

Fig. 1: Known experimental values for heavy particle emission of the odd-Z T_z = +39/2 nuclei.

Last updated 1/21/24

Table 1

Observed and predicted β -delayed particle emission from the odd-Z, $T_z = +39/2$ nuclei. Unless otherwise stated, all Q-values are taken from [2021Wa16] or deduced from values therein.

Nuclide	Ex.	J^{π}	$T_{1/2}$	Qε	$Q_{\varepsilon p}$	$Q_{\varepsilon \alpha}$	Experimental
195							
¹⁸⁵ Ta*		$(7/2^+)$	49.5(15) m	-3.070(7)			[1955Po26]
¹⁸⁹ Re*		5/2+	23.4(4) h	-2.17(20)#			[1965Bl06]
¹⁹³ Ir		3/2+	stable	-1.142(2)			
¹⁹⁷ Au		3/2+	stable	-0.720(1)			
²⁰¹ Tl		1/2+	3.0380(17) d	0.482(14)	-7.230(30)	0.814(14)	[2004De02]
²⁰⁵ Bi		9/2-	14.91(7) d	2.705(5)	-4.008(5)	4.172(5)	[2004Ku33]
²⁰⁹ At		9/2-	5.41(5) h	3.482(5)	-1.303(5)	8.461(5)	[1968GuZX]
²¹³ Fr		9/2-	34.14(6) s	2.142(6)	-2.215(5)	10.387(5)	[2013Fi08]
²¹⁷ Ac		9/2-	69(4) ns	2.813(13)	-1.558(12)	11.973(12)	[1985De14]
^{217m1} Ac	1.1466(4)**	$(15/2^{-}, 17/2^{-})$	<4 ns	3.960(13)	-0.411(12)	13.120(12)	[1985De14, 1982GoZU]
^{217m2} Ac	1.514(30)***	$(19/2^{-}, 21/2^{-})$	8(2) ns	4.327(33)	-0.044(32)	13.487(32)	[1985De14, 1973No02]
^{217m3} Ac	2.0122(7)	$(29/2)^+$	740(40) ns	4.825(13)	-0.454(12)	13.985(12)	[1985De14]
²²¹ Pa		9/2-	4.9(8) µs	3.440(60)	-0.658(60)	12.060(60)	[1995AnZY]
²²⁵ Np			$0.31^{+0.75}_{-13}$ ms	4.250(90)	0.467(92)	12.253(92)	[2019Mi08, 2015De22]
²²⁹ Am			$0.9^{+2.1}_{-0.7}$ s	4.79(12)	1.07(15)#	12.38(11)	[2015De22]
²³³ Bk			21_{-17}^{+48} 's	5.48(25)#	2.06(38)#	12.95(24)#	[2015De22]

* 100% β^- emitter.

** [1985De14] report the energy of this α -emitting level as either 1.150 MeV (15/2⁻) or 1.147 (17/2⁻). The value of 1.1466(4) is from [2018Si] based on the γ cascade form the (29/2⁺) isomer. *** [1985De14] report the energy of this α -emitting level as either 1.498 MeV (19/2⁻) or 1.529 (21/2⁻).

Table 2

Particle separation, Q-values, and measured values for direct particle emission of the odd-Z, $T_z = +39/2$ nuclei. Unless otherwise stated, all S and Q-values are taken from [2021Wa16] or deduced from values therein.

