

Last updated 12/23/2023

Table 1

Observed and predicted β -delayed particle emission from the odd-Z, $T_z = +37/2$ nuclei. J^{π} values for ¹⁷⁹Lu, ¹⁸³Ta, ¹⁸⁷Re, ¹⁸⁷Ir, ¹⁹⁵Au, ¹⁹⁹Tl and ²⁰³Bi are taken from ENSDF. Unless otherwise stated, all Q-values are taken from [2021Wa16] or deduced from values therein.

Nuclide	J^{π}	$T_{1/2}$	Qε	$Q_{\varepsilon p}$	$Q_{arepsilon lpha}$	Experimental
170-	- 10					
¹⁷⁹ Lu*	7/2+	4.59(6) h	-2.42(20)#			[1963St08]
¹⁸³ Ta*	$7/2^{+}$	5.1(1) d**	-2.010(30)			[1953Du20, 1955Po26]
¹⁸⁷ Re*	$5/2^{+}$	$4.12(13) \times 10^{10} \text{ y}$	-1.313(1)			[2001Ga01]
¹⁹¹ Ir	$3/2^{+}$	stable	-0.314(1)			
¹⁹⁵ Au	$3/2^{+}$	186.01(6) d	0.227(1)	-7.324(2)	1.403(1)	[2012Fu06]
¹⁹⁹ Tl	$1/2^{+}$	7.42(8) h	1.487(28)	-5.768(28)	2.310(28)	[1960Ju03]
²⁰³ Bi	9/2-	11.76(5) h	3.262(14)	-2.833(13)	5.596(13)	[1960St01]
²⁰⁷ At	9/2-	1.80(3) h**	3.918(14)	-0.488(15)	9.134(14)	[1962Th08, 1969Ba69, 1968GuZX]
²¹¹ Fr	9/2-	3.10(2) m	4.615(14)	0.543(14)	10.580(14)	[1971ReZE]
²¹⁵ Ac	(9/2-)	170(10) ms	3.499(14)	-0.300(15)	12.361(14)	[1968Va04]
²¹⁹ Pa	(9/2-)	60^{+28}_{-15} ns	4.120(90)	0.443(90)	13.626(70)	[2017Su18]
²²³ Np		$2.15^{+1.00}_{-0.52} \ \mu s$	4.61(10)	1.31(12)	13.77(10)	[2017Su18]
²²⁷ Am		0.52	5.41(22)#	2.07(23)#	13.71(21)#	

* 100 β^- emitter

** Weighted average of 1.80(5) h [1962Th08], 1.82(4) h [1969Ba69] and 1.77(5) h [1968GuZX].

Table 2

Particle separation, Q-values, and measured values for direct particle emission of the odd-Z, $T_z = +37/2$ nuclei. Unless otherwise stated, all S and Q-values are taken from [2021Wa16] or deduced from values therein.

Nuclide	\mathbf{S}_p	S_{2p}	Qα	BRα	Experimental
170-					
^{1/9} Lu	6.671(8)	16.07(20)#	0.827(50)		
¹⁸³ Ta	6.533(6)	15.07(13)	1.341(5)		
¹⁸⁷ Re	5.997(1)	14.400(14)	1.652(2)		
¹⁹¹ Ir	5.290(1)	13.308(8)	2.083(1)		
¹⁹⁵ Au	5.096(1)	12.609(2)	1.717(2)		
¹⁹⁹ Tl	4.394(28)	11.498(28)	2.083(28)		
²⁰³ Bi	2.873(13)	8.922(19)	4.110(31)		
²⁰⁷ At	2.328(13)	6.740(13)	5.872(3)	obs*	[1969Go23, 1951Ba14]
²¹¹ Fr	1.825(13)	5.834(13)	6.662(3)	87(3)%	[2005Ku06, 2022Ha06, 1971ReZE, 1969Gr04,
					1967Va20, 1961Gr42]
²¹⁵ Ac	1.351(13)	4.993(13)	7.746(3)	99.91(2)%	[2004Ku24, 1968Va04, 2017Su18, 2003KuZX,
					2000He17]
²¹⁹ Pa	1.072(70)	4.697(71)	10.128(69)	100%	[2017Su18, 1987FaZS]
²²³ Np	0.903(98)	4.29(10)	9.650(45)	100%	[2017Su18]
²²⁷ Am	0.74(28)#	4.02(22)#	9.10(22)#		

* [1951Ba14] reports the branching ratio as $\approx 10\%$.

