

Fig. 1: Known experimental values for heavy particle emission of the odd-Z T_z = +49/2 nuclei.

Last updated 10/21/2024

Table 1

Observed and predicted β -delayed particle emission from the odd-Z, $T_z = +49/2$ nuclei. Unless otherwise stated, all Q-values are taken from [2021Wa16] or deduced from values therein.

		-					
Nuclide	Ex.	J^{π}	$T_{1/2}$	Q_{ε}	Q _β -	Q _β - α	Experimental
211							
²¹¹ TI*			76.5(178) s	-5.69#	4.420(40)	8.162(50)	[2017Ca12]
²¹⁵ Bi*		$(9/2^{-})$	7.7(2) m	-2.710(50)	2.171(6)	9.877(6)	[1990Ru02]
²¹⁹ At		(9/2-)	56(3) s	-2.285(16)	1.567(2.9)	8.693(4)	[2015Fi07]
²²³ Fr		3/2-	22.00(7) m	-2.007(8)	1.149(0)	7.308(3)	[1993Ab01]
²²⁷ Ac		3/2-	21.778^{+29}_{-32} y	-1.328(2)	0.045(1)	6.382(3)	[1967JoZX]
²³¹ Pa		3/2-	$3.257(13) \times 10^4$ y	-0.392(2)	-0.382(2)		[2020Je01]
					$Q_{\varepsilon p}$	$Q_{\varepsilon \alpha}$	
²³⁵ Np		5/2+	396.1(12) d	0.124(1)	-6.585(4)	4.802(2)	[1970La08]
²³⁹ Am		$(5/2^{-})$	11.9(1) h	0.802(2)	-5.353(2)	6.047(2)	[1972Po04]
^{239m} Am	2.5(2)		163(12) ns	3.3(2)	-2.8(2)	8.5(2)	[1972Br35]
²⁴³ Bk		$(3/2^{-})$	4.5(1) h	1.508(5)	-4.067(4)	7.676(5)	[1953Hu60]
²⁴⁷ Es	х	$(7/2^+)$	4.55(26) m	2.469(24)	-2.677(63)	8.972(19)	[1989Ha27]
²⁵¹ Md		$(7/2^{-})$	4.28(12) m	3.008(24)	-1.55(10)#	10.432(24)	[2021Go26]
²⁵⁵ Lr		$(1/2^{-})$	31.1(13) s	3.135(23)	-0.79(10)#	11.564(23)	[2006Ch52]
^{255m} Lr	0.037(10)	$(7/2^{-})$	2.53(5) s	3.172(25)	-0.42(14)#	11.601(25)	[2008An16]
²⁵⁹ Db			510(160) ms	3.620(90)#	-0.08(12)#	12.754(58)#	[2001Ga20]
²⁶³ Bh				4.30(32)#	0.95(34)#	13.70(31)#	-
²⁶⁷ Mt				5.13(51)#	2.40(53)#	15.17(51)#	

* 100% β^- emitter.

** Unclear if this is the ground state.

Table 2

Particle separation, Q-values, and measured values for direct particle emission of the odd-Z, $T_z = +49/2$ nuclei. Unless otherwise stated, all S and Q-values are taken from [2021Wa16] or deduced from values therein.

Nuclide	S_p	Qα	BR_{α}	BR _{SF}	BR _{cluster}	type	Experimental
211 771	9.07/21)#	2 14(20)#					
215 p:	8.07(21)#	2.14(30)#					
219 A A	5.477(6)	5.282(42)	0.2 ((10))				[2015E:07 1000D-00 10521L-02]
223 E	5.250(4)	6.342(5) 5.5(1(2)	93.6(10)%				[2013F107, 1989B009, 1953Hy85]
Fr	5.279(2)	5.561(3)	0.02(1)%				[2001L144, 1982AIZL, 1956Pe27, 1955Ad10, 1953Hy83, 1950WaZZ]
²²⁷ Ac	5.107(2)	5.042(0)	1.3800(36)%				[1995Sh03, 1986Rv04, 1970Ki12, 1966Ba19, 1959No41,
							1995Ma82, 1981Va28, 1974Mo05, 1972GaZR, 1972HeYM
							1950WaZZ, 1949Pe03]
²³¹ Pa	4.727(1)	5.150(1)	100%	$\leq 3 \times 10^{-10}\%$	1.34(17)×10 ⁻⁹ %	²⁴ Ne	2019Ga34, 1992Pr05, 1983Ba77, 1968Ba25, 1961Ba42,
					$1.0^{+4.8}_{-0.7} \times 10^{-12}\%$	²³ F	1961Ba42, 2020Je01, 2020Km01, 2009Mo37, 1995Ar33,
					-0.7		1986BaYK, 1986Tr10, 1985Sa40, 1979Te02, 1974De11,
							1971Le10, 1970De19, 1970Le11, 1969Ba20, 1969La04,
							1969Ro33, 1968Ha22, 1966Ba14, 1960Fo05, 1956Hu96,
							1955Hu37]
²³⁵ Np	4.391(1)	5.194(1)	2.60(13)×10 ⁻³ %				[1986AgZV, 1973Br12, 1987Ha07, 1984Wh02, 1970BrZX,
							1970La08, 1957Th37, 1956Ho46]
²³⁹ Am	4.062(2)	5.922(1)	0.010(1)%				[1971Go01, 1972Po04, 1960Gl01, 1952Hi63]
^{239m} Am	1.5(2)	8.4(2)		obs			[1972Br35, 1983Ra36, 1971Br39, 1971Fe09, 1970Vi05,
							1969La14]
²⁴³ Bk	3.403(4)	6.874(4)	0.15%				[1966Ah02, 1953Hu60, 1956Ch77]
²⁴⁷ Es	2.801(19)#	7.464(20)	obs				[1989Ha27, 1989HaZG, 1986HaZM, 1985MaZK, 1973Es01,
							1967Mi06]
²⁵¹ Md	2.394(20)	7.963(4)	10(1)%				[2006Ch52, 2021Go26, 2006An13, 2005ChZQ, 2005He27,
							2005He27, 1973Es01, 1971EsZZ, 1971EsZY]
²⁵⁵ Lr	2.065(20)	8.556(7)	99.7(5)%				[2008An16, 2008Ha31, 2006Ch52, 2006An13, 2005ChZQ,
							2004HeZZ, 2002Gu33, 2001Ga20, 1976BeYM, 1976BeZY,
							1971Es01]
^{255m} Lr	2.028(22)	8.593(12)	$\approx 40\%$				[2008Ha31, 2006Ch52, 2008An16, 2005ChZQ, 2004HeZZ]
²⁵⁹ Db	1.642(59)#	9.619(54)	$\approx 100\%$				[2001Ga20 , 2002Gu33]
²⁶³ Bh	1.16(31)#	10.08(30)#					• · · •
²⁶⁷ Mt	0.64(50)#	10.87(40)					

Table 3 direct α emission from ²¹⁹At*, $J^{\pi} = (9/2^{-})$, $T_{1/2} = 56(3)$ s, $BR_{\alpha} = 93.6(10)\%$.

$E_{\alpha}(c.m.)$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(abs)$	J_f^π	<i>E</i> _{daughter} (²¹⁵ Bi)	coincident γ -rays (keV)	R ₀ (fm)	HF
6.343(5)	6.228(5)	93.6(10)%	(9/2 ⁻)	0.0		1.54668(15)	1.33(10)

* All values from [2015Fi07].

