

Fig. 1: Known experimental values for heavy particle emission of the odd-Z  $T_z$ = +35/2 nuclei.

Last updated 12/5/23

# Table 1

Observed and predicted  $\beta$ -delayed particle emission from the odd-Z,  $T_z = +35/2$  nuclei. J<sup> $\pi$ </sup> values for <sup>173</sup>Tm, <sup>177</sup>Lu, <sup>181</sup>Ta, <sup>185</sup>Re, <sup>189</sup>Ir, <sup>193</sup>Au, <sup>197</sup>Tl and <sup>201</sup>Bi are taken from ENSDF. Unless otherwise stated, all Q-values are taken from [2021Wa16] or deduced from values therein.

| Nuclide            | Ex.       | $J^{\pi}$ | $T_{1/2}$               | Qε         | $Q_{\varepsilon p}$ | $Q_{\varepsilon \alpha}$ | Experimental                   |
|--------------------|-----------|-----------|-------------------------|------------|---------------------|--------------------------|--------------------------------|
| 150                |           |           |                         |            |                     |                          |                                |
| <sup>173</sup> Tm* |           | $(1/2^+)$ | 8.24(8) h               | -2.60(20)# |                     |                          | [1963Or01]                     |
| <sup>177</sup> Lu* |           | $7/2^{+}$ | 6.7479(7) d             | -1.398(1)  |                     |                          | [1990Ab02]                     |
| <sup>181</sup> Ta  |           | $7/2^{+}$ | stable                  | -1.036(2)  |                     |                          |                                |
| <sup>185</sup> Re  |           | $5/2^{+}$ | stable                  | -0.431(1)  |                     |                          |                                |
| <sup>189</sup> Ir  |           | $3/2^{+}$ | 13.1(1) d**             | 0.537(13)  | -6.722(13)          | 2.513(13)                | [1975Ba35, 1964Le07, 1963Gr22] |
| <sup>193</sup> Au  |           | 3/2+      | 17.65(15) h             | 1.075(9)   | -5.858(9)           | 3.157(9)                 | [1968Sv01]                     |
| <sup>197</sup> Tl  |           | $1/2^{+}$ | 2.84(4) h               | 2.186(14)  | -4.504(14)          | 3.701(14)                | [1961Ju05]                     |
| <sup>201</sup> Bi  |           | 9/2-      | 107.4(21) m***          | 3.842(18)  | -1.671(13)          | 6.686(13)                | [1970DaZM, 1956St05]           |
| <sup>205</sup> At  |           | 9/2-      | 26.0(5) m <sup>@</sup>  | 4.537(16)  | 0.372(15)           | 9.862(18)                | [1970DaZM, 1968Go12, 1961La02] |
| <sup>209</sup> Fr  |           | 9/2-      | 51.3(8) s               | 5.159(15)  | 1.399(15)           | 11.314(15)               | [1996Xu02]                     |
| <sup>213</sup> Ac  |           | 9/2-      | 731(17) ms              | 5.795(15)  | 2.368(15)           | 12.657(15)               | [2000He17]                     |
| <sup>217</sup> Pa  |           | 9/2-      | 3.6(2) ms <sup>@@</sup> | 4.849(16)  | 1.616(16)           | 14.284(16)               | [2002He29, 1996An21]           |
| <sup>217m</sup> Pa | 1.8839(3) | $29/2^+$  | 1.08(3) ms              | 6.733(16)  | 3.500(16)           | 16.168(16)               | [2002He29]                     |
| <sup>221</sup> Np  |           |           |                         | 5.39(21)#  | 2.34(20)#           | 15.28(20)#               |                                |
| <sup>225</sup> Am  |           |           |                         | 6.09(50)#  | 3.07(40)#           | 15.45(41)#               |                                |

\* 100%  $\beta^-$  emitter.

\*\* Weighted average of 13.1(1) d [1975Ba35], 13.3(1) d [1964Le07] and 13.2(2) d [1963Gr22].

\*\*\* Weighted average of 106.2(24) m [1970DaZM] and 111(4) m [1956St05].

<sup>@</sup> Weighted average of 27.2(6) m [1970DaZM], 25.0(5) m [1968Go12] and 26.2(5) m [1961La02].