Table 3

direct α emission from ²⁰⁷At, $J^{\pi} = 9/2^{-}$, $T_{1/2} = 1.80(3)$ h*, $BR_{\alpha} = \text{obs}^{**}$.

$E_{\alpha}(\text{c.m.})$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(abs)$	${ m J}_f^{\pi}$	$E_{daughter}(^{203}\mathrm{Bi})$	coincident γ-rays	R ₀ (fm)	HF
5.872(3)	5.759(3)***	obs**	9/2-	0.0		1.4651(131)	≈1.10

* Weighted average of 1.80(5) h [1962Th08], 1.82(4) h [1969Ba69] and 1.77(5) h [1968GuZX].

** "No serious attempt has been made to determine the degree of alpha-branching of At^{207} . The best estimate from the alpha-particles of At^{207} and the yield of Po^{207} is 10 percent alpha-branching." [1951Ba14]. $\approx 10\%$ is used for the branching ratio in determining the HF value.

*** [1969GoZX].

Table 4	
direct α emission from ²¹¹ Fr*, J ^{π} = 9/2 ⁻ , T _{1/2} = 3.10(2) m**, BR _{α} = 87((3)%

$E_{\alpha}(c.m.)$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(\text{rel})$	$I_{\alpha}(abs)$	\mathbf{J}_f^{π}	$E_{daughter}(^{207}\text{At})$	coincident γ -rays	R ₀ (fm)	HF
5.979(6) 6.019(7) 6.319(5) 6.663(4)	5.866 (6) 5.905(7) 6.199 (5) 6.537 (4)	>0.009(5)% >0.006(4)% >0.041(13)% 100%	>0.0078(44)% >0.0052(35)% >0.036(11)% >87(3)%	(13/2–) (11/2–) (7/2–) (9/2–)	0.6867(6) 0.6439(5) 0.3445(2) 0.0	0.6867(6) 0.6439(5) 0.3445(2)	1.4643(27) 1.4643(27) 1.4643(27) 1.4643(27)	<16 <40 <120 1.33(10)

* All values from [2005Ku06], except where noted.

** [1971ReZE].

Table 5

direct α emission from ²	$^{15}\text{Ac}^*, \text{J}^{\pi} = (9/2^-)^{-15}$), $T_{1/2} = 170(10)$) ms**, $BR_{\alpha} = 99.91(2)\%$ **.
--	---	------------------------	--

$E_{\alpha}(\text{c.m.})$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(\text{rel})$	$I_{\alpha}(abs)$	J_f^π	$E_{daughter}(^{211}\mathrm{Fr})$	coincident γ -rays	R ₀ (fm)	HF
7.007(7)	6 877(7)	0.026(4)%	0.026(4)%	$(7/2^{-})$	0 7392(4)	0 3426(5) 0 7392(4)	1 4626(13)	$13.2^{+3.4}$
7.091(5)	6.959(5)	0.020(4)%	0.020(4)%	(112^{-}) $(13/2^{-})$	0.6526(2)	0.6526(2)	1.4626(13)	$10.3^{+2.54}_{-1.9}$
7.111(6)	6.979(6)	0.007(4)%	0.007(4)%	$(5/2^{-})$	0.6331(2)	0.2372(4), 0.6331(2)	1.4626(13)	120^{+180}_{-50}
7.162(5)	7.029(5)	0.12(1)%	0.12(1)%	$(11/2^{-})$	0.5832(1)	0.5832(1)	1.4626(13)	10.8(12)
7.243(7)	7.108(7)	0.007(4)%	0.007(4)%	$(5/2^{-})$	0.5059(2)	0.1101(4), 0.5059(2)	1.4626(13)	400^{+500}_{-200}
7.348(5)	7.211(5)	0.20(2)%	0.20(2)%	$(7/2^{-})$	0.3958(1)	0.3958(1))	1.4626(13)	130_{-5}^{+6}
7.744(4)	7.600(4)	100%	99.48(7)%	(9/2-)	0.0		1.4626(13)	1.26(9)