Nuclide	\mathbf{S}_p	S_{2p}	Qα	BRα	Experimental
185 Ta	7 184(42)	16 256(81)	0.98(13)		
189 R.e	6.600(9)	15 661(56)#	0.98(13)		
¹⁹³ Ir	5.943(2)	14.764(10)	1.018(8)		
¹⁹⁷ Au	5.743(2) 5.784(1)	14.025(1)	0.972(1)		
²⁰¹ T1	4 966(14)	12.665(14)	1.534(14)		
²⁰⁵ Bi	3 245(5)	9.882(4)	3.690(15)		
209 At	2.704(5)	7.407(5)	5.757(2)	3 6(7)%	[2017Lo13, 1969Go23, 1968GuZX 1963Ub01 1956HuXX
	21/01(0)	////(0)	01101(2)	510(7)/0	1955Mo68, 1951Ba141
²¹³ Fr	2.184(6)	6.485(5)	6.905(1)	99.45(3)%	[2016Pr08, 2005Ku06 , 2019Mi08, 2017Lo13, 2013Fi08,
					2012Mo08, 1982Bo04, 1976RaZG, 1974Ho27, 1973BoXL,
					1971ReZG, 1967Va20, 1964Gr04, 1961Gr42]
²¹⁷ Ac	1.878(14)	6.194(13)	9.832(10)	100%	[1985De14, 2019Mi08, 1982GoZU, 1982SaZO, 1981MaYW,
					1977BaYU, 1973No02, 1973No09, 1972No06]
^{217m1} Ac	0.731(14)	5.047(13)	10.979(10)	0.27(4)%	[1985De14, 1982GoZU, 1982SaZO, 1972No06]
^{217m2} Ac	0.364(33)	4.680(33)	11.346(32)	0.46(13)%	[1985De14, 1982GoZU, 1973No02]
^{217m3} Ac	-0.134(14)	4.182(13)	11.844(10)	4.51(17)%	[1985De14, 1982GoZU, 1982SaZO, 1981MaYW, 1973No02, 1972No06]
²²¹ Pa	1.604(61)	5.773(79)	9.248(58)	100%	[1995AnZY, 1989Mi17, 2019Mi08, 1989MiZK, 1989MiZZ,
					1987MiZO, 1983Hi12]
²²⁵ Np	1.414(93)	5.30(12)	8.818(70)	100%	[2015De22, 1994Ye08, 2019Mi08, 1994AnZY, 1993AnZS,
					1993AnZY
²²⁹ Am	1.222(30)*	4.716(82)*	8.132(20)*	$\approx 100\%$	[2015De22]
²³³ Bk	0.586(31)**	4.212(38)#	7.906(20)**	obs	[2015De22]

* Deduced from α energy. S_p = 1.22(11)# MeV, S_{2p} = 4.98(13)# MeV, Q_{α} = 8.137(54# MeV) in [2021Wa16].

** Deduced from α energy. $S_p = 0.85(31)$ # MeV, $Q_{\alpha} = 8.17(21)$ # MeV) in [2021Wa16].

Table 3				
direct α emission from $\frac{2}{3}$	209 At, $J^{\pi} = 9/2^{-}$,	$T_{1/2} = 5.41(5) h$	*, $BR_{\alpha} = 3.6(7)\%$ **	

$E_{\alpha}(c.m.)$	$E_{\alpha}(\text{lab})^{***}$	$I_{\alpha}(\text{rel})$	$I_{\alpha}(abs)$	${ m J}_f^\pi$	Edaughter (²⁰⁵ Bi)	coincident γ -rays	R ₀ (fm)	HF	
5.216(2)	5.116(2)@	0.10(5)%@	0.0036(9)		0.542(4)		1.4432915)	$2.5^{+3.0}_{-0.0}$	
5.758(4)	5.648(4)	100%	3.697)%	9/2-	0.0		1.4432915)	$1.8_{-0.3}^{+0.5}$	
* [1968 ** [201	GuZX]. 7Lo13].								

** [1969Go23]. @ Only reported in [1969Go23].

Table 4

(11001 11011 11, 5 - 5/2, 11/7) = 54.14(0) + 5.00(7)	direct α	emission	from ²¹³ Fr,	$J^{\pi} = 9/2^{-}, T$	1/2 = 34.14(6)	$s^*, BR_{\alpha} =$	99.45(3)%*
--	-----------------	----------	-------------------------	------------------------	----------------	----------------------	------------