<sup>@</sup> Weighted average of 3.8(2) ms [2002He29] and 3.4(2) ms [1996An21].

### Table 2

Particle separation, Q-values, and measured values for direct particle emission of the odd-Z,  $T_z = +35/2$  nuclei. Unless otherwise stated, all S and Q-values are taken from [2021Wa16] or deduced from values therein.

| Nuclide           | $\mathbf{S}_p$ | $S_{2p}$    | Qα         | $BR_{\alpha}$   | Experimental                                       |
|-------------------|----------------|-------------|------------|-----------------|----------------------------------------------------|
| 173 m             |                | 16.00/60>#  | 0.115(01)  |                 |                                                    |
| <sup>175</sup> Tm | 7.062(6)       | 16.32(60)#  | 0.115(21)  |                 |                                                    |
| 177/Lu            | 6.182(1)       | 14.651(50)  | 1.447(5)   |                 |                                                    |
| <sup>181</sup> Ta | 5.949(2)       | 13.958(5)   | 1.520(2)   |                 |                                                    |
| <sup>185</sup> Re | 5.403(1)       | 13.103(2)   | 2.195(2)   |                 |                                                    |
| <sup>189</sup> Ir | 4.601(13)      | 11.811(138) | 2.944(13)  |                 |                                                    |
| <sup>193</sup> Au | 4.405(9)       | 11.274(9)   | 2.620(15)  |                 |                                                    |
| <sup>197</sup> Tl | 3.817(14)      | 10.365(14)  | 2.626(16)  |                 |                                                    |
| <sup>201</sup> Bi | 2.467(16)      | 7.948(30)   | 4.500(6)   |                 |                                                    |
| <sup>205</sup> At | 1.932(16)      | 6.038(18)   | 6.020(2)   | 15.1(16)%*      | [1974Ho27, 1968Go12, 1961La02, 1970DaZM, 1963Ho18, |
|                   |                |             |            |                 | 1963Uh01, 1961Fo04, 1954Bu67, 1951Ba14]            |
| <sup>209</sup> Fr | 1.416(15)      | 5.133(17)   | 6.777(4)   | 89(3)%          | [1974Ho27, 1967Va20, 1964Gr04, 1964Gr04]           |
| <sup>213</sup> Ac | 0.949(16)      | 4.297(17)   | 7.498(4)   | $\approx 100\%$ | [200He17, 1968Va04, 1961Gr42]                      |
| <sup>217</sup> Pa | 0.533(17)      | 3.554(18)   | 8.489(4)   | 100%            | [2002He29, 2008DoZZ, 2002HeZV, 1998Ik01, 1998MiZW, |
|                   | × /            |             |            |                 | 1996An21, 1996AnZY, 1995NiZS, 1978ReZZ, 1977ScZC,  |
|                   |                |             |            |                 | 1968Va18]                                          |
| $^{217m}$ Pa      | -1.351(17)     | 1.670(18)   | 10.373(4)  | 100%            | [2002He29, 2008DoZZ, 2002HeZV, 1998Ik01, 1998MiZW, |
|                   |                |             |            |                 | 1996An21, 1996AnZY, 1995NiZS, 1978ReZZ]            |
| <sup>221</sup> Np | 0.39(22)#      | 3.25(21)#   | 10.43(20)# |                 |                                                    |
| <sup>225</sup> Am | 0.18(50)#      | 2.85(41)#   | 10.06(45)# |                 |                                                    |
|                   |                |             |            |                 |                                                    |

\* Weighted average of 10(2)% [1974Ho27] and 18.4(16)% [1961La02]. \*\* Not measured, inferred from half-life.