* All values from [2004Ku24], except where noted.

** [1968Va04].

*** Tentative assignment [2004Ku24].

Table 6

9.650(44)

direct α emission from ²¹⁹ Pa*, J ^{π} =	$(9/2^{-}), T_{1/2} = 60^{+28}_{-15} \text{ ns}, BR_{\alpha} = 100\%$
---	---

100%

$E_{\alpha}(\text{c.m.})$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(abs)$	$\mathbf{J}_f^{\boldsymbol{\pi}}$	$E_{daughter}(^{215}\mathrm{Ac})$	coincident γ -rays	R ₀ (fm)	HF
10.162(37)	9.976(37)	100%	(9/2-)	0.0		1.5346(88)	$0.9\substack{+0.5\\-0.3}$
* All values	s from [2017Su18	8].					
Table 7 direct α emission from ²²³ Np*, $T_{1/2} = 2.15^{+1.00}_{-0.52} \ \mu$ s, $BR_{\alpha} = 100\%$.							
$E_{\alpha}(c.m.)$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(abs)$	\mathbf{J}_f^{π}	$E_{daughter}(^{219}\mathrm{Pa})$	coincident γ -rays	R ₀ (fm)	HF

 $0.3\substack{+0.4 \\ -0.2}$

1.507(32)

* All values from [2017Su18].

9.477(44)

References used in the Tables

- [1] 1951Ba14 G. W. Barton, Jr., A. Ghiorso, I. Perlman, Phys. Rev. 82, 13 (1951). https://doi.org/10.1103/PhysRev.82.13
- [2] 1953Du20 J. W. M. DuMond, H. C. Hoyt, P. E. Marmier, J. J. Murray, Phys. Rev. 92, 202 (1953). https://doi.org/10.1103/PhysRev.92.202
- [3] 1955Po26 A. J. Poe, Phil. Mag. 46, 611 (1955).
- [4] 1960Ju03 B. Jung, J. Svedberg, Nuclear Phys. 20, 630 (1960). https://doi.org/10.1016/0029-5582(60)90203-0
- [5] 1960St01 P. H. Stelson, F. K. McGowan, Bull. Am. Phys. Soc. 5, No. 1, 76, XA1 (1960).

 $(9/2^{-})$

0.0

- [6] 1961Gr42 R. D. Griffioen, R. D. Macfarlane, UCRL-10023, p. 47 (1961).
- [7] **1962Th08** T. D. Thomas, G. E. Gordon, R. M. Latimer, G. T. Seaborg, Phys. Rev. 126, 1805 (1962). https://doi.org/10.1103/PhysRev.126.1805
- [8] 1963St08 R. L. Streever, Jr., Phys. Rev. Letters 10, 232 (1963). https://doi.org/10.1103/PhysRevLett.10.232