$E_{\alpha}(\text{c.m.})^{***}$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(\text{rel})^{***}$	$I_{\alpha}(abs)$	J_f^π	$E_{daughter}(^{209}\mathrm{At})$	coincident γ-rays	R ₀ (fm)	HF
4.083(2)	4.007(2)	weak	weak	(5/2,7/2)	2.8206(10) 0.8554(5), 0.8675(5)	0.4083(5), 0.6894(5),		
5.806(2)	5.697(2)	0.010(5)%	0.010(5)%	$(7/2)^{-}$	1.0977(7)	0.4083(5), 0.6894(5)	1.4450(19)	$0.25^{+0.25@@@}_{0.0}$
5.823(2)	5.713(2)	0.020(3)%	0.020(3)%	(5/2,7/2)-	1.0812(7)	0.4083(5), 0.6729(5)	1.4450(19)	$0.15_{-0.2}^{+0.3}@@@$
6.115(2)	6.000(2)	0.020(10)%	0.020(10)%	(9/2)-	0.7890(7)	0.3807(5), 0.4083(5)	1.4450(19)	4^{+4}_{-1}
6.158(2)	6.043(2)	0.040(6)%	0.040(6)%	7/2-	0.7457(5)	0.7457(5)	1.4450(19)	$2.8^{+0.5}_{-0.4}$
6.327(2)	6.208(2) [@]	0.070(11)%	0.070(11)%	$11/2^{-}$	0.5770(5)	0.5770(5)	1.4450(19)	$8.9^{+1.7}_{-1.3}$
6.496(2)	6.374(2) [@]	0.12(2)%	0.12(2)%	7/2-	0.4083(5)	0.4083(5)	1.4450(19)	27^{+6}_{-4}
6.904(2)	6.775(2) ^{@@}	100%	99.23(3)%	9/2-	0.0		1.4450(19)	1.31(6)

* [2013Fi08].

** [2005Ku06].

*** Deduced from table 2 and figure 8 in [2016Pr08]. The authors list γ -ray intensities and energies following the α decay of ²¹³Fr. Note that α 's are not directly measured in this work, and are deduced assuming a Q_{α} of 6.9040(18) MeV for ²¹³Fr.

^(e) α also observed in [2005Ku06]. ^(e) ^(e) Weighted average of 6.775(4) MeV [2005Ku06] and 6.775(2) MeV [1982Bo04].

@@@ Unphysically low HF indicate that the apparent β branching reported in [2016Pr08] for these levels is too high, likely due to the levels being fed from above (*i.e.* pandemonium).

Table 5

direct α emis	direct α emission from ²¹⁷ Ac, $J^{\pi} = 9/2^{-}$, $T_{1/2} = 69(4)$ ns*, $BR_{\alpha} = 100\%$.												
$E_{\alpha}(c.m.)$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(abs)$	${\rm J}_f^\pi$	$E_{daughter}(^{213}\mathrm{Fr})$	coincident γ -rays	R ₀ (fm)	HF						
9.831(10)	9.650(10)**	100%	9/2-	0.0		1.5460(33)	0.98(10)						

* From [1985De14]. [1973No09] reported a half-life of 111(7) ns, which results in a HF equal to 1.58(17). The g.s. to g.s. α -decay is expected to be unhindered. Therefore, the value from [1985De14] is adopted.

** [1973No09].

Table 6

direct α emission	airect α emission from 217m1 Ac, Ex. = 1.1466(4)**, $J^{\pi} = (15/2^{-}, 17/2^{-}), T_{1/2} = <4$ ns***, $BR_{\alpha} = 0.27(4)\%$.										
$E_{\alpha}(\text{c.m.})$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(abs)$	\mathbf{J}_f^{π}	$E_{daughter}(^{213}\mathrm{Fr})$	coincident γ-rays	R ₀ (fm)	HF				
10.982(15)	10.780(15)	100%	9/2-	0.0		1.5460(33)	$> 3.8 \times 10^{3}$				

* All values from [1985De14], except where noted.

*** [1985De14] report the energy of this α -emitting level as either 1.150 MeV (15/2⁻) or 1.147 (17/2⁻). The value of 1.1466(4) is from [2018Si] based on the γ cascade form the (29/2⁺) isomer.