205

#### Table 3

| direct $\alpha$ emis      | ssion from <sup>205</sup> At, J | $T_i^{\pi} = 9/2^-, T_{1/2} = 26$ | 6.0(5) m*, <i>B</i> | $R_{\alpha} = 15.1(16)\%^{**}.$   |                           |             |                        |  |
|---------------------------|---------------------------------|-----------------------------------|---------------------|-----------------------------------|---------------------------|-------------|------------------------|--|
| $E_{\alpha}(\text{c.m.})$ | $E_{\alpha}(\text{lab})$        | $I_{\alpha}(abs)$                 | ${f J}_f^\pi$       | $E_{daughter}(^{201}\mathrm{Bi})$ | coincident $\gamma$ -rays | $R_0$ (fm)] | HF                     |  |
| 6.019(2)                  | 5.902(2)***                     | 15.1(16)% <sup>@</sup>            | 9/2-                | 0.0                               |                           | 1.4771(25)  | $0.98^{+0.15}_{-0.13}$ |  |

\* Weighted average of 27.2(6) m [1970DaZM], 25.0(5) m [1968Go12] and 26.2(5) m [1961La02].

\*\* Weighted average of 10(2)% [1974Ho27] and 18.4(16)% [1961La02].

\*\*\* Weighted average of 5.901(5) MeV [1974Ho27], 5.903(2) MeV [1968Go12] and 5.896(4) MeV (adjusted to 5.899(4) MeV in [1991Ry01])[1974Ho27].

<sup>@</sup> Weighted average of 10(2)% [1974Ho27] and 18.4(16)% [1961La02].

### Table 4

| E(am)                         | E (lab)                                          | L (abc)                            | īπ                              | F.                    | (205  At)                              | agingidant & rays          | $\mathbf{P}_{-}$ (fm)]    | ЦЕ                                     |
|-------------------------------|--------------------------------------------------|------------------------------------|---------------------------------|-----------------------|----------------------------------------|----------------------------|---------------------------|----------------------------------------|
| $E_{\alpha}(c.m.)$            | $L_{\alpha}(\text{Iab})$                         | $I_{\alpha}(abs)$                  | $\mathbf{J}_{f}$                | Ldaug                 | hter( At)                              | conicident y-rays          | $\mathbf{K}_0$ (IIII)]    | пг                                     |
| 6.777(5)                      | 6.647(5)***                                      | <sup>4</sup> 89(3)% <sup>6</sup>   | <sup>@</sup> 9/2 <sup>-</sup>   | 0.0                   |                                        |                            | 1.4808(14)                | 1.30(14)                               |
| * All v<br>** [199<br>*** 6.6 | alues from [1974<br>96Xu02].<br>546(5) MeV in [1 | Ho27], except v<br>974Ho27], moo   | where noted.<br>lified to 6.647 | 7(5) MeV in [         | 1991Ry01].                             |                            |                           |                                        |
| Table 5 direct $\alpha$ em    | ission from <sup>213</sup> A                     | $c^*, J_i^{\pi} = 9/2^-, T_i$      | $\Gamma_{1/2} = 731(17)$        | ) ms, $BR_{\alpha}$ = | $\approx 100\%.$                       |                            |                           |                                        |
| $E_{\alpha}(\text{c.m.})$     | $E_{\alpha}(\text{lab})$                         | $I_{\alpha}(abs)$                  | $\mathbf{J}_{f}^{\pi}$          | Edaught               | <sub>er</sub> ( <sup>209</sup> Fr)     | coincident γ-rays          | R <sub>0</sub> (fm)]      | HF                                     |
| 7.502(8)                      | 7.361(8)**                                       | $\approx 100\%$                    | 9/2-                            | 0.0                   | -                                      |                            | 1.4852(44)                | 1.29(15)                               |
| * All v                       | alues from [2000                                 | )He17], except v                   | where noted.                    |                       |                                        |                            |                           |                                        |
