 500.4	120(7)
6.220(2)	6.122(2)	8.7(9)×10 ⁻⁴ %	7.8(8)×10 ⁻⁴ %	(9/2+)	0.5192	30.8, 41.8, 43.0, 52.0, 73.8, 82.6, 93.8, 425.4, 436.8, 477.4	680^{+80}_{-70}
6.265(2)	6.166(2)	0.017(1)%	0.015(2)%	(9/2+)	0.4750	30.8, 30.9, 41.8, 43.0, 52.0, 55.1, 62.1, 66.9, 73.8, 82.6, 93.8, 95.9, 98.1, 114.0, 122.0, 137.7, 162.7, 270.5, 319.2, 337.3, 381.2, 392.4, 433.2, 475.0	59 ⁺⁹ ₋₇
6.266(2)	6.167(2)	$\approx 1 \times 10^{-5}\%$	$\approx 9 \times 10^{-6} \%$	(17/2 ⁻)	0.4736	30.8, 30.9, 41.8, 43.0, 55.1, 66.9, 73.8, 78.6, 82.6, 90.0, 93.8, 95.9, 98.1, 100.5, 122.0, 137.7, 145.4, 162.7, 168.6, 189.4, 190.5	$1.0^{+0.3}_{-0.2} \times 10^5$
6.311(2)	6.211(2)	0.043(2)%	0.039(2)%	(7/2 ⁺)	0.4289	30.8, 30.9, 41.8, 43.0, 52.0, 55.1, 73.8, 82.6, 93.8, 95.9, 98.1, 137.7, 291.3, 335.2, 346.4, 387.2, 429.0	39(2)
6.317(3)	6.217(3)	$\approx 1.7 \times 10^{-3})\%$	$\approx 1.5 \times 10^{-3}\%$	$(5/2^+)$	0.4214	421.4	$\approx 1.1 \times 10^3$
6.330(3)	6.230(3)	1.3(5)×10 ⁻⁴ %	$1.2(4) \times 10^{-4}\%$	$(3/2^+)$	0.4107	402.0	$1.6^{+0.8}_{-0.4} \times 10^4$
6.350(2)	6.250(2)	0.050(2)%	0.045(2)%	(5/2+)	0.3892	30.8, 30.9, 41.8, 43.0, 73.8, 82.6, 306.6, 347.3, 349.6, 389.2	52.6(24)
6.371(2)***	6.270(2)	$4.0(2) \times 10^{-4}\%$	$3.6(2) \times 10^{-4}\%$ ***		0.3688***	368.8	$6.2(5) \times 10^3$
6.367(2)	6.266(2)	8.9(9)×10 ⁻⁴ %	8.0(8)×10 ⁻⁴ %	(15/2 ⁻)	0.3732	30.8, 30.9, 41.8, 43.0, 55.1, 66.9, 73.8, 78.6, 82.6, 90.0, 93.8, 95.9, 98.1, 122.0, 137.7, 145.4, 162.7, 168.6, 189.4	$3.5^{+0.4}_{-0.3} \times 10^3$
6.427(3)	6.325(3)	4.5(11)×10 ⁻⁴ %	$4.0(10) \times 10^{-4}\%$	(17/2 ⁺)	0.3119	41.8, 52.0, 62.1, 73.4, 82.6, 93.8, 114.0, 135.5, 156.1	$1.4^{+0.5}_{-0.3} \times 10^4$
6.456(2)	6.354(2)	9.1(5)×10 ⁻³ %	8.2(4)×10 ⁻³ %		0.2831	30.8, 30.9, 41.8, 43.0, 55.1, 66.9, 73.8, 78.6, 82.6, 93.8, 95.9, 98.1, 122.0, 137.7, 145.4, 162.7, 189.4	940(50)
6.511(2)	6.408(2)	0.014(1)%	0.013(1)%	$(15/2^+)$	0.2292	41.8, 52.0, 62.1, 73.4, 93.8, 114.0, 135.5	$1.07(8) \times 10^3$
6.535(2)	6.432(2)	0.068(3)%	0.061(3)%	(11/2 ⁻)	0.2045	30.8, 30.9, 41.8, 43.0, 55.1, 66.9, 73.8, 82.6, 95.9, 98.1, 122.0, 137.7, 162.7	297(15)
6.584(2)	6.480(2)	0.095(3)%	0.085(3)%	$13/2^+$	0.1559	41.8, 52.0, 62.1, 93.8, 114.0	359(14)