- [9] 1967Va20 K. Valli, E. K. Hyde, W. Treytl, J. Inorg. Nucl. Chem. 29, 2503 (1967). https://doi.org/10.1016/0022-1902(67)80176-3
- [10] 1968GuZX L. Gueth, S. Gueth, E. Daroczy, B. S. Dzhelepov, Y. V. Norseev, V. A. Khalkin, JINR-P6-4079 (1968).
- [11] 1968Va04 K. Valli, W. J. Treytl, E. K. Hyde, Phys. Rev. 167, 1094 (1968). https://doi.org/10.1103/PhysRev.167.1094
- [12] 1969Ba69 G. Bastin, Centre Spectrometrie Nucl. Spectrometrie Masse, Ann. 1968-69, Centre Natl. Recherche Sci., Orsay, p. 3 (1969).
- [13] 1969Go23 N. A. Golovkov, S. Guetkh, B. S. Dzhelepov, Y. V. Norseev, V. A. Khalkin, V. G. Chumin, Izv. Akad. Nauk SSSR, Ser. Fiz. 33, 1622 (1969); Bull. Acad. Sci. USSR, Phys. Ser. 33, 1489 (1970).
- [14] 1969Gr04 G. Graeffe, Nucl. Phys. A127, 65 (1969). https://doi.org/10.1016/0375-9474(69)90767-2
- [15] 1971ReZE J. -L. Reyss, Thesis, Univ. Paris (1971); FRNC-TH-124 (1971).
- [16] 1987FaZS T. Faestermann, A. Gillitzer, K. Hartel, W. Henning, P. Kienle, Contrib. Proc. 5th Int. Conf. Nuclei Far from Stability, Rosseau Lake, Canada, K12 (1987).
- [17] 2000He17 F. P. Hessberger, S. Hofmann, D. Ackermann, V. Ninov, M. Leino, S. Saro, A. Andreyev, A. Lavrentev, A. G. Popeko, A. V. Yeremin, Eur. Phys. J. A 8, 521 (2000); Erratum Eur. Phys. J. A 9, 433 (2000). https://doi.org/10.1007/s100500070075
- [18] 2001Ga01 M. Galeazzi, F. Fontanelli, F. Gatti, S. Vitale, Phys. Rev. C63, 014302 (2001). https://doi.org/10.1103/PhysRevC.63.014302
- [19] 2003KuZX P. Kuusiniemi, F. P. Hessberger, S. Hofmann, I. Kojouharov, D. Ackermann, GSI 2003-1, p. 11 (2003).
- [20] 2004Ku24 P. Kuusiniemi, F. P. Hessberger, D. Ackermann, S. Hofmann, I. Kojouharov, Eur. Phys. J. A 22, 429 (2004). https://doi.org/10.1140/epja/i2004-10101-2
- [21] 2005Ku06 P. Kuusiniemi, F. P. Hessberger, D. Ackermann, S. Hofmann, I. Kojouharov, Eur. Phys. J. A 23, 417 (2005). https://doi.org/10.1140/epja/i2004-10104-y
- [22] 2012Fu06 T. Fujita, S. Oshima, J. Phys. (London) G39, 095106 (2012). https://doi.org/10.1088/0954-3899/39/9095106
- [23] 2017Su18 M. D. Sun, Z. Liu, T. H. Huang, W. Q. Zhang, J. G. Wang, X. Y. Liu, B. Ding, Z. G. Gan, L. Ma, H. B. Yang, Z. Y. Zhang, L. Yu, J. Jiang, K. L. Wang, Y. S. Wang, M. L. Liu, Z. H. Li, J. Li, X. Wang, H. Y. Lu, C. J. Lin, L. J. Sun, N. R. Ma, C. X. Yuan, W. Zuo, H. S. Xu, X. H. Zhou, G. Q. Xiao, C. Qi, F. S. Zhang, Phys. Lett. B 771, 303 (2017). https://doi.org/10.1016/j. physletb.2017.03.074
- [24] 2021Wa16 M. Wang, W. J. Huang, F. G. Kondev, G. Audi, S. Naimi, Chin. Phys. C 45, 030003 (2021). https://doi.org/10.1088/1674-1137/abddaf
- [25] 2022Ha06 T. Hayamizu, H. Haba, K. Nakamura, T. Aoki, H. Nagahama, K. S. Tanaka, N. Ozawa, M. Ohtsuka, Y. Sakemi, Few-Body Systems 63, 11 (2022). https://doi.org/10.1007/s00601-021-01710-4