*** [1982GoZU].

Table 7 direct α emission from ${}^{217m^2}$ Ac*, Ex. = 1.514(30)**, $J^{\pi} = (19/2^-, 21/2^-)$, $T_{1/2} = 8(2)$ ns***, $BR_{\alpha} = 0.46(13)\%$.

$E_{\alpha}(\text{c.m.})$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(abs)$	J_f^π	$E_{daughter}(^{213}\mathrm{Fr})$	coincident γ -rays	R ₀ (fm)	HF
11.346(15)	11.137(15)	0.46(13)%	9/2-	0.0		1.5460(33)	$1.9^{+1.4}_{-0.8} imes 10^4$

* All values from [1985De14], except where noted.

** [1985De14] report the energy of this α -emitting level as either 1.498 MeV (19/2⁻) or 1.529 (21/2⁻).

*** [1973No02].

Table 8

direct α emission from ^{217m3} Ac*, Ex. = 2	$J.0122(7), J^{\pi} = (29/2^{-}), T_{1/2}$	$= 740(40)$ ns, $BR_{\alpha} = 4.51(17)\%$.
---	--	--

$E_{\alpha}(c.m.)$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(\text{rel})$	$I_{\alpha}(abs)$	${ m J}_f^{m \pi}$	$E_{daughter}(^{213}\mathrm{Fr})$	coincident γ -rays	R_0 (fm)	HF
10.739(10) 11.346(15) 11.843(15)	10.541(10)) 11.137(15) 11.625(15)	100(4)% 11.3(32)% 2.95(50)%	4.07(16)% 0.46(13)% 0.12(2)%	13/2 ⁺ 7/2 ⁻ 9/2 ⁻	1.105 0.498 0.0	1.105 0.498	1.5460(33) 1.5460(33) 1.5460(33)	$\begin{array}{l} 1.7^{+1.1}_{-0.5}\times10^{5}\\ 1.8^{+1.1}_{-0.5}\times10^{7}\\ 4.3^{+2.6}_{-1.3}\times10^{8} \end{array}$

* All values from [1985De14], except where noted.

Table 9

direct α emission from ²²¹Pa, $J^{\pi} = 9/2^{-}$, $T_{1/2} = 4.9(8) \ \mu s^*$, $BR_{\alpha} = 100\%$.

$E_{\alpha}(\text{c.m.})$	$E_{\alpha}(\text{lab})^{**}$	$I_{\alpha}(abs)$	J_f^π	$E_{daughter}(^{217}\mathrm{Ac})$	coincident γ -rays	R ₀ (fm)	HF
9.245(21)	9.078(21)	100%	9/2-	0.0		1.5671(97)	1.3(4)

* [1995AnZY].

** Weighted average of 9.075(30) MeV [1995AnZY] and 9.080(30) MeV [1989Mi17].[

Table 10

direct α emission from ²²⁵Np, $T_{1/2} = 0.31^{+0.75}_{-13}$ ms*, $BR_{\alpha} = 100\%$.

$E_{\alpha}(c.m.)$	$E_{\alpha}(\text{lab})^{**}$	$I_{\alpha}(abs)$	\mathbf{J}_f^{π}	$E_{daughter}(^{221}\mathrm{Pa})$	coincident γ-rays	R ₀ (fm)	HF
8.786(20)	8.630(20)	100%	9/2-	0.0		1.534(15)	$0.7^{+1.6}_{-0.3}$

* From [2019Mi08]. Using this half-life gives a HF equal to $0.7^{+1.6}_{-0.3}$, indicating an unhindered transition. [2015De22] report a value of $3.8^{+7.6}_{-2.7}$ ms which gives a HF of 8^{+3}_{-1} . ** [1994Ye08].