6.602(2)	6.498(2)	0.29(1)%	0.26(1)%	9/2-	0.1377	30.8, 30.9, 41.8, 43.0, 55.1, 73.8, 82.6, 95.9, 98.1, 137.7	143(6)
6.645(2)	6.540(2)	0.95(2)%	0.85(2)%	$11/2^+$	0.0938	41.8, 52.0, 93.8	69(2)
6.657(2)	6.552(2)	0.79(2)%	0.71(2)%	7/2-	0.0825	30.8, 43.0, 73.8, 82.6	93(3)
6.698(2)	6.592(2)	7.3(1)%	6.6(1)%	9/2+	0.0418@	41.8	15.4(3)
6.700	6.594	0.8%	0.7%	5/2-	0.0396@	30.8	150
6.730	6.624	0.9%	0.8%	3/2-	0.0088 [@]		180
6.740(2)	6.633(2)	100%	89.8(2)%	$7/2^{+}$	0.0		1.74(4)

* All values from [1975Ah01], except where noted. ** [1956Jo09]. *** [2005Ah03]. E_{α} and I_{α} deduced from decay scheme of this reference. [@] [2024Ne04]. [@] @</sup> R₀ (fm) = 1.49492(49).

$E_{\alpha}(c.m.)$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(\text{rel})$	$I_{\alpha}(abs)$	$J_f^{\pi***}$	$E_{daughter}(^{253}\mathrm{Es})$	coincident γ -rays (keV)	R ₀ (fm)	HF
7 125(6)	7.014(6)	~3.5%	$\approx 3.4\%$	9/2-	0.435	388 5	1 488(14)	~??
7.186(1)	7.074(1)	100%	96.5%	$7/2^{-}$	0.3714	325.1, 371.4	1.488(14)	$1.4^{+0.6}$
7.375(2)	7.260(2)	0.021(5)%	0.020(5)%	7/2-	0.1813	181.3	1.488(14)	$3.8^{+2.1}_{-21.5} \times 10^4$
7.418(2)	7.303(2)	0.026(5)%	0.025(5)%	5/2-	0.139		1.488(14)	$4.5^{+2.5}_{-1.7} \times 10^4$
7.452(3)	7.336(3)	0.014(1)%	0.014(1)%	3/2-	0.106		1.488(14)	$1.1^{+0.5}_{-0.4} \times 10^5$
7.477(7)	7.361(7)	0.010(10)%	0.010(10)%	$11/2^{+}$	0.080		1.488(14)	$1.9(19) \times 10^5$
7.418(6)	7.303(6)	0.036(2)%	0.035(2)%	9/2+	0.0463		1.488(14)	$7.4^{+3.5}_{-2.5} \times 10^4$
7.558(2)	7.440(2)	0.038(6)%	0.037(6)%	7/2+	0.0		1.488(14)	$1.1^{+0.6}_{-0.4} \times 10^5$

Table 6 direct α emission from ²⁵⁷Md*, $J^{\pi} = (7/2^{-})$, $T_{1/2} = 5.523(50)$ h*, $BR_{\alpha} = 15.2(26)\%$.

* All values from [1993Mo18].

References used in the Tables

- [1] 1954Di11 H. Diamond, L. B. Magnusson, J. F. Mech, C. M. Stevens, A. M. Friedman, M. H. Studier, P. R. Fields, J. R. Huizenga, Phys. Rev. 94, 1083 (1954). https://doi.org/10.1103/PhysRev.94.1083
- [2] 1954Fi14 P. R. Fields, M. H. Studier, J. F. Mech, H. Diamond, A. M. Friedman, L. B. Magnusson, J. R. Huizenga, Phys. Rev. 94, 209 (1954). https://doi.org/10.1103/PhysRev.94.209
- [3] 1956Ch77 A. Chetham-Strode, Jr., Thesis, Univ. California (1956).; UCRL-3322 (1956).