Table 4

direct α emission from ²²³Fr*, $J^{\pi} = 3/2^{-}$, $T_{1/2} = 22.00(7)$ m**, $BR_{\alpha} = 0.02(1)\%$.

$E_{\alpha}(\text{c.m.})$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(\text{rel})$	$I_{\alpha}(abs)$	$\mathbf{J}_f^{\boldsymbol{\pi}}$	$E_{daughter}(^{219}\text{At})$	coincident γ-rays (keV)	R ₀ (fm)	HF
5.266(5)	5.172(5)	$\approx 14\%$	$\approx 1 \times 10^{-3}\%$	$(3/2^{-})$	0.296	0.1453, 0.1509	1.54540(11)	≈2.7
5.388(4)	5.291(4)	100(66)%	$7(3) \times 10^{-3}\%$	$(3/2^{-})$	≈ 0.174	150.9	1.54540(11)	$1.7^{+3.4}_{-0.7}$
5.411(4)	5.314(4)	86(55)%	$6(3) \times 10^{-3}\%$	$(5/2^{-})$	0.1509	0.1509	1.54540(11)	3^{+7}_{-1}
5.502(3)	5.403(3)	71(46)%	$5(2) \times 10^{-3}\%$	$(7/2^{-})$	0.0589	0.0589	1.54540(11)	10^{+18}_{-4}
5.562(3)	5.462(3)	57(29)%	$4(2) \times 10^{-3}\%$	(9/2-)	0.0		1.54540(11)	30_{-10}^{+70}

* All values from [2001Li44], except where noted. ** [1993Ab01].

Table 5		
direct α emission from ²²⁷ Ac, $J^{\pi} = 3/2^{-}$, T ₁	$_{/2} = 21.778^{+29}_{-32} \text{ y*}, BR_{\alpha}$	= 1.3800(36)%**

$E_{\alpha}(\text{c.m.})$	$E_{\alpha}(\text{lab})^{***}$	$I_{\alpha}(\text{rel})$	$I_{\alpha}(abs)$	$\mathbf{J}_{f}^{\pi@}$	$E_{daughter}(^{223}\mathrm{Fr})^{@}$	coincident γ-rays (keV) [@]	R ₀ (fm)	HF
4.441(7)	4.363(7)	$\approx 6 \times 10^{-3} \%^{@@}$	$\approx 4.1 \times 10^{-5}\%$	7/2-	0.601@@		1.53667(29)	≈7.8
4.502(5)	4.423(5)	0.021%	$.4 \times 10^{-4}\%$	(5/2-)	0.5407	44.7, 55.0, 86.7, 69.3, 88.1, 82.2, 99.6, 101.0, 106.8, 176.1 351.7, 441.0	1.53667(29)	6.6
4.525(4)	4.445(4)	0.11%	$6.9 \times 10^{-4}\%$	3/2-	0.5152	44.7, 55.0, 86.7, 99.6, 415.6, 460.2	1.53667(29)	2.1
4.539(7)	4.459(7)	0.011%	$6.9 \times 10^{-5}\%$		0.503		1.53667(29)	25
4.593(5)	4.512(5)	$\approx 6 \times 10^{-3} \%^{@@}$	$\approx 4.1 \times 10^{-5}\%$		0.449@@		1.53667(29)	≈ 110
4.663(7)	4.581(7)	$\approx 6 \times 10^{-3} \%^{@@}$	$\approx 4.1 \times 10^{-5}\%$		0.379@@		1.53667(29)	≈330
4.671(4)	4.589(4)	$0.021\%^{@@}$	$1.4 \times 10^{-4}\%$		0.371@@		1.53667(29)	112
4.676(4)	4.594(4)	0.064%	4.1×10 ⁻⁴ %	(9/2+)	0.3655	33.5, 35.0, 44.7, 53.7, 55.0, 69.3, 70.6, 72.5, 79.5, 86.7, 88.1, 82.2, 90.0, 99.6, 101.0, 106.8, 108.0, 118.7, 121.6, 121.8, 134.5, 137.4, 142.6, 143.0, 147.6, 172.0, 176.1, 176.5, 206.8, 229.7, 242.5, 283.4	1.53667(29)	41
4.744 [@]	4.660 [@]	0.043%	$2.8 \times 10^{-4}\%$	(9/2-)	0.2988	69.3, 82.2, 216.6	1.53667(29)	180
4.797 [@]	4.712 [@]	0.085%	5.5×10 ⁻⁴ %	(9/2+)	0.2448	44.7, 55.0, 69.3, 72.5, 72.8, 82.2, 86.7, 90.0, 99.6, 147.6, 162.6, 172.0	1.53667(29)	210
4.799 [@]	4.714 [@]	0.15%	$9.7 \times 10^{-4}\%$	$(7/2^{-})$	0.2437	69.3, 82.2, 161.4, 230.9, 243.8	1.53667(29)	121
4.800(4)	4.715(4)	0.43%	2.8×10 ⁻³ %	(7/2 ⁻)	0.2426	33.5, 35.0, 44.7, 53.7, 55.0, 69.3, 70.6, 72.5, 79.5, 86.7, 88.1, 82.2, 90.0, 99.6, 101.0, 106.8, 108.0, 121.6, 134.5, 143.0, 147.6, 172.0, 176.1, 229.7, 242.5	1.53667(29)	43
4.819@	4.734 [@]	0.064%	$4.1 \times 10^{-4}\%$	$(7/2^+)$	0.223	69.3, 82.2, 140.9	1.53667(29)	390
4.823(4)	4.738(4)	0.13%	8.3×10 ⁻⁴ %	7/2+	0.2196	69.3, 88.1, 82.2,101.0, 118.7, 137.4, 206.8	1.53667(29)	210
4.854(3)	4.768(3)	2.3%	0.015%	7/2-	0.189	69.3, 88.1, 82.2, 101.0, 106.8, 176.1	1.53667(29)	1.1
4.856@	4.770 [@]	0.64%	$4.1 \times 10^{-3}\%$		0.1872	69.3, 82.2, 105.0, 174.3	1.53667(29)	67
4.871(4)	4.785(4)	0.17%	$1.1 \times 10^{-3}\%$	5/2+	0.172	44.7, 55.0, 69.3, 72.5, 82.2, 86.7, 90.0, 99.6, 147.6, 172.0	1.53667(29)	320
4.882(3)	4.796(3)	1.72%	0.011%	3/2+	0.1605	44.7, 55.0, 59.4, 60.6, 86.7, 88.1, 99.6, 101.0, 147.6, 160.5	1.53667(29)	37
4.908(4)	4.822(4)	0.15%	$9.7 \times 10^{-4}\%$	3/2+	0.1345	33.5, 35.0, 44.7, 55.0, 79.5, 86.7, 88.1, 99.6, 101.0, 121.6, 134.5	1.53667(29)	640
4.941 [@]	4.854 [@]	1.5%	$9.7 \times 10^{-3}\%$	$5/2^{-}$	0.101	88.1, 101.0	1.53667(29)	106
4.942(2)	4.855(2)	6.4%	0.04.1%	3/2-	0.0996	44.7, 55.0, 86.7, 99.6	1.53667(29)	25
4.960(2)	4.873(2)	13%	0.08.4%	$7/2^{-}$	0.0822	69.3, 82.2	1.53667(29)	16
4.988 [@]	4.900 [@]	0.23%	$1.5 \times 10^{-3}\%$	$1/2^{-}$	0.055	55.0	1.53667(29)	1.3×10^{3}
5.0293(8)	4.9407(8)	85%	0.55%	5/2-	0.0129		1.53667(29)	6.8
5.04211(14)	4.95326(14)	100%	0.65%	$3/2^{-}$	0.0		1.53667(29)	6.9

* [1967JoZX]. ** [1970Ki12]. *** [1966Ba19], except where noted. [@] [1995Sh03], except where noted. [@] [1959No41].