Table 11

direct α emission	from 229 Am*,	$T_{1/2} = 0.9^{+2.1}_{-0.7}$ s,	$BR_{\alpha} = \approx 100\% **$

$E_{\alpha}(\text{c.m.})$	$E_{\alpha}(\text{lab})^{**}$	$I_{\alpha}(abs)$	J_f^π	$E_{daughter}(^{225}Np)$	coincident γ -rays	R ₀ (fm)	HF	
8.132(20)	7.990(20)	100%		0.0		1.534(15)	$1.0^{+2.9}_{-0.9}$	
* All values from [2015De22]. ** Only α decay observed.								
Table 12 direct α emission from ²³³ Bk*, $T_{1/2} = 21^{+48}_{-17}$ s, $BR_{\alpha} = obs$.								
$E_{\alpha}(c.m.)$	$E_{\alpha}(\text{lab})^{**}$	$I_{\alpha}(abs)$	${\sf J}_f^\pi$	$E_{daughter}(^{229}\text{Am})$	coincident γ-rays	R ₀ (fm)	HF	
7.906(20)	7.770(20)	obs		0.0	_	1.525(46)	***	
* All values from [2015De22]. ** Only α decay observed. *** Using a BR of 100%, a HF of 4^{+10}_{-4} is obtained.								