- [4] 1956Jo09 M. Jones, R. P. Schuman, J. P. Butler, G. Cowper, T. A. Eastwood, H. G. Jackson, Phys. Rev. 102, 203 (1956). https://doi.org/10.1103/PhysRev.102.203
- [5] 1957Ea01 T. A. Eastwood, J. P. Butler, M. J. Cabell, H. G. Jackson, R. P. Schuman, F. M. Rourke, T. L. Collins, Phys. Rev. 107, 1635 (1957). https://doi.org/10.1103/PhysRev.107.1635
- [6] 1960As06 F. Asaro, S. G. Thompson, F. S. Stephens, I. Perlman, Proc. Intern. Conf. Nuclear Structure, Kingston, Canada, D. A. Bromley, E. W. Vogt, Eds., Univ. Toronto Press, p. 581 (1960).
- [7] 1960As08 F. Asaro, S. G. Thompson, F. S. Stephens, I. Perlman, UCRL-9382 (1960).
- [8] 1963Le17 C. M. Lederer, Thesis, Univ. California (1963); UCRL-11028 (1963).
- [9] 1965Me02 D. Metta, H. Diamond, R. F. Barnes, J. Milsted, J. Gray, Jr., D. J. Henderson, C. M. Stevens, J. Inorg. Nucl. Chem. 27, 33 (1965). https://doi.org/10.1016/0022-1902(65).80187-7
- [10] 1965Si14 T. Sikkeland, A. Ghiorso, R. Latimer, A. E. Larsh, Phys. Rev. 140, B277 (1965). https://doi.org/10.1103/PhysRev.140.B277
- [11] 1966Ah02 I. Ahmad, Thesis, Univ. California (1966).; UCRL-16888 (1966).
- [12] **1966Rg01** Combined Radiochemistry Group LRL, LASL, UCRL, ANL, Phys. Rev. 148, 1192 (1966). https://doi.org/10.1103/PhysRev.148.1192
- [13] 1968Da02 W. R. Daniels, D. C. Hoffman, F. O. Lawrence, C. J. Orth, Nucl. Phys. A107, 569 (1968). https://doi.org/10.1016/0375-9474(68).90784-7
- [14] 1969Ba57 S. A. Baranov, V. M. Shatinskii, V. M. Kulakov, Yadern. Fiz. 10, 1110 (1969); Soviet J. Nucl. Phys. 10, 632 (1970).
- [15] 1969Mi08 J. Milsted, E. P. Horwitz, A. M. Friedman, D. N. Metta, J. Inorg. Nucl. Chem. 31, 1561 (1969). https://doi.org/10.1016/0022-1902(69).80370-2
- [16] 1970Fi12 P. R. Fields, I. Ahmad, R. F. Barnes, R. K. Sjoblom, E. P. Horwitz, Nucl. Phys. A154, 407 (1970). https://doi.org/10.1016/0375-9474(70).90166-1
- [17] 1971Ba49 S. A. Baranov, V. M. Shatinskii, V. M. Kulakov, Y. F. Rodionov, Yad. Fiz. 13, 1135 (1971).; Sov. J. Nucl. Phys. 13, 651 (1971).
- [18] 1971BaZB S. A. Baranov, V. M. Shatinskii, V. M. Gulkarov, Y. F. Rodionov, Program and Theses, Proc. 21st Ann. Conf. Nucl. Spectrosc. Struct. At. Nuclei, Moscow, Pt. 1, p. 141 (1971).
- [19] 1971Bb10 S. A. Baranov, V. M. Shatinskii, V. M. Kulakov, Yad. Fiz. 14, 1101 (1971); Sov. J. Nucl. Phys. 14, 614 (1972).