Table 6

direct α emission from ²³¹ Pa, $J^{\pi} = 3/2^{-}$, $T_{1/2}$	$= 3.257(13) \times 10^4 \text{ y*}, BR_{\alpha} =$	100%
--	---	------

$E_{\alpha}(\text{c.m.})$	$E_{\alpha}(\text{lab})^{**}$	$I_{\alpha}(\text{rel})$	$I_{\alpha}(abs)$	$J_f^{\pi@@}$	E _{daughter} ^{@@} (²²⁷ Ac)	coincident γ -rays (keV) ^{@@}	R ₀ (fm)	HF
4.493	4.4156***	0.0052(8)%	0.0013(2)%	(7/2 ⁺)	0.6564(4)	16.5, 25.5, 27.4, 30.0, 35.8, 38.2, 40.2, 44.1, 54.6, 57.2, 63.6, 546.5, 546.5, 571.6, 583, 609	1.53103(70)	64_{-9}^{+12}
4.5878(30)	4.5084(30)	0.012(1)%	0.0030(3)%	(3/2 ⁺ ,5/2)	0.5628(1)	16.5, 27.4, 30.0, 38.2, 40.2, 44.1, 54.6, 57.2, 478.4, 486.8, 516.2, 535.6	1.53103(70)	141^{+17}_{-14}
4.6474(30)	4.5669(30)	0.075(4)%	0.0189(11)%	(3/2 ⁻ ,5/2 ⁻)	0.5013(1)	16.5, 24.5, 27.4, 30.0, 38.2, 44.1, 54.6, 57.2, 146.9, 198.9, 226.6, 228.0, 243.1, 245.6, 246.0, 255.8, 273.2, 283.7, 300.1, 302.7, 327.1, 330.1, 354.5, 427.0, 471.3, 501.4	1.53103(70)	63(4)
4.6807(30))	4.5996(30)	0.10(1)%	0.0258(30)%	9/2+	0.4693(1)	16.5, 25.5, 27.4, 30.0, 35.8, 38.2, 40.2, 44.1, 54.6, 57.2, 63.6, 359.3, 384.7	1.53103(70)	79^{+11}_{-9}
4.7139(30) 4.7256(25)	4.6323(30) 4.6438(25)	0.58(2)% 0.53(1)%	0.145(4)% 0.1335(13)%	1/2 ⁺ 5/2 ⁺	0.4352 0.4256	16.5, 30.0, 390.4, 407.8, 435.2 16.5, 27.4, 30.0, 38.2, 40.2, 44.1, 54.6, 57.2 341.1, 351.5, 379.4, 395.5, 398.1	1.53103(70) 1.53103(70)	24.6(8) 31.2(6)
4.7636(24)	4.6811(24)	6.27(3)%	1.572(4)%	7/2-	0.3872	16.5, 25.5, 27.4, 30.0, 35.8, 38.2, 40.2, 44.1, 54.6, 57.2, 63.6, 96.8, 198.9, 226.6, 243.1, 245.6, 246.0, 255.8, 260.2, 273.2, 277.2, 283.7, 300.1, 302.7, 312.9, 330.1, 340.7, 357.1, 387.0	1.53103(70)	4.94(9)
4.7964(24)	4.7133(24)	4.15(7)%	1.041(18)%	1/2-	0.3545	16.5, 24.5, 27.4, 30.0, 38.2, 40.2, 44.1, 54.6, 57.2, 198.9, 226.6, 243.1, 245.6, 246.0, 255.8, 273.2, 283.7, 300.1, 302.7, 327.1, 330.1, 354.5	1.53103(70)	12.6(3)
4.8195(8)	4.7360(8) [@]	34.37(13)%	8.613(10)%	3/2-	0.3304	16.5, 27.4, 30.0, 38.2, 40.2, 44.1, 54.6, 57.2, 198.9, 226.6, 243.1, 245.6, 246.0, 255.8, 273.2, 283.7, 300.1, 302.7, 330.1	1.53103(70)	2.23(4)
4.8451	4.7612***	0.20(9)%	0.051(22)%	(5/2 ⁺)	0.3047(1)	16.5, 27.4, 30.0, 38.2, 40.2, 44.1, 54.6, 57.2, 219.9, 230.0, 258.4, 277.4	1.53103(70)	600^{+400}_{-200}
4.8798(22)	4.7953(22)	6.00(9)%	1.503(22)%	(5/2)-	0.2732	16.5, 27.4, 30.0, 40.2, 44.1, 198.9,	1.53103(70)	31.3(7)
4.9385(21)	4.8530(21)	5.6(6)%	1.40(15)%	13/2+	0.2108(1)	16.5, 25.5, 27.4, 30.0, 35.8, 38.2, 40.2, 44.1, 54.6, 57.2, 63.6, 100.9	1.53103(70)	88^{+11}_{-9}
4.9870(21)	4.9006(21)	13.09(9)%	3.281(18)%		0.160(2)		1.53103(70)	80.7(14)
5.0212(21)	4.9343(21)	11.6(12)%	2.9(3)%	9/2-	0.1268	30.0, 40.2, 44.1, 52.7, 96.8	1.53103(70)	150^{+18}_{-15}
5.0385(14)	4.9513(14) [@]	89.1(3)%	22.32(2)%	9/2+	0.1100	16.5, 25.5, 27.4, 30.0, 35.8, 38.2, 40.2, 44.1, 54.6, 57.2, 63.6	1.53103(70)	25.0(4)
5.0628(20)	4.9751(20)	2.19(10)%	0.550(25)%	7/2+	0.0845	27.4, 30.0, 38.2, 54.6, 57.2	1.53103(70)	$1.47(7) \times 10^{3}$
5.0737(10)	4.9858(10)	6.87(7)%	1.721(16)%	7/2-	0.0741	30.0, 40.2, 44.1	1.53103(70)	548(11)
5.1021(14)	5.0138(14) [@]	100.0(4)%	25.06(9)%	5/2 ⁺	0.0464	16.5, 30.0	1.53103(70)	56.3(10)
5.11/0(10)	5.0284(10)	92.1(4)%	23.09(6)%	5/2	0.0300	30.0	1.53103(70)	//.4(13)
5.1186(14)	5.0300(14) [®]	11.2(12)%	2.8(3)%	3/2 ⁺	0.0274	27.4	1.53103(70)	000_{-70}^{+00}
5.1477(15)	5.0586(15) [@]	43.24(18)%	10.837(25)%	3/2	0.0		1.53103(70)	254(7)

* [2020Je01].
** Values from [1961Ba42], except where noted. Values are adjusted by [1991Ry01] to match newer calibration energies.
*** [2019Ga34].
@ Recommended values from [1991Ry01].
@@ [2016Ko07].

