

Last updated 3/5/2024

Table 1

Observed and predicted β -delayed particle emission from the odd-Z, T_z	= +41/2 nuclei. J^{π} values for ¹⁸⁷ Ta, ¹⁹¹ Re, ¹⁹⁵ Ir, ¹⁹⁹ Au, ²⁰³ Tl and ²⁰⁷ Bi and taken from
ENSDF. Unless otherwise stated, all Q-values are taken from [2021Wa16	or deduced from values therein.

Nuclide	Ex.	J^{π}	$T_{1/2}$	Q _ε	$Q_{\varepsilon p}$	$Q_{\varepsilon \alpha}$	Experimental
¹⁸⁷ Ta		(7/2 ⁺)	283(10) s	-3.90(21)#			[2022Mu10]
¹⁹¹ Re ¹⁹⁵ Ir		$(1/2^+, 3/2^+)$ $3/2^+$	9.8(5) m 2.29(17) h	-3.170(40) -2.180(60)			[1953At24] [2013Bi14]
¹⁹⁹ Au		3/2+	3.129(11) d	-1.705(2)			[1969La34]
²⁰³ Tl		$1/2^{+}$	stable	-0.492(1)			
²⁰⁷ Bi		9/2-	31.35(4) y	2.397(2.1)	-5.090(2)	2.790(3)	[2002Un02]
²¹¹ At		9/2-	7.214(7) h	0.785(2.5)	-4.144(2)	8.380(3)	[1961Ap01]
²¹⁵ Fr		9/2-	86(5) ns	1.487(9)	-3.592(8)	10.326(7)	[1984De16]
^{215m1} Fr	0.835	$(13/2^+)$		2.322(9)	-2.727(8)	11.161(7)	[1984Sc25]
^{215m2} Fr	1.146	$(15/2^{-})$	30(8) ns	2.633(9)	-2.446(8)	11.472(7)	[1984De16]
^{215m3} Fr	1.446	$(19/2^{-})$	30(5) ns	2.933(9)	-2.146(8)	11.772(7)	[1984De16]
^{215m4} Fr	1.579	$(23/2^{-})$	30(5) ns	3.066(9)	-2.013(8)	11.905(7)	[1982GoZU]
²¹⁹ Ac		9/2-	11.8(15) µs	2.180(50)	-2.779(52)	10.314(52)	[1989Mi17]
²²³ Pa			5.4(4) ms*	2.950(80)	-1.573(76)	10.519(76)	[2019Mi08, 1999Ho28, 1995AnZY, 1970Bo13]
²²⁷ Np			510(60) ms	3.530(80)	-0.744(78)	10.769(77)	[1990Ni05]
²³¹ Am				4.10(30)#	-0.12(31)#	10.94(30)#	
²³⁵ Bk				4.76(41)#	1.02(43)#	12.04(40)#	
²³⁹ Es				5.43(32)#	2.13(39)#	13.19(33)#	

* Weighted average of 7(1) ms [2019Mi08], 4.9(5) ms [1999Ho28], 5(1) ms [1995AnZY] and 6.5(10) ms [1970Bo13].

Table 2

Particle separation, Q-values, and measured values for direct particle emission of the odd-Z, $T_z = +41/2$ nuclei. Unless otherwise stated, all S and Q-values are taken from [2021Wa16] or deduced from values therein.