| <b>Table 6</b><br>direct α em | ission from <sup>217</sup> P                     | $a^*, J_i^{\pi} = (9/2^-),$        | $T_{1/2} = 3.6(2)$              | ms**, $BR_{\alpha}$   | = 100%.                                |                            |                           |                                        |
| $E_{\alpha}(\text{c.m.})$     | $E_{\alpha}(\text{lab})$                         | $I_{\alpha}(\text{rel})$           | $I_{\alpha}(abs)$               | $J_f^{\pi}$           | $E_{daughter}(^{213})$                 | Ac) coincident             | γ-rays R <sub>0</sub> (fm | h)] HF                                 |
| 7.855(5)                      | 7.710(5)                                         | 0.3(2)%                            | 0.3(2)%                         | $(13/2^{-})$          | 0.6343                                 | 0.6343(1)                  | 1.4908                    | $3(17)$ $7^{+15}_{-2}$                 |
| 7.873(5)                      | 7.728(5)                                         | 0.3(2)%                            | 0.3(2)%                         | $(13/2^{-})$          | 0.6130                                 | 0.6125(8)                  | 1.4908                    | $8(17)$ $8^{+18}_{-4}$                 |
| 8.021(5)                      | 7.873(5)                                         | 0.4(2)%                            | 0.4(2)%                         |                       | 0.4665                                 | 0.4661(20)                 | 1.4908                    | $8(17)$ $17^{+20}_{-7}$                |
| 8.494(5)                      | 8.337(5)                                         | 100 (1)%                           | 99(1)%                          | (9/2 <sup>-</sup> )   | 0.0                                    |                            | 1.4908                    | $3(17)$ $1.67^{+0.32}_{-0.28}$         |
| * All v<br>** Wei             | alues from [2002<br>ghted average of             | 2He29], except v<br>3.8(2) ms [200 | where noted.<br>2He29] and 3    | .4(2) ms [199         | 96An21].                               |                            |                           |                                        |
| T-1-1-7                       | 0 0                                              |                                    |                                 |                       |                                        |                            |                           |                                        |
| direct $\alpha$ em            | ission from <sup>217m</sup>                      | Pa*. Ex. = 1.88                    | 39(3) MeV. J?                   | $\tau = (29/2^+)$     | $\Gamma_{1/2} = 1.08(3) \text{ m}_{2}$ | s. $BR_{\alpha} = 100\%$ . |                           |                                        |
|                               |                                                  | ,                                  |                                 | ( ),                  | 1/2 (0) m                              | -, α                       |                           |                                        |
| $E_{\alpha}(c.m.)$            | $E_{\alpha}(\text{lab})$                         | $I_{\alpha}(\text{rel})$           | $I_{\alpha}(abs)$               | $J_f^\pi$             | $E_{daughter}(^{213}\mathrm{A}$        | c) coincident $\gamma$ -r  | ays $R_0$ (fm)            | ] HF                                   |
| 8.462(5)                      | 8.306(5)                                         | 15.3(29)% %                        | 11(2)%                          | $(21/2^{-})$          | 1.8842                                 | 0.450, 0.613,              | 0.821 1.4908(             | 17) $3.7^{+1.2}_{-0.9}$                |
| 9.712(5)                      | 9.533(5)                                         | 8.3(15)%                           | 6(1)%                           | $(13/2^{-})$          | 0.6343                                 | 0.634                      | 1.4908(                   | 17) $1.00^{+0.29}_{-0.23} \times 10^4$ |
| 9.731(5)                      | 9.552(5)                                         | 12.5(15)%                          | 9(1)%                           | $(13/2^{-})$          | 0.613                                  | 0.613                      | 1.4908                    | 17) $7.5^{+1.8}_{-1.5} \times 10^3$    |