Table 7 direct α emission from ²³⁵Np*, $J^{\pi} = 5/2^+$, $T_{1/2} = 396.1(12) \text{ d**}$, $BR_{\alpha} = 2.60(13) \times 10^{-3} \%^{***}$.

$E_{\alpha}(c.m.)$	$E_{\alpha}(\text{lab})^{***}$	$I_{\alpha}(\text{rel})$	$I_{\alpha}(abs)$	${\sf J}_f^\pi$	<i>E</i> _{daughter} (²³¹ Pa)	coincident γ -rays (keV) [@]	R_0 (fm)	HF
4.892(7)	4.809(7)	$\approx 0.2\%$	$\approx 2.6 \times 10^{-6}\%$	$(9/2^+)$	0.304		1.51623(36)	≈53
4.946(3)	4.862(3)	1.3(3)%	$1.8(3) \times 10^{-5}\%$	$7/2^{+}$	0.250		1.51623(36)	$17.6^{+3.2}_{-2.4}$
5.010(2)	4.925(2)	22(3)%	$3.0(2) \times 10^{-4}\%$	$5/2^{+}$	0.1834	58.5, 61.2, 102.2, 125, 185	1.51623(36)	2.9(2)
5.026(6)	4.940(6)	$\approx 1.1\%$	$\approx 1.6 \times 10^{-5}\%$	$(11/2^{-})$	0.1693	58.5, 110.8	1.51623(36)	pprox 70
5.084(4)	4.997(4)	11(4)%	1.6(3)×10 ⁻⁴ %	9/2+	0.113		1.51623(36)	17^{+9}_{-4}
5.094(4)	5.007(4)	45(13)%	$6.2(16) \times 10^{-4}\%$	7/2+	0.103		1.51623(36)	$4.8^{+1.7}_{-1.0}$
5.112(2)	5.025(2)	100(15)%	$1.4)2) \times 10^{-3}\%$	$5/2^{+}$	0.0842	84.2	1.51623(36)	$2.9_{-0.4}^{+0.6}$
5.138(2)	5.051(2)	3.4(8)%	4.7(8)×10 ⁻⁵ %	7/2-	0.0585	58.5	1.51623(36)	124_{-19}^{+27}
5.188(3)	5.100(3)	$\approx 0.4\%$	pprox5 $ imes$ 10 ⁻⁶ %	$1/2^{-}$	0.008		1.51623(36)	$\approx 2.3 \times 10^3$
5.196(4)	5.108(4)	2.8(6)%	$3.9(5) \times 10^{-5}\%$	3/2-	0.0		1.51623(36)	350^{+60}_{-50}

* All values from [1973Br12], except where noted.

** 1970La08

*** [1986AgZV].

Table 8

direct α emission from ²³⁹Am*, $J^{\pi} = (5/2^{-})$, $T_{1/2} = 11.9(1)$ h**, $BR_{\alpha} = 0.010(1)\%$ **.

$E_{\alpha}(c.m.)$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(\text{rel})$	$I_{\alpha}(abs)$	J_f^{π}	$E_{daughter}(^{235}\text{Np})$	coincident γ -rays (keV)	R_0 (fm)	HF
5.777(2) 5.832(2) 5.874(2) 5.924(4)	5.680(2) 5.734(2) 5.776(2) 5.825(4)	2.37(4)% 16.43(11)% 100.0(5)% 0.39(2)%	$\begin{array}{c} 1.98(20) \times 10^{-4}\% \\ 1.38(14) \times 10^{-3}\% \\ 8.37(84) \times 10^{-3}\% \\ 3.30(39) \times 10^{-5}\% \end{array}$	(9/2 ⁻) (7/2 ⁻) (5/2 ⁻) (5/2 ⁺)	0.1468(7) 0.0916(3) 0.0490(1) 0.0		1.50108(92) 1.50108(92) 1.50108(92) 1.50108(92)	$16(2) \\ 4.7^{+0.5}_{-0.5} \\ 1.30^{+0.17}_{-0.15} \\ 600^{+90}_{-70}$

* All values from [1971Go01], except where noted.

** [1972Po04].

Table 9

direct α emission from ²⁴³Bk*, $J^{\pi} = (5/2^{-})$, $T_{1/2} = 4.5(1)$ h**, $BR_{\alpha} = 0.15\%$ **.

$E_{\alpha}(c.m.)$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(\text{rel})$	$I_{\alpha}(abs)$	$J_f^{\pi***}$	$E_{daughter}(^{239}\text{Am})$	coincident γ -rays (keV)	R ₀ (fm)	HF
6.289(4)	6.185(4)	15(2)%	\approx 5.9 \times 10 ⁻³	$(5/2^{-})$	0.587(6)		1.500(30)	11
6.317(4)	6.213(4)	53.13%4.84%	≈ 0.020	$(3/2^{-})$	0.558(6)		1.500(30)	4
≈6.504	≈6.397	pprox 0.78%	$\approx 3 \times 10^{-4}$	$(13/2^+)$	≈0.370		1.500(30)	$\approx 2.3 \times 10^3$
6.557(5)	6.449(5)	2.73%0.80%	$\approx 1.1 \times 10^{-3}$	$(11/2^+)$	0.317(6)		1.500(30)	21.2×10^{3}
6.614(4)	6.505(4)	26.95%3.21%	≈0.010	$(9/2^+)$	0.260(6)		1.500(30)	210
6.655(4)	6.545(4)	75.78%6.94%	≈ 0.029	$(7/2^+)$	0.220(6)		1.500(30)	110
6.687(4)	6.577(4)	100.00%8.84%	≈ 0.038	$(5/2^+)$	0.187(6)	146.4, 187.1	1.500(30)	120
6.719(5)	6.608(5)	≈2.73%	$\approx 1.1 \times 10^{-3}$	$(11/2^{-})$	0.156(6)		1.500(30)	$\approx 6 \times 10^3$
6.781(4)	6.669(4)	$\approx 4.69\%$	$\approx 1.8 \times 10^{-3}$	$(9/2^{-})$	0.094(6)		1.500(30)	$\approx 7 \times 10^3$
6.833(4)	6.721(4)	48.83%4.66%	≈ 0.019	$(7/2^{-})$	0.041(6)		1.500(30)	1.1×10^{3}
6.874(4)	6.761(4)	60.16%5.42%	≈0.023	$(5/2^{-})$	0.0		1.500(30)	1.3×10^{3}

* All values from [1966Ah02], except where noted. E_{α} (lab) is adjusted by +3.0 keV by [1991Ry01].

** [1953Hu60].

*** [2014Br18].

Table 10

direct α emission from ²⁴⁷Es*, T_{1/2} = 4.55(26) m, BR_{α} = obs.

$E_{\alpha}(\text{c.m.})$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(\text{rel})$	$I_{\alpha}(abs)$	\mathbf{J}_f^{π}	$E_{daughter}(^{243}\mathrm{Bk})$	coincident γ -rays (keV)	R ₀ (fm)	HF
7.332(5) 7.395(3) 7.444(1)	7.213(5) 7.275(3) 7.323(1)	2.3(8)% 14(2)% 100(7)%						

* All values from [1989Ha27].