Nuclide	\mathbf{S}_p	S_{2p}	Qα	BR_{α}	Experimental
1877-	7 7(0(7()	17.51(21)#	0.20((08)		
191 D	7.760(76)	17.51(31)#	0.396(98)		
105 r	1.2/1(3/)	16.97(20)#	0.120(57)		
¹⁹⁵ Ir	6.546(2)	16.039(39)	0.233(10)		
¹⁹⁹ Au	6.479(2)	15.408(20)	0.174(1)		
²⁰³ Tl	5.705(1)	13.939(3)	0.908(1)		
²⁰⁷ Bi	3.558(2)	10.812(2)	3.282(2)		
²¹¹ At	2.983(2)	7.967(2)	5.982(1)	41.80(8)%*	[1985La17, 1978Ya04, 1975Ja04, 1969Go23, 2009Vi09,
					2003HaZT, 2001Ch66, 2000ChZU, 2000OgZU, 1977YaZG,
					1970AfZZ, 1968GuZX, 1963Uh01, 1961Ap01, 1955Mo68,
					1953AsZZ, 1953Ho49, 1953Hy83, 1951Ne02, 1940Co01,
					1940Co02]
²¹⁵ Fr	2.651(11)	7.680(8)	9.540(7)	100%	[1984Sc25, 1984De16, 2019Mi08, 1982GoZU, 1982SaZO,
					1974Ni02, 1973HaVQ, 1973HaZO, 1973HiYZ, 1972No06,
					1971HyZX, 1970VaZZ]
^{215m1} Fr	1.816(11)	6.845(8)	10.375(7)	3.8(15)%	[1984Sc25]
^{215m2} Fr	1.505(11)	6.534(8)	10.686(7)	0.8(1)%	[1984Sc25, 1984De16]
^{215m3} Fr	1.205(11)	6.234(8)	10.986(7)	4.1(3)%	[1984Sc25, 1984De16, 1982GoZU]
^{215m4} Fr	1.072(11)	6.101(8)	11.119(7)	3.6(3)%	[1984Sc25, 1984De16, 1982GoZU, 1982SaZO]
²¹⁹ Ac	2.365(52)	7.323(52)	8.825(10)**	100%	[1989Mi17, 2019Mi08, 1989MiZK, 1989MiZZ, 1988MiZJ,
	. ,				1970Bo13, 1970VaZZ]
²²³ Pa	2.154(76)	6.771(94)	8.343(8)***	100%	[1995AnZY, 1970Bo13, 2019Mi08, 1999Ho28, 1993AnZS,
					1970VaZZ]
²²⁷ Np	2.039(78)	6.36(11)	7.816(14)	$\approx 100\%^{@}$	[1990Ni05 , 1994AnZY, 1994Ye08, 1993AnZS, 1990An19,
1					1990AnZO, 1990YeZY1
²³¹ Am	1.81(30)#	5.97(32)#	7.41(31)#		
²³⁵ Bk	1.24(40)#	5.09(42)#	7.94(50)#		
²³⁹ Es	0.94(42)#	4.16(38)#	8.44(50)#		

* Weighted average of 41.94(16)% [1985La17], 41.74(10)% [1978Ya04] and 41.8(2)% [1969Go23].

** Deduced from α decay. 8.826(51) MeV in [2021Wa16].

*** Deduced from α decay. 8.343(55) MeV in [2021Wa16].

[@] No other decay observed.