direct  $\alpha$  emission from <sup>209</sup>Fr\*,  $J_i^{\pi} = 9/2^-$ ,  $T_{1/2} = 51.3(8)$  s\*\*,  $BR_{\alpha} = 89(3)\%$ .

\* All values from [2002He29], except where noted.

2.8(14)%

100(8)%

# **References used in the Tables**

9.697(5)

10.157(5)

9.879(5)

10.348(5)

[1] 1951Ba14 G. W. Barton, Jr., A. Ghiorso, I. Perlman, Phys. Rev. 82, 13 (1951). https://doi.org/10.1103/PhysRev.82.13

0.4665

0.0

0.466

 $7^{+8}_{2} \times 10^{4}$ 

 $1.9^{+0.4}_{-0.3} \times 10^4$ 

1.4908(17)

1.4908(17)

- [2] 1954Bu67 W. E. Burcham, Proc. Phys. Soc. (London) 67A, 555 (1954). https://doi.org/10.1088/0370-1298/67/6/410
- [3] 1956St05 R. Stockendal, J. A. McDonnell, M. Schmorak, I. Bergstrom, Arkiv Fysik 11, 165 (1956).

 $(9/2^{-})$ 

- [4] 1961Fo04 W. Forsling, T. Alvager, L. W. Holm, O. Melin, J. Uhler, B. Astrom, Ark. Fys. 19, 83 (1961).
- [5] 1961Gr42 R. D. Griffioen, R. D. Macfarlane, UCRL-10023, p. 47 (1961).

2(1)%

72(4)%

- [6] 1961Ju05 B. Jung, J. Svedberg, Arkiv Fysik 19, 429 (1961).
- [7] 1961La02 R. M. Latimer, G. E. Gordon, T. D. Thomas, J. Inorg. Nuclear Chem. 17, 1 (1961). https://doi.org/10.1016/0022-1902(61)80177-2
- [8] 1963Gr22 G. R. Grant, L. Yaffe, Can. J. Chem. 41, 2533 (1963). https://doi.org/10.1139/v63-373
- [9] 1963Ho18 R. W. Hoff, F. Asaro, I. Perlman, J. Inorg. Nucl. Chem. 25, 1303 (1963). https://doi.org/10.1016/0022-1902(63)80400-5