Table 11		
direct α emission from ²⁵¹ Md, J^{π}	$=(7/2^{-}), T_{1/2} = 4.28(12) \text{ m}^{**}$	$BR_{\alpha} = 10(1)\%.$

			/										
$E_{\alpha}(c.m.)$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(abs)$	$\mathbf{J}_f^{\boldsymbol{\pi}}$	$E_{daughter}(^{247}\mathrm{E}$	Es)	coincident y	-rays (keV)	R ₀ (fm)	HF				
7.672(1)	7.550(1)	10(1)%		0.293+x		243, 293		1.4788(62)	74^{+16}_{-14}				
* All val ** [2021	* All values from [2006Ch52], except where noted. ** [2021Go26].												
Table 12 direct α emission from ²⁵⁵ Lr*, $J^{\pi} = (1/2^{-}), T_{1/2} = 31.1(13)$ s**, $BR_{\alpha} = 99.7(5)\%$ **.													
$E_{\alpha}(\text{c.m.})$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(\text{rel})$	$I_{\alpha}(abs)$	J_f^π	Edaughter	(²⁵¹ Md)	coincident γ-rays	s (keV)	R ₀ (fm)	HF			
8.422(5) 8.498(2) 8.554(10)	8.290(5) 8.365(2) 8.420(10)	1.8(6)% 100(3)% 5.4(8)%	0.7(2)% 37.3(8)% 2.0(3)%	(11/2 ⁻) 1/2 ⁻ (7/2 ⁻)	0.135 0.055 0.0				1.467(15) 1.467(15) 1.467(15)	$50^{+40}_{-20}\\1.7^{+0.8}_{-0.5}\\48^{+23}_{-17}$			
** [12008Ha31]. Table 13 direct α emission from ^{255m} Lr*, Ex. = 37(10) keV, $J^{\pi} = (1/2^{-})$, $T_{1/2} = 2.53(5)$ s**, $BR_{\alpha} = \approx 40\%$.													
$E_{\alpha}(c.m.)$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(\text{rel})$	$I_{\alpha}(abs)$	${\sf J}_f^{{m \pi}}$	Edaugh	_{tter} (²⁵¹ Md)	coincident γ -ra	ays (keV)	R_0 (fm)	HF			
8.455(10) 8.592(2)	8.322(10) 8.457(2)	8.1(19)% 100(3)%	≈7.5(18)% ≈92(3)%	(11/2 ⁻) (7/2 ⁻)	0.135 0.0				1.467(15) 1.467(15)	≈ 3.2 ≈ 0.7			
* All values from [2006Ch52], except where noted. ** [2008An16].													
Table 14 direct α emission	ssion from ²⁵⁹ Db	$T_{1/2} = 510(160)$	0) ms, $BR_{\alpha} = \approx$	100%.									
$E_{\alpha}(c.m.)$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(abs)$	$J_f^{\boldsymbol{\pi}}$	$E_{daughter}(^{255})$	Lr)	coincident	γ-rays (keV)	R ₀ (fm)	HF				
9.623	9.474	$\approx 100\%$		0.0?				1.463(13)	11^{+6}_{-5}				

* All values from [2001Ga20].

References used in the Tables

- **1949Pe03** S. Peterson, A. Ghiorso, The Transuranium Elements: Research Papers, Book 2, Vol. 14B, paper 19. 10, G. T. Seaborg ed., p. 1395 (1949).
- [2] 1950WaZZ F. Wagner, Jr., ANL-4490, p. 5 (1950).
- [3] 1952Hi63 G. H. Higgins, Thesis, Univ. California (1952); UCRL-1796 (1952).
- [4] 1953Hu60 E. K. Hulet, Thesis, Univ. California (1953).; UCRL-2283 (1953).
- [5] 1953Hy83 E. K. Hyde, A. Ghiorso, Phys. Rev. 90, 267 (1953). https://doi.org/10.1103/PhysRev.90.267
- [6] 1955Ad10 J. P. Adloff, Compt. Rend. 240, 1421 (1955).
- [7] 1955Hu37 J. P. Hummel, F. Asaro, I. Perlman, Phys. Rev. 98, 261A (1955). https://doi.org/10.1103/PhysRev.98.261A
- [8] 1956Ch77 A. Chetham-Strode, Jr., Thesis, Univ. California (1956).; UCRL-3322 (1956).
- [9] 1956Ho46 R. W. Hoff, J. L. Olsen, L. G. Mann, Phys. Rev. 102, 805 (1956). https://doi.org/10.1103/PhysRev.102.805
- [10] **1956Hu96** J. P. Hummel, Thesis, Univ. California (1956).; UCRL-3456 (1956).
- [11] 1956Pe27 M. Perey, J. P. Adloff, J. Phys. Radium 17, 545 (1956). https://doi.org/10.1051/jphysrad:01956001707054500
- [12] 1957Th37 T. D. Thomas, Thesis, University of California (1957).; UCRL-3791 (1957).