Table 3

$E_{\rm c}$ (cm)	F. (lab)***	L (rel)	L (abs)	Ι π@	E. (207 B;)@	coincident v rave@	\mathbf{R}_{0} (fm)	НF
$E_{\alpha}(c.m.)$	$L_{\alpha}(1ab)$	$I_{\alpha}(\text{ref})$	$I_{\alpha}(aus)$	J_f^-	Edaughter(B1)	concident γ-rays ^o	K ₀ (111)	пг
5.240(2)	5.141(2)	0.0023(8)%	0.00097(33)%	7/2-	0.7247(1)	0.7427	1.4216(13)	33^{+17}_{-8}
5.311(2)	5.210(2)	0.0086(19)%	0.0036(8)%	11/2-	0.6698(1)	0.6698	1.4216(13)	18^{+5}_{-3}
5.979(2)	5.866(2)	100%	41.80(8)%**	9/2-	0.0		1.4216(13)	1.52(6)
* [1961 ** Wei *** [19 @ [1975	Ap01]. ghted average of 4 69Go23]. 5Ja04].	1.94(16)% [1985]	La17], 41.74(10)	% [1978Ya04]	and 41.8(2)% [1969C	do23].		
Fable 4 direct α emi	ssion from ²¹⁵ Fr*	$J^{\pi} = (9/2^{-}), T_{1/2}$	$_2 = 86(5) \text{ ns}, BR$	$\alpha = 100\%.$				
$E_{\alpha}(c.m.)$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(abs)$	$\mathbf{J}_f^{m{\pi}}$	$E_{daughter}(^{211}\mathrm{A}$	t) coincident y	rays R ₀ (fm)	HF	
9.547(10)	9.369(10)	100%	9/2-	0.0		1.5387(31)	1.03(10)	
* All va	llues from [1984D	De16].						
Table 5 direct α emi	ssion from ^{215m1} F	Fr*, Ex. = 0.835 M	1 eV, $J^{\pi} = (13/2^+)$), $T_{1/2} = , BR_{\alpha}$	= 3.8(15)%.			
$E_{\alpha}(c.m.)$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(abs)$	${\rm J}_f^\pi$	$E_{daughter}(^2$	(11At) coincide	ent γ -rays R ₀ (fm	h) HF	
10.353(30)	10.160(30) 100%	9/2-	0.0		1.5387	(31)	
* All va	dues from [1984S	c25].						
Table 6 direct α emi	ssion from ^{215m2} F	Fr*, Ex. = 1.146 N	$1 eV^*, J^{\pi} = (15/2)$	$(-), T_{1/2} = 30(8)$	3) ns*, $BR_{\alpha} = 0.8(1)\%$	**.		
$E_{\alpha}(c.m.)$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(abs)$	J_f^π	$E_{daughter}(^{211}A)$	(At) coincident j	rays R ₀ (fm)	HF	
10.692(20)	10.493(20)	100%	9/2-	0.0		1.5387(31)	$9^{+4}_{-3} \times 10^{-3}$	3
* [1984 ** [198	De16]. 4Sc25].							
Table 7 direct α emi	ssion from ^{215m3} F	Fr, Ex. = 1.446 Me	$eV^*, J^{\pi} = (19/2^-)$), $T_{1/2} = 30(5)$	ns, $BR_{\alpha} = 4.1(3)\%$.			
$E_{\alpha}(c.m.)$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(abs)$	J_f^π	$E_{daughter}(^{211}\text{At})$) coincident γ -r	rays R_0 (fm)	HF	
10.994(15)	10.789(15)	100%	9/2-	0.0		1.5387(31)	5.8(12) × 10) ³
* [1984 ** [198	De16]. 4Sc25].							
T 1 1 0	acion from 215m4t	Fr. Ex. = 1.579 Me	$eV^*, J^{\pi} = (23/2^{-1})^{-1}$), $T_{1/2} = 30(5)$	$, BR_{\alpha} = 3.6(3)\%.$			
direct α emi		,						
$\frac{\text{fable 8}}{\text{direct } \alpha \text{ emi}}$ $E_{\alpha}(\text{c.m.})$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(abs)$	J_f^{π} E	Edaughter(²¹¹ At)	coincident γ-ra	tys R_0 (fm)	HF	

* [1984De16]. ** [1984Sc25].

Table 9

$E_{\alpha}(\text{c.m.})$	$E_{\alpha}(lab)$	$I_{\alpha}(abs)$	${ m J}_f^\pi$	$E_{daughter}(^{215}\mathrm{Fr})$	coincident γ -rays	R ₀ (fm)	HF
8.825(10)	8.664(10)**	100%	9/2-	0.0		1.5853(28)	1.79(27)

* All values from [1989Mi17], except where noted.

direct α emission from ²¹⁹Ac*, $J^{\pi} = (9/2^{-})$, $T_{1/2} = 11.8(15) \ \mu s$, $BR_{\alpha} = 100\%$.