- [20] 1971Gr17 B. Grennberg, A. Rytz, Metrologia 7, 65 (1971). https://doi.org/10.1088/0026-1394/7/2/005

- [21] 1971Ho16 R. W. Hoff, E. K. Hulet, R. J. Dupzyk, R. W. Lougheed, J. E. Evans, Nucl. Phys. A169, 641 (1971). https://doi.org/10.1016/0375-9474(71).90708-1
- [22] 1972HaWR N. J. Hansen, A. H. Jaffey, P. R. Fields, R. G. Scott, REPT ANL-7930, P43, 11/2/72.
- [23] 1972Ko53 V. N. Kosyakov, V. G. Nesterov, B. Nurpeisov, L. I. Prokhorova, G. N. Smirenkin, I. K. Shvetsov, At. Energ. 33, 788 (1972).; Sov. At. Energy 33, 903 (1973).
- [24] 1974Ka05 N. Kaffrell, N. Trautmann, R. Denig, Z. Phys. 266, 21 (1974). https://doi.org/10.1007/BF01668659
- [25] 1975Ah01 I. Ahmad, J. Milsted, Nucl. Phys. A239, 1 (1975). https://doi.org/10.1016/0375-9474(75).91129-X
- [26] 1975Ba27 S. A. Baranov, V. M. Shatinsky, Zh. Eksp. Teor. Fiz. 68, 8 (1975).; Sov. Phys. JETP 41, 4 (1975).
- [27] 1976F103 K. F. Flynn, J. E. Gindler, L. E. Glendenin, R. K. Sjoblom, J. Inorg. Nucl. Chem. 38, 661 (1976). https://doi.org/10.1016/0022-1902(76).80333-8
- [28] 1981Pa20 P. P. Parekh, E. -M. Franz, S. Katcoff, L. K. Peker, Phys. Rev. C24, 2240 (1981).; Erratum Phys. Rev. C25, 2137 (1982). https://doi.org/10.1103/PhysRevC.24.2240
- [29] 1982Po13 V. G. Polyukhov, G. A. Timofeev, A. A. Elesin, Radiokhimiya 24, 494 (1982).; Sov. Radiochemistry 24, 412 (1982).
- [30] 1983Ch31 Y. Y. Chu, M. L. Zhou, Phys. Rev. C28, 1379 (1983). https://doi.org/10.1103/PhysRevC.28.1379
- [31] 1983Po15 V. G. Polyukhov, G. A. Timofeev, Yu. I. Kurunov, B. I. Levakov, Radiokhimiya 25, 487 (1983).; Sov. Radiochemistry 25, 463 (1983).
- [32] 1986HaYZ H. L. Hall, K. E. Gregorich, D. C. Hoffman, E. K. Hulet, R. Lougheed, K. J. Moody, LBL-21570, p. 64 (1986).
- [33] 1987Po22 Yu. S. Popov, G. A. Timofeev, V. B. Mishenev, V. N. Kovantsev, A. A. Elesin, Radiokhimiya 29, 447 (1987).; Sov. J. Radiochemistry 29, 431 (1987).
- [34] 1989HuZU E. K. Hulet, UCRL-100763 (1989).
- [35] 1991HeZT R. A. Henderson, K. E. Gregorich, H. L. Hall, J. D. Leyba, K. R. Czerwinski, B. Kadkhodayan, S. A. Kreek, N. J. Hannink, M. J. Nurmia, D. M. Lee, D. C. Hoffman, LBL-30798, p. 65 (1991).