- [13] 1959No41 G. I. Novikova, E. A. Volkova, L. I. Goldin, D. M. Ziv, E. F. Tretyakov, Zh. Eksp. Teor. Fiz. 37, 928 (1959).; Sov. Phys. JETP 10, 663 (1960).
- [14] 1960Fo05 R. Foucher, Compt. Rend. 250, 1249 (1960).
- [15] 1960Gl01 R. A. Glass, R. J. Carr, W. M. Gibson, J. Inorg. Nuclear Chem. 13, 181 (1960). https://doi.org/10.1016/0022-1902(60).80292-8
- [16] 1961Ba42 S. A. Baranov, V. M. Kulakov, P. S. Samoilov, A. G. Zelenkov, Yu. F. Rodionov, S. V. Pirozhkov, Zhur. Eksptl. i Teoret. Fiz. 41, 1475 (1961).; Soviet Phys. JETP 14, 1053 (1962).
- [17] 1966Ah02 I. Ahmad, Thesis, Univ. California (1966).; UCRL-16888 (1966).
- [18] 1966Ba14 G. Bastin, C. F. Leang, R. J. Walen, Compt. Rend. 262B, 89 (1966).
- [19] 1966Ba19 G. Bastin, C. -F. Leang, R. J. Walen, Compt. Rend. 262B, 370 (1966).
- [20] 1967JoZX K. C. Jordan, B. C. Blanke, Proc. Symp. Standardization of Radionuclides, Vienna, Austria (1966), Intern. At. Energy Agency, Vienna, p. 567 (1967); CONF-661012-4 (1967).
- [21] 1967Mi06 V. L. Mikheev, V. I. Ilyushchenko, M. B. Miller, Yadern. Fiz. 5, 49 (1967).; Soviet J. Nucl. Phys. 5, 35 (1967).
- [22] 1968Ba25 S. A. Baranov, V. M. Kulakov, V. M. Shatinskii, Yadern. Fiz. 7, 727 (1968).; Soviet J. Nucl. Phys. 7, 442 (1968).
- [23] 1968Ha22 G. R. Hagee, R. C. Lange, A. G. Barnett, A. R. Campbell, C. R. Cothern, D. F. Griffing, H. J. Hennecke, Nucl. Phys. A115, 157(1968). https://doi.org/10.1016/0375-9474(68).90648-9
- [24] 1969Ba20 A. G. Barnett, A. R. Campbell, G. R. Hagee, J. Inorg. Nucl. Chem. 31, 1553 (1969). https://doi.org/10.1016/0022-1902(69).80369-6
- [25] 1969La04 R. C. Lange, G. R. Hagee, Nucl. Phys. A124, 412(1969). https://doi.org/10.1016/0375-9474(69).90364-9
- [26] 1969La14 N. L. Lark, G. Sletten, J. Pedersen, S. Bjornholm, Nucl. Phys. A139, 481 (1969). https://doi.org/10.1016/0375-9474(69).90273-5
- [27] 1969Ro33 J. Robert, C. F. Miranda, R. Muxart, Radiochim. Acta 11, 104 (1969).
- [28] 1970BrRZX E. Browne, F. Asaro, UCRL-19530, p. 3 (1970).
- [29] 1970De19 A. G. de Pinho, E. F. da Silveira, N. L. da Costa, Phys. Rev. C 2, 572 (1970). https://doi.org/10.1103/PhysRevC.2.572
- [30] 1970Ki12 H. W. Kirby, J. Inorg. Nucl. Chem. 32, 2823 (1970). https://doi.org/10.1016/0022-1902(70).80344-X
- [31] **1970La08** J. H. Landrum, J. Inorg. Nucl. Chem. **32**, 2131 (1970). https://doi.org/10.1016/0022-1902(70).80488-2
- [32] 1970Le11 C. F. Leang, J. Phys. (Paris). 31, 269 (1970).
- [33] 1970Vi05 N. Vilcov, Stud. Cercet. Fiz. 22, 795 (1970).
- [34] **1971Br39** H. C. Britt, S. C. Burnett, B. H. Erkkila, J. E. Lynn, W. E. Stein, Phys. Rev. C4, 1444 (1971). https://doi.org/10.1103/PhysRevC.4.1444
- [35] 1971Es01 K. Eskola, P. Eskola, M. Nurmia, A. Ghiorso, Phys. Rev. C 4, 632 (1971). https://doi.org/10.1103/PhysRevC.4.632
- [36] 1971EsZY P. Eskola, UCRL-20426, p. 35 (1971).
- [37] **1971EsZZ** P Eskola, REPT UCRL-20426, P35 (1971).
- [38] **1971EsZZ** P Eskola, REPT UCRL-20426,P35, 9/14/71.
- [39] 1971Fe09 R. L. Ferguson, F. Plasil, G. D. Alam, H. W. Schmitt, Nucl. Phys. A172, 33 (1971). https://doi.org/10.1016/0375-9474(71).90114-X
- [40] 1971Go01 D. J. Gorman, F. Asaro, Phys. Rev. C 3, 746 (1971). https://doi.org/10.1103/PhysRevC.3.746
- [41] 1971Le10 C. F. Leang, J. Phys. (Paris). 32, 95 (1971).
- [42] 1972Br35 H. C. Britt, B. H. Erkkila, B. B. Back, Phys. Rev. C 6, 1090 (1972). https://doi.org/10.1103/PhysRevC.6.1090
- [43] 1972GaZR H. Gauvin, Y. Le Beyec, N. T. Forile, Proc. Nuclear Physics, Aix-En-Provence, Vol. 2, p. 92 (1972).
- [44] 1972HeYMW. H. A. Hesselink, NP-19781 (1972).
- [45] 1972Po04 F. T. Porter, I. Ahmad, M. S. Freedman, R. F. Barnes, R. K. Sjoblom, F. Wagner, Jr., P. R. Fields, Phys. Rev. C 5, 1738 (1972). https://doi.org/10.1103/PhysRevC.5.1738
- [46] 1973Br12 E. Browne, F. Asaro, Phys. Rev. C 7, 2545 (1973). https://doi.org/10.1103/PhysRevC.7.2545