** From [1989Mi17], which has the highest statistics. [1970Bo13] report one peak at 8.665(10) MeV. [2019Mi17] report 2 peaks at 8.520(40) and 9.160(40) MeV. However, no spectra is shown, or relative ratios where reported.

Table 10

direct α emission from	223 Pa, T _{1/2} :	$= 5.4(4) \text{ ms}^*$	$BR_{\alpha} = 100\%$
-------------------------------	---------------------------------	-------------------------	-----------------------

$E_{\alpha}(\text{c.m.})$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(\text{rel})$	$I_{\alpha}(abs)$	\mathbf{J}_f^{π}	$E_{daughter}(^{219}\mathrm{Ac})$	coincident γ -rays	R_0 (fm)	HF
8.149(8) 8.343(8)	8.003(8)** 8.193(8)***	100(5)% 75(7)%	57(3)% [@] 43(3)% [@]	9/2-	0.194(11) 0.0		1.5543(24) 1.5543(24)	2.3(3) 11.3(14)

* Weighted average of 7(1) ms [2019Mi08], 4.9(5) ms [1999Ho28], 5(1) ms [1995AnZY] and 6.5(10) ms [1970Bo13].

** Weighted average of 8.000(15) MeV [1995AnZY] and 8.005(10) MeV [1970Bo13].

*** Weighted average of 8.190(15) MeV [1995AnZY] and 8.195(10) MeV [1970Bo13].

@ [1995AnZY].

Table 11

direct α emission from ²²⁷Np*, T_{1/2} = 510(60) ms, BR_{α} = \approx 100%.

$E_{\alpha}(c.m.)$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(\text{rel})$	$I_{\alpha}(abs)$	\mathbf{J}_f^{π}	$E_{daughter}(^{223}\text{Pa})$	coincident γ -rays	R_0 (fm)	HF
7.787(20) 7.815(20)	7.650(20) 7.677(20)	≈33% 100%	≈25%** ≈75%**		0.028(20) 0.0		1.510(23) 1.510(23)	≈2.7 ≈1.1

* All values from [1990Ni05].

** Estimated by evaluator based on Fig. 2 in [1990Ni05].

References used in the Tables

- [1] 1940Co01 D. R. Corson, K. R. MacKenzie, E. Segre, Phys. Rev. 57, 459 (1940). https://doi.org/10.1103/PhysRev.57.459
- [2] 1940Co02 D. R. Corson, K. R. MacKenzie, E. Segre, Phys. Rev. 58, 672 (1940). https://doi.org/10.1103/PhysRev.58.672
- [3] 1951Ne02 H. M. Neumann, I. Perlman, Phys. Rev. 81, 958 (1951). https://doi.org/10.1103/PhysRev.81.958
- [4] 1953AsZZ F. Asaro, Thesis, Univ. California (1953); UCRL-2180 (1953.
- [5] 1953At24 A. H. W. Aten, Jr., G. D. de Feyfer, Physica 19, 1143 (1953).
- [6] 1953Ho49 R. W. Hoff, Thesis, Univ. California (1953); UCRL-2325 (1953)
- [7] 1953H049 E. K. Hyde, A. Ghiorso, Phys. Rev. 90, 267 (1953). https://doi.org/10.1103/PhysRev.90.267
- [8] 1955Mo68 F. F. Momyer, Jr., E. K. Hyde, J. Inorg. Nucl. Chem. 1, 274 (1955). https://doi.org/10.1016/0022-1902(55)80033-4
- [9] 1961Ap01 E. H. Appelman, Phys. Rev. 121, 253 (1961). https://doi.org/10.1103/PhysRev.121.253
- [10] 1963Uh01 J. Uhler, W. Forsling, B. Astrom, Arkiv Fysik 24, 421 (1963).
- [11] 1968GuZX L. Gueth, S. Gueth, E. Daroczy, B. S. Dzhelepov, Y. V. Norseev, V. A. Khalkin, JINR-P6-4079 (1968).
- [12] 1969Go23 N. A. Golovkov, S. Guetkh, B. S. Dzhelepov, Y. V. Norseev, V. A. Khalkin, V. G. Chumin, Izv. Akad. Nauk SSSR, Ser. Fiz. 33, 1622 (1969); Bull. Acad. Sci. USSR, Phys. Ser. 33, 1489 (1970).
- [13] 1969La34 F. Lagoutine, J. Legrand, Y. Le Gallic, Intern. J. Appl. Radiation Isotopes 20, 868 (1969). https://doi.org/10.1016/0020-708X(69)90113-6
- [14] 1970AfZZ V. P. Afanasiev, M. Bochvarova, N. A. Golovkov, I. I. Gromova, R. B. Ivanov, V. I. Kuzin, Y. V. Norseev, V. G. Chumin, JINR-P6-4972 (1970).
- [15] 1970Bo13 J. Borggreen, K. Valli, E. K. Hyde, Phys. Rev. C2, 1841 (1970). https://doi.org/10.1103/PhysRevC.2.1841
- [16] 1970VaZZ K. Valli, E. K. Hyde, J. Borggreen, CONF Leysin Vol1 P545, CERN 70-30