References used in the Tables

- [1] 1947Te01 D. H. Templeton, J. J. Howland, I. Perlman, Phys. Rev. 72, 758 (1947). https://doi.org/10.1103/PhysRev.72.758
- [2] 1951Ka37 D. G. Karraker, A. Ghiorso, D. H. Templeton, Phys. Rev. 83, 390 (1951). https://doi.org/10.1103/PhysRev.83.390
- [3] **952Mo23** F. F. Momyer, E. K. Hyde, A. Ghiorso, W. E. Glenn, Phys. Rev. **86**, 805 (1952). https://doi.org/10.1103/PhysRev.86.805
- [4] 1955Mo68 F. F. Momyer, Jr., E. K. Hyde, J. Inorg. Nucl. Chem. 1, 274 (1955). https://doi.org/10.1016/0022-1902(55)80033-4
- [5] 1955Mo69 F. F. Momyer, Jr. , F. Asaro, E. K. Hyde, J. Inorg. Nucl. Chem. 1, 267 (1955). https://doi.org/10.1016/0022-1902(55)80032-2
- [6] 1967Ti04 E. Tielsch-Cassel, Nucl. Phys. A100, 425 (1967). https://doi.org/10.1016/0375-9474(67)90419-8
- [7] 1968Va18 K. Valli, E. K. Hyde, Phys. Rev. 176, 1377 (1968). https://doi.org/10.1103/PhysRev.176.1377
- [8] 1969MaZT R. D. Macfarlane, ORO-3820-1 (1969).
- [9] 1970AfZZ V. P. Afanasiev, M. Bochvarova, N. A. Golovkov, I. I. Gromova, R. B. Ivanov, V. I. Kuzin, Y. V. Norseev, V. G. Chumin, JINR-P6-4972 (1970).
- [10] 1970TaZS N. I. Tarantin, A. P. Kabachenko, A. V. Demyanov, N. S. Ivanov, Proc. Int. Conf. Mass Spectrosc., Kyoto (1969), K. Ogata, T. Hayakawa, Eds., University Park Press, Baltimore, p. 548 (1970).
- [11] 1970To18 D. F. Torgerson, R. D. Macfarlane, Phys. Rev. C2, 2309 (1970). https://doi.org/10.1103/PhysRevC.2.2309
- [12] 1971Go35 N. A. Golovkov, R. B. Ivanov, A. Kolaczkowski, Y. V. Norseev, V. G. Chumin, Izv. Akad. Nauk SSSR, Ser. Fiz. 35, 2272 (1971); Bull. Acad. Sci. USSR, Phys. Ser. 35, 2063 (1972).
- [13] 1973Ha32 O. Hausser, W. Witthuhn, T. K. Alexander, A. B. McDonald, J. C. D.Milton, A. Olin, Phys. Rev. Lett. 31, 323 (1973). https://doi.org/10.1103/PhysRevLett.31.323
- [14] 1993AnZS A. N. Andreyev, D. D. Bogdanov, V. I. Chepigin, M. Florek, A. P. Kabachenko, O. N. Malyshev, S. Sharo, G. M. Ter-Akopian, M. Veselsky, A. V. Yeremin, Proc. 6th Intern. Conf. on Nuclei Far from Stability + 9th Intern. Conf. on Atomic Masses and Fundamental Constants, Bernkastel-Kues, Germany, 19-24 July, 1992, R. Neugart, A. Wohr, Eds., p. 759 (1993).
- [15] 1994AnZY A. N. Andreev, D. D. Bogdanov, A. V. Eremin, A. P. Kabachenko, O. N. Malyshev, A. G. Popeko, R. N. Sagaidak, G. M. Ter-Akopyan, V. I. Chepigin, Program and Thesis, Proc. 44th Ann. Conf. Nucl. Spectrosc. Struct. At. Nuclei, Kharkov, p. 85 (1994).
- [16] 2000He17 F. P. Hessberger, S. Hofmann, D. Ackermann, V. Ninov, M. Leino, S. Saro, A. Andreyev, A. Lavrentev, A. G. Popeko, A. V. Yeremin, Eur. Phys. J. A 8, 521 (2000); Erratum Eur. Phys. J. A 9, 433 (2000). https://doi.org/10.1007/s100500070075
- [17] 2001Li17 K. Lindenberg, F. Neumann, D. Galaviz, T. Hartmann, P. Mohr, K. Vogt, S. Volz, A. Zilges, Phys. Rev. C63, 047307 (2001). https://doi.org/10.1103/PhysRevC.63.047307
- [18] 2005Li17 Z. Liu, J. Kurcewicz, P. J. Woods, C. Mazzocchi, F. Attallah, E. Badura, C. N. Davids, T. Davinson, J. Doring, H. Geissel, M. Gorska, R. Grzywacz, M. Hellstrom, Z. Janas, M. Karny, A. Korgul, I. Mukha, M. Pfutzner, C. Plettner, A. Robinson, E. Roeckl, K. Rykaczewski, K. Schmidt, D. Seweryniak, H. Weick, Nucl. Instrum. Methods Phys. Res. A543, 591 (2005). https://doi.org/10.1016/j.nima.2004.12.023
- [19] 2015Kh09 J. Khuyagbaatar, A. Yakushev, Ch. E. Dullmann, D. Ackermann, L. L-. Andersson, M. Block, H. Brand, D. M. Cox, J. Even, U. Forsberg, P. Golubev, W. Hartmann, R. -D. Herzberg, F. P. Hessberger, J. Hoffmann, A. Hubner, E. Jager, J. Jeppsson, b. Kindler, J. V. Kratz, J. Krier, N. Kurz, B. Lommel, M. Maiti, S. Minami, A. K. Mistry, C. M. Mrosek, I. Pysmenetska, D. Rudolph, L. G. Sarmiento, H. Schaffner, M. Schadel, B. Schausten, J. Steiner, T. Torres De Heidenreich, J. Uusitalo, M. Wegrzecki, N. Wiehl, V. Yakusheva, Phys. Rev. Lett. 115, 242502 (2015). https://doi.org/10.1103/PhysRevLett.115.242502
- [20] 2017Su18 M. D. Sun, Z. Liu, T. H. Huang, W. Q. Zhang, J. G. Wang, X. Y. Liu, B. Ding, Z. G. Gan, L. Ma, H. B. Yang, Z. Y. Zhang, L. Yu, J. Jiang, K. L. Wang, Y. S. Wang, M. L. Liu, Z. H. Li, J. Li, X. Wang, H. Y. Lu, C. J. Lin, L. J. Sun, N. R. Ma, C. X. Yuan, W. Zuo, H. S. Xu, X. H. Zhou, G. Q. Xiao, C. Qi, F. S. Zhang, Phys. Lett. B 771, 303 (2017). https://doi.org/10.1016/j. physletb.2017.03.074
- [21] 2021Wa16 M. Wang, W. J. Huang, F. G. Kondev, G. Audi, S. Naimi, Chin. Phys. C 45, 030003 (2021). https://doi.org/10.1088/1674-1137/abddaf