- [47] 1973Es01 P. Eskola, Phys. Rev. C7, 280 (1973). https://doi.org/10.1103/PhysRevC.7.280
- [48] 1974De11 A. G. de Pinho, L. T. Auler, A. G. da Silva, Phys. Rev. C 9, 2056 (1974). https://doi.org/10.1103/PhysRevC.9.2056
- [49] 1974Mo05 M. Monsecour, P. De Regge, A. Demildt, L. H. Baetsle, J. Inorg. Nucl. Chem. 36, 719 (1974). https://doi.org/10.1016/0022-1902(74).80799-2
- [50] 1976BeYM C. E. Bemis, Jr., D. C. Hensley, P. F. Dittner, R. L. Hahn, R. J. Silva, J. R. Tarrant, L. D. Hunt, ORNL-5137, p. 73 (1976).
- [51] 1976BeZY C. E. Bemis, Jr., D. C. Hensley, P. F. Dittner, R. L. Hahn, R. J. Silva, J. R. Tarrant, L. D. Hunt, ORNL-5111, p. 58 (1976).
- [52] 1979Te02 W. Teoh, R. D. Connor, R. H. Betts, Nucl. Phys. A319, 122 (1979). https://doi.org/10.1016/0375-9474(79).90175-1
- [53] 1981Va28 S. K. Vasilev, B. S. Dzhelepov, R. B. Ivanov, M. A. Mikhailova, A. V. Mozzhukhin, B. I. Shestakov, Izv. Akad. Nauk SSSR, Ser. Fiz. 45, 1895 (1981).
- [54] 1982AIZL Yu. V. Aleksandrov, S. K. Vasilev, B. S. Dzhelepov, R. B. Ivanov, M. A. Mikhailova, A. V. Mozzhukhin, A. V. Saulsky, B. I. Shestakov, Program and Theses, Proc. 32nd Ann. Conf. Nucl. Spectrosc. Struct. At. Nuclei, Kiev, p. 135 (1982).
- [55] 1983Ba77 M. F. Banham, R. Jones, Int. J. Appl. Radiat. Isotop. 34, 1225 (1983). https://doi.org/10.1016/0020-708X(83).90191-6
- [56] 1983Ra36 M. H. Rafailovich, E. Dafni, G. Schatz, S. Y. Zhu, K. Dybdal, S. Vajda, C. Alonso-Arias, S. Rolston, G. D. Sprouse, Hyperfine Interactions 15/16, 43 (1983). https://doi.org/10.1007/BF02159713
- [57] 1984Wh02 B. Whittaker, Nucl. Instrum. Methods 223, 531 (1984). https://doi.org/10.1016/0167-5087(84).90704-X
- [58] 1985MaZK M. Magara, K. Sueki, H. Nakahara, H. Kudo, Y. Hamajima, I. Kohno, RIKEN-84, p. 37 (1985).
- [59] 1985Sa40 A. Sandulescu, Yu. S. Zamyatnin, I. A. Lebedev, B. F. Myasoedov, S. P. Tretyakova, D. Hasegan, Izv. Akad. Nauk SSSR, Ser. Fiz. 49, 2104 (1985).; Bull. Acad. Sci. USSR, Phys. Ser. 49, No. 11, 20 (1985).
- [60] 1986AgZV V. A. Ageev, B. N. Belyaev, V. Ya. Golovnya, E. A. Gromova, S. S. Kovalenko, A. F. Linev, A. V. Lovtsyus, Yu. A. Nemilov, Yu. A. Selitsky, A. M. Fridkin, V. B. Funshtein, V. A. Yakovlev, Program and Theses, Proc. 36th Ann. Conf. Nucl. Spectrosc. Struct. At. Nuclei, Kharkov, p. 141 (1986).
- [61] 1986BaYK M. F. Banham, R. McCrohon, AERE-R-11353 (1986).
- [62] 1986HaZM Y. Hatsukawa, M. Magara, T. Otsuki, M. Nakata, K. Sueki, H. Nakahara, I. Kohno, RIKEN-85, p. 44 (1986).
- [63] 1986Ry04 A. Rytz, R. A. P. Wiltshire, M. King, Nucl. Instrum. Methods Phys. Res. A253, 47 (1986). https://doi.org/10.1016/0168-9002(86).91125-3
- [64] 1986Tr10 S. P. Tretyakova, A. Sendulesku, V. L. Mikheev, Yu. S. Zamyatnin, I. A. Lebedev, B. F. Myasoedov, D. Kashegan, Yu. S. Korotkin, Izv. Akad. Nauk SSSR, Ser. Fiz. 50, 1925 (1986).; Bull. Acad. Sci. USSR, Phys. Ser. 50, No. 10, 52 (1986).
- [65] 1987Ha07 B. R. Harvey, G. A. Sutton, Nucl. Instrum. Methods Phys. Res. A254, 172 (1987). https://doi.org/10.1016/0168-9002(87).90499-2
- [66] 1989Bu09 D. G. Burke, H. Folger, H. Gabelmann, E. Hagebo, P. Hill, P. Hoff, O. Jonsson, N. Kaffrell, W. Kurcewicz, G. Lovhoiden, K. Nybo, G. Nyman, H. Ravn, K. Riisager, J. Rogowski, K. Steffensen, T. F. Thorsteinsen, and the ISOLDE Collaboration, Z. Phys. A333, 131 (1989).
- [67] 1989Ha27 Y. Hatsukawa, T. Ohtsuki, K. Sueki, H. Nakahara, I. Kohno, M. Magara, N. Shinohara, H. L. Hall, R. A. Henderson, C. M. Gannett, J. A. Leyba, R. B. Chadwick, K. E. Gregorich, D. Lee, M. J. Nurmia, D. C. Hoffman, Nucl. Phys. A500, 90 (1989). https://doi.org/10.1016/0375-9474(89)90131-0
- [68] 1989HaZG Y. Hatsukawa, T. Ohtsuki, K. Sueki, H. Nakahara, I. Kohno, M. Magara, N. Shinohara, K. E. Gregorich, D. Lee, D. C. Hoffman, Inst. Nucl. Study, Univ. Tokyo, Ann. Rept., 1988, p. 26 (1989).
- [69] 1990Ru02 E. Ruchowska, J. Zylicz, C. F. Liang, P. Paris, Ch. Briancon, J. Phys. (London). G16, 255 (1990). https://doi.org/10.1088/0954-3899/16/2/014
- [70] 1992Pr05 P. B. Price, R. Bonetti, A. Guglielmetti, C. Chiesa, R. Matheoud, C. Migliorino, K. J. Moody, Phys. Rev. C 46, 1939 (1992). https://doi.org/10.1103/PhysRevC.46.1939
- [71] 1993Ab01 A. Abdul-Hadi, V. Barci, B. Weiss, H. Maria, G. Ardisson, M. Hussonnois, O. Constantinescu, Phys. Rev. C 47, 94 (1993). https://doi.org/10.1103/PhysRevC.47.94
- [72] 1995Ar33 G. Ardisson, M. Hussonnois, Radiochim. Acta 70/71, 123 (1995).
- [73] 1995Ma82 P. Martin, G. J. Hancock, S. Paulka, R. A. Akber, Appl. Radiat. Isot. 46, 1065 (1995). https://doi.org/10.1016/0969-