- [17] 1971HyZX E Hyde, CONF Dubna, P156.
- [18] 1972No06 T. Nomura, K. Hiruta, T. Inamura, M. Odera, Phys. Lett. 40B, 543 (1972). https://doi.org/10.1016/0370-2693(72)90477-7
- [19] 1973HaVQ O. Hausser, Proceedings of the international conference on nuclear physics, Munich, Germany, August 27– September 1, 1973, Vol1 P688.
- [20] 1973HaZO O. Hausser, W. Witthuhn, T. K. Alexander, A. B. McDonald, J. C. D. Milton, A. Olin, S. J. Skorka, AECL-4595, p. 19 (1973).
- [21] 1974Ni02 W. F. Nicaise, A. W. Waltner, Z. Phys. 267, 83 (1974). https://doi.org/10.1007/BF01668633
- [22] 1975Ja04 L. J. Jardine, Phys. Rev. C11, 1385 (1975). https://doi.org/10.1103/PhysRevC.11.1385
- [23] 1977YaZG M. Yanokura, H. Nakahara, K. Miyano, IPCR Prog. Rept., Vol. 11, p. 79 (1977).
- [24] 1978Ya04 M. Yanokura, H. Kudo, H. Nakahara, K. Miyano, S. Ohya, O. Nitoh, Nucl. Phys. A299, 92 (1978). https://doi.org/10.1016/0375-9474(78)90210-5
- [25] 1982GoZU Y. Gono, Y. Itoh, S. Sasagase, M. Sugawara, T. Kubo, T. Nomura, S. Hayashibe, K. Hiruta, Proc. Intern. Symp. Dynamics of Nuclear Collective Motion - High Spin States and Transitional Nuclei - , Yamanishi, Japan, p. 283 (1982).
- [26] 1982SaZO S. Sasagase, Y. Gono, Y. Itoh, T. Kubo, T. Nomura, M. Sugawara, Contrib. Intern. Symp. Dynamics of Nuclear Collective Motion - High Spin States and Transitional Nuclei-, Yamanashi, Japan, p. 52 (1982).
- [27] 1984De16 D. J. Decman, H. Grawe, H. Kluge, K. H. Maier, A. Maj, M. Menningen, N. Roy, W. Wiegner, Nucl. Phys. A419, 163 (1984). https://doi.org/10.1016/0375-9474(84)90291-4
- [28] 1984Sc25 N. Schulz, S. Khazrouni, A. Chevallier, J. Chevallier, L. Kraus, I. Linck, D. C. Radford, J. Dudek, W. Nazarewicz, J. Phys. (London) G10, 1201 (1984). https://doi.org/10.1088/0305-4616/10/9/010
- [29] 1985La17 R. M. Lambrecht, S. Mirzadeh, Int. J. Appl. Radiat. Isotop. 36, 443 (1985). https://doi.org/10.1016/0020-708X(85)90207-8
- [30] 1988MiZJ H. Miyatake, T. Nomura, S. Kubono, J. Tanaka, M. Oyaizu, N. Ikeda, K. Sueki, H. Kudo, K. Morita, T. Shinozuka, Osaka Univ. Lab. Nucl. Studies, Ann. Rept., 1987, p. 122 (1988).
- [31] 1989Mi17 H. Miyatake, T. Nomura, S. Kubono, J. Tanaka, M. Oyaizu, H. Okawa, N. Ikeda, K. Sueki, H. Kudo, K. Morita, T. Shinozuka, Nucl. Phys. A501, 557 (1989). https://doi.org/10.1016/0375-9474(89)90148-6