- [36] 1992Bo05 M. J. G. Borge, D. G. Burke, H. Gietz, P. Hill, N. Kaffrell, W. Kurcewicz, G. Lovhoiden, S. Mattsson, R. A. Naumann, K. Nybo, G. Nyman, T. F. Thorsteinsen, and the ISOLDE Collaboration, Nucl. Phys. A539, 249 (1992). https://doi.org/10.1016/0375-9474(92).90269-P
- [37] 1993Mo18 K. J. Moody, R. W. Lougheed, J. F. Wild, R. J. Dougan, E. K. Hulet, R. W. Hoff, C. M. Henderson, R. J. Dupzyk, R. L. Hahn, K. Summerer, G. D. O'Kelley, G. R. Bethune, Nucl. Phys. A563, 21 (1993). https://doi.org/10.1016/0375-9474(93)90010-U
- [38] 1993Po20 Yu. S. Popov, D. Kh. Srurov, A. A. Baranov, V. M. Chistyakov, G. A. Timofeev, Radiokhimiya 35, 9 (1993).; Sov. J. Radiochemistry 35, 135 (1993).
- [39] 1994Po30 Yu. S. Popov, D. Kh. Srurov, A. A. Baranov, V. M. Chistyakov, G. A. Timofeev, Radiokhimiya 36, 193 (1994).; Sov. J. Radiochemistry 36, 209 (1994).
- [40] 1999Po35 Yu. S. Popov, G. A. Timofeev, A. A. Elesin, Radiochemistry 41, 37 (1999).; Radiokhimiya 41, 36 (1999).
- [41] 2005Ah03 I. Ahmad, F. G. Kondev, E. F. Moore, M. P. Carpenter, R. R. Chasman, J. P. Greene, R. V. F. Janssens, T. Lauritsen, C. J. Lister, D. Seweryniak, R. W. Hoff, J. E. Evans, R. W. Lougheed, C. E. Porter, L. K. Felker, Phys. Rev. C 71, 054305 (2005). https://doi.org/10.1103/PhysRevC.71.054305
- [42] 2005AhZZ I. Ahmad, F. G. Kondev, E. F. Moore, R. R. Chasman, M. P. Carpenter, J. P. Greene, R. V. F. Janssens, T. Lauritsen, C. J. Lister, D. Seweryniak, R. W. Hoff, J. E. Evans, R. W. Lougheed, C. E. Porter, L. K. Felker, Proc. Nuclei at the Limits, Argonne, Illinois, D. Seweryniak and T. L. Khoo, eds., p. 251 (2005).; AIP Conf. Proc 764 (2005). https://doi.org/10.1063/1.1905319
- [43] 2010Al24 H. Alvarez-Pol, J. Benlliure, E. Casarejos, L. Audouin, D. Cortina-Gil, T. Enqvist, B. Fernandez-Dominguez, A. R. Junghans, B. Jurado, P. Napolitani, J. Pereira, F. Rejmund, K. -H. Schmidt, O. Yordanov, Phys. Rev. C 82, 041602 (2010). https://doi.org/10.1103/PhysRevC.82.041602
- [44] 2013Ah03 I. Ahmad, J. P. Greene, F. G. Kondev, S. Zhu, M. P. Carpenter, R. V. F. Janssens, R. A. Boll, J. G. Ezold, S. M. Van Cleve, E. Browne, Phys. Rev. C 87, 054328 (2013). https://doi.org/10.1103/PhysRevC.87.054328
- [45] 2014Ch47 J. Chen, I. Ahmad, J. P. Greene, F. G. Kondev, Phys. Rev. C 90, 044302 (2014). https://doi.org/10.1103/PhysRevC.90.044302

- [46] 2021Wa16 M. Wang, W. J. Huang, F. G. Kondev, G. Audi, S. Naimi, Chin. Phys. C 45, 030003 (2021). https://doi.org/10.1088/1674-1137/abddaf
- [47] 2023Ne07 C. D. Nesaraja, Nucl. Data Sheets 189, 1 (2023). https://doi.org/10.1016/j.nds.2023.04.001
- [48] 2024Du12 R. Dubey, G. Kaur, A. Yadav, N. Saneesh, A. Jhingan, P. Sugathan, T. Banerjee, K. S. Golda, H. Singh, M. Thakur, R. Mahajan, Phys. Lett. B 859, 139112 (2024).
- [49] 2024Ne04 C. D. Nesaraja, Nucl. Data Sheets 195, 718 (2024). https://doi.org/10.1016/j.nds.2024.04.003