8043(95).00222-Y

- [74] 1995Sh03 R. K. Sheline, C. F. Liang, P. Paris, J. Kvasil, D. Nosek, Phys. Rev. C 51, 1708 (1995). https://doi.org/10.1103/PhysRevC.51.1708
- [75] 2001Ga20 Z. G. Gan, Z. Qin, H. M. Fan, X. G. Lei, Y. B. Xu, J. J. He, H. Y. Liu, X. L. Wu, J. S. Guo, X. H. Zhou, S. G. Yuan, G. M. Jin, Eur. Phys. J. A 10, 21 (2001). https://doi.org/10.1007/s100500170140
- [76] 2001Li44 C. F. Liang, P. Paris, R. K. Sheline, Phys. Rev. C 64, 034310 (2001). https://doi.org/10.1103/PhysRevC.64.034310
- [77] 2002Gu33 J. S. Guo, Z. Qin, Z. G. Gan, H. M. Fan, Y. B. Xu, J. J. He, X. G. Lei, X. L. Wu, H. Y. Liu, X. H. Zhou, S. G. Yuan, G. M. Jin, J. Nucl. Radiochem. Sci. 3, No 1, 183 (2002).
- [78] 2004HeZZ F. P. Hessberger, S. Hofmann, D. Ackermann, S. Antalic, P. Cagarda, I. Kojouharov, P. Kuusiniemi, R. Mann, S. Saro, GSI 2004-1, p. 3 (2004).
- [79] 2005ChZQ A. Chatillon, C. Theisen, E. Bouchez, E. Clement, R. Dayras, A. Drouart, A. Gorgen, A. Hurstel, W. Korten, Y. Le Coz, C. Simenel, J. Wilson, S. Eeckhaudt, T. Grahn, P. T. Greenlees, P. Jones, R. Julin, S. Juutinen, H. Kettunen, M. Leino, A. -P. Leppanen, V. Maanselka, P. Nieminen, J. Pakarinen, J. Perkowski, P. Rahkila, J. Saren, C. Scholey, J. Uusitalo, K. Van De Vel, G. Auger, B. Bouriquet, J. M. Casandjian, R. Cee, G. De France, R. De Tourreil, M. G. St Laurent, Ch. Stodel, A. Villari, M. Rejmund, N. Amzal, J. E. Bastin, P. A. Butler, R. -D. Herzberg, P. J. C. Ikin, G. D. Jones, A. Pritchard, S. Grevy, K. Hauschild, A. Korichi, A. Lopez-Martens, F. P. Hessberger, S. M. Lukyanov, Yu. E. Penionzhkevich, Yu. G. Sobolev, O. Dorvaux, B. Gall, F. Khalfallah, M. Rousseau, Proc. Intern. Symposium Exotic Nuclei, Peterhof, Russia, July 5-12, 2004, Yu. E. Penionzhkevich, E. A. Cherepanov, Eds., World Scientific, Singapore, p. 198 (2005).
- [80] 2005He27 F. P. Hessberger, S. Antalic, B. Streicher, S. Hofmann, D. Ackermann, B. Kindler, I. Kojouharov, P. Kuusiniemi, M. Leino, B. Lommel, R. Mann, K. Nishio, S. Saro, B. Sulignano, Eur. Phys. J. A 26, 233 (2005). https://doi.org/10.1140/epja/i2005-10171-6
- [81] 2006An13 S. Antalic, B. Streicher, F. P. Hessberger, S. Hofmann, D. Ackermann, S. Saro, B. Sulignano, Acta Phys. Slovaca 56, 87 (2006).
- [82] 2006Ch52 A. Chatillon, Ch. Theisen, P. T. Greenlees, G. Auger, J. E. Bastin, E. Bouchez, B. Bouriquet, J. M. Casandjian, R. Cee, E. Clement, R. Dayras, G. de France, R. de Tourreil, S. Eeckhaudt, A. Gorgen, T. Grahn, S. Grevy, K. Hauschild, R. -D. Herzberg, P. J. C. Ikin, G. D. Jones, P. Jones, R. Julin, S. Juutinen, H. Kettunen, A. Korichi, W. Korten, Y. Le Coz, M. Leino, A. Lopez-Martens, S. M. Lukyanov, Yu. E. Penionzhkevich, J. Perkowski, A. Pritchard, P. Rahkila, M. Rejmund, J. Saren, C. Scholey, S. Siem, M. G. Saint-Laurent, C. Simenel, Yu. G. Sobolev, Ch. Stodel, J. Uusitalo, A. Villari, M. Bender, P. Bonche, P. -H. Heenen, Eur. Phys. J. A 30, 397 (2006). https://doi.org/10.1140/epja/i2006-10134-5
- [83] 008An16 S. Antalic, F. P. Hessberger, S. Hofmann, D. Ackermann, S. Heinz, B. Kindler, I. Kojouharov, P. Kuusiniemi, M. Leino, B. Lommel, R. Mann, K. Nishio, S. Saro, B. Streicher, B. Sulignano, M. Venhart, Eur. Phys. J. A 38, 219 (2008). https://doi.org/10.1140/epja/i2008-10665-7
- [84] 2008Ha31 K. Hauschild, A. Lopez-Martens, A. V. Yeremin, O. Dorvaux, S. Antalic, A. V. Belozerov, Ch. Briancon, M. L. Chelnokov, V. I. Chepigin, D. Curien, B. Gall, A. Gorgen, V. A. Gorshkov, M. Guttormsen, F. Hanappe, A. P. Kabachenko, F. Khalfallah, A. C. Larsen, O. N. Malyshev, A. Minkova, A. G. Popeko, M. Rousseau, N. Rowley, S. Saro, A. V. Shutov, S. Siem, L. Stuttge, A. I. Svirikhin, N. U. H. Syed, Ch. Theisen, M. Venhart, Phys. Rev. C 78, 021302 (2008). https://doi.org/10.1103/PhysRevC.78.021302
- [85] 2009Mo37 A. Morgenstern, O. Lebeda, J. Stursa, R. Capote, M. Sin, F. Bruchertseifer, B. Zielinska, C. Apostolidis, Phys. Rev. C 80, 054612 (2009). https://doi.org/10.1103/PhysRevC.80.054612
- [86] 2015Fi07 D. A. Fink, T. E. Cocolios, A. N. Andreyev, S. Antalic, A. E. Barzakh, B. Bastin, D. V. Fedorov, V. N. Fedosseev, K. T. Flanagan, L. Ghys, A. Gottberg, M. Huyse, N. Imai, T. Kron, N. Lecesne, K. M. Lynch, B. A. Marsh, D. Pauwels, E. Rapisarda, S. D. Richter, R. E. Rossel, S. Rothe, M. D. Seliverstov, A. M. Sjodin, C. Van Beveren, P. Van Duppen, K. D. A. Wendt, Phys. Rev. X 5, 011018 (2015). https://doi.org/10.1103/PhysRevX.5.011018
- [87] 2016Ko07 F. Kondev, E. McCutchan, B. Singh, J. Tuli, Nucl. Data Sheets 132, 257 (2016). https://doi.org/10.1016/j.nds.2016.01.002
- [88] 2017Ca12 R. Caballero-Folch, C. Domingo-Pardo, J. Agramunt, A. Algora, F. Ameil, Y. Ayyad, J. Benlliure, M. Bowry, F. Calvino, D. Cano-Ott, G. Cortes, T. Davinson, I. Dillmann, A. Estrade, A. Evdokimov, T. Faestermann, F. Farinon, D. Galaviz, A. R. Garcia, H. Geissel, W. Gelletly, R. Gernhauser, M. B. Gomez Hornillos, C. Guerrero, M. Heil, C. Hinke, R. Knobel, I. Kojouharov, J. Kurcewicz, N. Kurz, Yu. A. Litvinov, L. Maier, J. Marganiec, M. Marta, T. Martinez, F. Montes, I. Mukha, D. R. Napoli, C. Nociforo, C. Paradela, S. Pietri, Zs. Podolyak, A. Prochazka, S. Rice, A. Riego, B. Rubio, H. Schaffner, Ch. Scheidenberger, K. Smith, E. Sokol, K. Steiger, B. Sun, J. L. Tain, M. Takechi, D. Testov, H. Weick, E. Wilson, J. S. Winfield, R. Wood, P. J. Woods, A. Yeremin, Phys. Rev. C 95, 064322 (2017). https://doi.org/10.1103/PhysRevC.95.064322

- [89] 2019Ga34E. Garcia-Torano, T. Crespo, M. Marouli, V. Jobbagy, S. Pomme, P. Ivanov, Appl. Radiat. Isot. 154, 108863 (2019). https://doi.org/10.1016/j.apradiso.2019.108863
- [90] 2020Je01 S. Jerome, C. Bobin, P. Cassette, R. Dersch, R. Galea, H. Liu, A. Honig, J. Keightley, K. Kossert, J. Liang, M. Marouli, C. Michotte, S. Pomme, S. Rottger, R. Williams, M. Zhang, Appl. Radiat. Isot. 155, 108837 (2020). https://doi.org/10.1016/j.apradiso.2019.108837
- [91] 2020Km01 K. N. Kmak, D. A. Shaughnessy, J. Vujic, J. Radioanal. Nucl. Chem. 325, 223 (2020). https://doi.org/10.1007/s10967-020-07209-2
- [92] 2021Go26 T. Goigoux, Ch. Theisen, B. Sulignano, M. Airiau, K. Auranen, H. Badran, R. Briselet, T. Calverley, D. Cox, F. Dechery, F. Defranchi Bisso, A. Drouart, Z. Favier, B. Gall, T. Grahn, P. T. Greenlees, K. Hauschild, A. Herzan, R. -D. Herzberg, U. Jakobsson, R. Julin, S. Juutinen, J. Konki, M. Leino, A. Lightfoot, A. Lopez-Martens, A. Mistry, P. Nieminen, J. Pakarinen, P. Papadakis, J. Partanen, P. Peura, P. Rahkila, E. Rey-Herme, J. Rubert, P. Ruotsalainen, M. Sandzelius, J. Saren, C. Scholey, J. Sorri, S. Stolze, J. Uusitalo, M. Vandebrouck, A. Ward, M. Zielinska, P. Jachimowicz, M. Kowal, J. Skalski, Eur. Phys. J. A 57, 321 (2021). https://doi.org/10.1140/epja/s10050-021-00631-4
- [93] 2021Wa16 M. Wang, W. J. Huang, F. G. Kondev, G. Audi, S. Naimi, Chin. Phys. C 45, 030003 (2021). https://doi.org/10.1088/1674-1137/abddaf