- [32] 1989MiZK H. Miyatake, T. Nomura, S. Kubono, J. Tanaka, M. Oyaizu, H. Okawa, N. Ikeda, K. Sueki, H. Kudo, K. Morita, T. Shinozuka, Inst. Nucl. Study, Univ. Tokyo, Ann. Rept., 1988, p. 25 (1989).
- [33] 1989MiZZ H. Miyatake, T. Nomura, S. Kubono, J. Tanaka, M. Oyaizu, H. Okawa, N. Ikeda, K. Sueki, H. Kudo, K. Morita, T. Shinozuka, INS-Rep-738 (1989).
- [34] 1990An19 A. N. Andreev, D. D. Bogdanov, V. I. Chepigin, A. P. Kabachenko, S. Sharo, G. M. Ter-Akopian, A. V. Eremin, Z. Phys. A337, 229 (1990).
- [35] 1990AnZQ A. N. Andreev, D. D. Bogdanov, A. V. Eremin, A. P. Kabachenko, G. M. Ter-Akopyan, V. I. Chepigin, Sh. Sharo, Program and Thesis, Proc. 40th Ann. Conf. Nucl. Spectrosc. Struct. At. Nuclei, Leningrad, p. 131 (1990).
- [36] 1990Ni05 V. Ninov, F. P. Hessberger, P. Armbruster, S. Hofmann, G. Munzenberg, M. Leino, Y. Fujita, D. Ackermann, W. Morawek, A. Luttgen, Z. Phys. A336, 473 (1990).
- [37] 1990YeZY A. V. Yeremin, A. N. Andreev, D. D. Bogdanov, A. P. Kabachenko, O. N. Malyshev, O. A. Orlova, G. M. Ter-Akopyan, V. I. Chepigin, JINR-E15-90-347 (1990).
- [38] 1993AnZS A. N. Andreyev, D. D. Bogdanov, V. I. Chepigin, M. Florek, A. P. Kabachenko, O. N. Malyshev, S. Sharo, G. M. Ter-Akopian, M. Veselsky, A. V. Yeremin, Proc. 6th Intern. Conf. on Nuclei Far from Stability + 9th Intern. Conf. on Atomic Masses and Fundamental Constants, Bernkastel-Kues, Germany, 19-24 July, 1992, R. Neugart, A. Wohr, Eds., p. 759 (1993).
- [39] 1994Ye08 A. V. Yeremin, A. N. Andreyev, D. D. Bogdanov, G. M. Ter-Akopian, V. I. Chepigin, V. A. Gorshkov, A. P. Kabachenko, O. N. Malyshev, A. G. Popeko, R. N. Sagaidak, S. Sharo, E. N. Voronkov, A. V. Taranenko, A. Yu. Lavrentjev, Nucl. Instrum. Methods Phys. Res. A350, 608 (1994). https://doi.org/10.1016/0168-9002(94)91265-3
- [40] 1995AnZY A. N. Andreev, D. D. Bogdanov, A. V. Eremin, A. P. Kabachenko, O. N. Malyshev, G. M. Ter-Akopyan, V. I. Chepigin, Program and Thesis, Proc. 45th Ann. Conf. Nucl. Spectrosc. Struct. At. Nuclei, St. Petersburg, p. 109 (1995).
- [41] 1999Ho28 F. Hoellinger, B. J. P. Gall, N. Schulz, N. Amzal, P. A. Butler, P. T. Greenlees, D. Hawcroft, J. F. C. Cocks, K. Helariutta, P. M. Jones, R. Julin, S. Juutinen, H. Kankaanpaa, H. Kettunen, P. Kuusiniemi, M. Leino, M. Muikku, A. Savelius, Phys. Rev. C60, 057301 (1999). https://doi.org/10.1103/PhysRevC.60.057301