- [10] 1963Or01 C. J. Orth, M. E. Bunker, J. W. Starner, Phys. Rev. 132, 355 (1963). https://doi.org/10.1103/PhysRev.132.355
- [11] **1963Uh01** J. Uhler, W. Forsling, B. Astrom, Arkiv Fysik **24**, 421 (1963).
- [12] 1964Gr04 R. D. Griffioen, R. D. Macfarlane, Phys. Rev. 133, B1373 (1964). https://doi.org/10.1103/PhysRev.133.B1373
- [13] 1964Le07 H. R. Lewis, Jr. , R. A. Naumann, J. M. Prospero, D. Thomas, Phys. Rev. 134, B322 (1964). https://doi.org/10.1103/PhysRev.134.B322
- [14] 1967Va20 K. Valli, E. K. Hyde, W. Treytl, J. Inorg. Nucl. Chem. 29, 2503 (1967). https://doi.org/10.1016/0022-1902(67)80176-3
- [15] 1968Go12 N. A. Golovkov, R. B. Ivanov, Y. V. Norseev, So Ki Kvan, V. A. Khalkin, V. G. Chumin, Contrib. Intern. Conf. Nucl. Struct., Dubna, p. 54 (1968).
- [16] 1968Sv01 B. Svahn, A. Johansson, B. Nyman, G. Malmsten, H. Pettersson, Z. Physik 210, 466 (1968). https://doi.org/10.1007/BF02083663
- [17] 1968Va04 K. Valli, W. J. Treytl, E. K. Hyde, Phys. Rev. 167, 1094 (1968). https://doi.org/10.1103/PhysRev.167.1094
- [18] 1968Va18 K. Valli, E. K. Hyde, Phys. Rev. 176, 1377 (1968). https://doi.org/10.1103/PhysRev.176.1377
- [19] 1970DaZM J. M. Dairiki, Thesis, Univ. California (1970); UCRL-20412 (1970).
- [20] 1973Ba35 D. G. Barnes, J. M. Calvert, T. Joy, J. Phys. (London) A6, 1011 (1973). https://doi.org/10.1088/0305-4470/6/7/021
- [21] 1974Ho27 P. Hornshoj, P. G. Hansen, B. Jonson, Nucl. Phys. A230, 380 (1974). https://doi.org/10.1016/0375-9474(74)90144-4
- [22] **1977ScZC** Schmidt, JOUR VDPEA No6/1977, 1012, E9-1.
- [23] 1978ReZZ W. Reisdorf, GSI-M-2-78 (1978).
- [24] 1990Ab02 A. Abzouzi, M. S. Antony, A. Hachem, V. B. Ndocko Ndongue, J. Radioanal. Nucl. Chem. 144, 359 (1990). https://doi.org/10.1007/BF02218143
- [25] 1991Ry01 A Rytz, At Data NuclData Tables 47, 205 (1991). https://doi.org/10.1016/0092-640X(91)90002-L
- [26] 1995NiZS V. Ninov, S. Hofmann, F. P. Hessberger, H. Folger, A. N. Andreev, A. V. Eremin, A. G. Popeko, S. Saro, Program and Thesis, Proc. 45th Ann. Conf. Nucl. Spectrosc. Struct. At. Nuclei, St. Petersburg, p. 108 (1995).
- [27] 1996An21 A. N. Andreev, A. G. Popeko, A. V. Eremin, S. Hofmann, F. Hessberger, H. Folger, V. Ninov, S. Saro, Bull. Rus. Acad. Sci. Phys. 60, 119 (1996).
- [28] 1996AnZY A. N. Andreyev, D. D. Bogdanov, V. I. Chepigin, A. P. Kabachenko, O. N. Malyshev, Yu. Ts. Oganessian, A. G. Popeko, J. Rohac, R. N. Sagaidak, S. Saro, G. M. Ter-Akopian, M. Veselsky, A. V. Yeremin, JINR-E15-96-233 (1996).
- [29] 1996Xu02 S. Xu, Y. Xie, Y. Guo, R. Ma, Y. Ge, Z. Lee, C. Wang, B. Guo, J. Xing, T. Zhang, S. Zhu, W. Xu, Z. Phys. A354, 343 (1996). https://doi.org/10.1007/s002180050055
- [30] 1998Ik01 T. Ikuta, H. Ikezoe, S. Mitsuoka, I. Nishinaka, K. Tsukada, Y. Nagame, J. Lu, T. Kuzumaki, Phys. Rev. C57, R2804 (1998). https://doi.org/10.1103/PhysRevC.57.R2804
- [31] 1998MiZW S. Mitsuoka, T. Ikuta, H. Ikezoe, Y. Nagame, K. Tsukada, I. Nishinaka, J. Lu, T. Kuzumaki, Japan Atomic Energy Res. Inst. Tandem VDG Ann. Rept., 1997, p. 19 (1998); JAERI-Review 98-017 (1998).
- [32] 2000He17 F. P. Hessberger, S. Hofmann, D. Ackermann, V. Ninov, M. Leino, S. Saro, A. Andreyev, A. Lavrentev, A. G. Popeko, A. V. Yeremin, Eur. Phys. J. A 8, 521 (2000); Erratum Eur. Phys. J. A 9, 433 (2000). https://doi.org/10.1007/s100500070075
- [33] 2002He29 F. P. Hessberger, S. Hofmann, I. Kojouharov, D. Ackermann, S. Antalic, P. Cagarda, B. Kindler, B. Lommel, R. Mann, A. G. Popeko, S. Saro, J. Uusitalo, A. V. Yeremin, Eur. Phys. J. A 15, 335 (2002). https://doi.org/10.1140/epja/i2002-10038-4
- [34] 2002HeZV F. P. Hessberger, S. Hofmann, I. Kojouharov, D. Ackermann, S. Antalic, P. Cagarda, B. Kindler, B. Lommel, R. Mann, A. G. Popeko, S. Saro, J. Uusitalo, A. V. Yeremin, GSI 2002-1, p. 12 (2002).
- [35] 2008DoZZ O. Dorvaux, A. Lopez-Martens, K. Hauschild, A. V. Yeremin, A. Khouaja, A. V. Belozerov, Ch. Briancon, M. L. Chelnokov, V. I. Chepigin, D. Curien, P. Desesquelles, B. Gall, V. A. Gorshkov, M. Guttormsen, F. Hanappe, A. P. Kabachenko, F. Khalfallah, A. Korichi, A. C. Larsen, O. N. Malyshev, A. Minkova, Yu. Ts. Oganessian, A. G. Popeko, M. Rousseau, N. Rowley, R. N. Sagaidak, S. Sharo, A. V. Shutov, S. Siem, V. I. L. Stuttge, A. I. Svirikhin, N. U. H. Syed, Ch. Theisen, Proc. Frontiers in Nuclear Structure, and Reactions (FINUSTAR 2), Crete, Greece, 10-14 Sept. 2007, P. Demetriou, R. Julin, S. V. Harissopulos, Eds. p. 64 (2008); AIP Conf. Proc 1012 (2008). https://doi.org/10.1063/1.2939361

[36] 2021Wa16 M. Wang, W. J. Huang, F. G. Kondev, G. Audi, S. Naimi, Chin. Phys. C 45, 030003 (2021). https://doi.org/10.1088/1674-1137/abddaf