- [42] 2000ChZU V. G. Chumin, K. Ya. Gromov, Sh. R. Malikov, Yu. V. Norseev, Zh. K. Samatov, V. I. Fominykh, A. P. Cherevatenko, L. V. Yurkova, JINR-P6-2000-118 (2000).
- [43] 2000OgZU Y. Ogawa, K. Arai, Y. Suzuki, K. Varga, Osaka Univ. Lab. Nucl. Studies, Ann. Rept., 1999, p. 61 (2000).
- [44] 2001Ch66 V. G. Chumin, K. Ya. Gromov, Sh. R. Malikov, Yu. V. Norssev, Zh. K. Samatov, V. I. Fominykh, A. P. Cherevatenko, L. V. Yurkova, Bull. Rus. Acad. Sci. Phys. 65, 27 (2001).
- [45] 2002Un02 M. P. Unterweger, Appl. Radiat. Isot. 56, 125 (2002). https://doi.org/10.1016/S0969-8043(01)00177-4
- [46] 2003HaZT A. A. Hassan, S. M. Lukyanov, Yu. E. Penionzhkevich, L. R. Gasques, L. C. Chamon, A. Szanto de Toledo, JINR-E15-2003-186 (2003).
- [47] 2009Vi09 A. M. Vinodkumar, W. Loveland, P. H. Sprunger, L. Prisbrey, M. Trinczek, M. Dombsky, P. Machule, J. J. Kolata, A. Roberts, Phys. Rev. C 80, 054609 (2009). https://doi.org/10.1103/PhysRevC.80.054609
- [48] 2013Bi14 M. Birch, J. Flegenheimer, Z. Schaedig, B. Singh, M. Thoennessen, Phys. Rev. C 88, 067301 (2013). https://doi.org/10.1103/PhysRevC.88.067301
- [49] 2019Mi08 A. K. Mistry, J. Khuyagbaatar, F. P. Hessberger, D. Ackermann, B. Andel, S. Antalic, M. Block, P. Chhetri, F. Dechery, C. Droese, Ch. E. Dullmann, F. Giacoppo, J. Hoffmann, O. Kaleja, N. Kurz, M. Laatiaoui, L. Lens, J. Maurer, P. Mosat, J. Piot, S. Raeder, M. Vostinar, A. Yakushev, Z. Zhang, Nucl. Phys. A987, 337 (2019). https://doi.org/10.1016/j.nuclphysa.2019.05.003
- [50] 2021Wa16 M. Wang, W. J. Huang, F. G. Kondev, G. Audi, S. Naimi, Chin. Phys. C 45, 030003 (2021). https://doi.org/10.1088/1674-1137/abddaf
- [51] 2022Mu10 M. Mukai, Y. Hirayama, Y. X. Watanabe, H. Watanabe, H. Koura, S. C. Jeong, H. Miyatake, M. Brunet, S. Ishizawa, F. G. Kondev, G. J. Lane, Yu. A. Litvinov, T. Niwase, M. Oyaizu, Zs. Podolyak, M. Rosenbusch, P. Schury, M. Wada, P. M. Walker, Phys. Rev. C 105, 034331 (2022). https://doi.org/10.1103/PhysRevC.105.034331