

258Es Stable to B+-decay Q α = 5.88# MeV

Fig. 1: Known experimental values for heavy particle emission of the odd-Z T_z = +30 nuclei.

Last updated 5/25/25

Table 1

Observed and predicted β -delayed particle emission from the odd-Z, $T_z = +30$ nuclei. Unless otherwise stated, all Q-values are taken from [2021Wa16] or deduced from values therein.

Nuclide	J^{π}	$T_{1/2}$	$Q_{\mathcal{E}}$	Q _β -	Q_{β} - α	Experimental	
258				2 280(45)#	0.14(40)#		
262 x 4				2.280(45)#	9.14(40)#		
202 Md				1.57(58))#	9.00(49)#		
²⁶⁶ Lr		11^{+21}_{-5} h		1.53(68)#	10.96(58)#	[2019Ko04, 2014Ko04]	
²⁷⁰ Db		$1.0^{+1.9}_{-0.4}$ h		0.97(74)#	10.02(71)#	[2019Ko04, 2014Ko04]	
²⁷⁴ Bh		44^{+34}_{-13} s		0.36(74)#	11.83(69)#	[2017Og01]	
				$Q_{\varepsilon p}$	$Q_{\varepsilon \alpha}$		
²⁷⁸ Mt		$4.5^{+3.5}_{-1.3}$ s	2.55(65)#	-2.62(83)#		[2017Og01]	
²⁸² Rg		100^{+70}_{-30} s	2.95(66)#	-1.95(84)#	12.10(66)#	[2017Og01]	
²⁸⁶ Nh		$9.5^{+6.3}_{-2.7}$ s	3.51(92)#	-1.06(84)#	12.74(66)#	[2017Og01]	
²⁹⁰ Mc		650^{+490}_{-200} ms	4.06(92)#	-0.05(78)#	13.92(92)#	[2017Og01]	
²⁹⁴ Ts		51^{+38}_{-16} ms			15.241(918)	[2017Og01]	

Table 2

Particle separation, Q-values, and measured values for direct particle emission of the odd-Z, $T_z = +30$ nuclei. Unless otherwise stated, all S and Q-values are taken from [2021Wa16] or deduced from values therein.

Nuclide	\mathbf{S}_p	Qα	BR_{α}	BR _{SF}	Experimental
258 Es		5 88(50)#			
²⁶² Md		6 54(20)#			
²⁶⁶ Lr		7.57(30)#		100%	[2019Ko04, 2014Ko04]
²⁷⁰ Db		8.31(20)#	$\approx 83\%$	$\approx 17\%$	[2019Ko04, 2014Ko04 , 2017Og01, 2013Og01, 2013Og04, 2012Og06,
		. ,			2012OgZZ, 2010Og01, 2010Og04]
²⁷⁴ Bh	3.45(70)#	8.940(60)	100%*		[2017Og01, 2013Og01, 2013Og04, 2012Og06, 2012OgZZ, 2010Og01,
					2010Og04]
²⁷⁸ Mt	2.90(73)#	9.580(30)	100%*		[2017Og01, 2013Og01, 2013Og04, 2012Og06, 2012OgZZ, 2010Og01,
					2010Og04]
²⁸² Rg	2.42(77)#	9.55(10)#	100%*		[2017Og01, 2013Og01, 2013Og04, 2012Og06, 2012OgZZ, 2010Og01,
					2010Og04]
²⁸⁶ Nh	2.42(78)#	9.790(50)	100%*		[2017Og01, 2013Og01, 2013Og04, 2012Og06, 2012OgZZ, 2010Og01,
					2010Og04]
²⁹⁰ Mc	1.8(10)#	10.410(40)	100%*		[2017Og01, 2013Og01, 2013Og04, 2012Og06, 2012OgZZ, 2010Og01,
					2010Og04]
²⁹⁴ Ts	1.46(79)#	11.180(40)	100%*		[2017Og01, 2013Og01, 2013Og04, 2012Og06, 2012OgZZ, 2010Og01,
					2010Og04]

* Only α -decay has been observed.

Table 3

direct α emission from ²⁷⁰ Db*, $T_{1/2} = 1.0^{+1.9}_{-0.4}$ h, $BR_{\alpha} = \approx 83\%$.								
$E_{\alpha}(\text{c.m.})$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(abs)$	${ m J}_f^\pi$	$E_{daughter}(^{266}\mathrm{Lr})$	coincident γ-rays (keV)	HF		
8.02(3)	7.90(3)	$\approx 83\%.$						
* All valu	ues from [2014Kh	n04, 2019Kh04].						
Table 4 direct α emiss	sion from ²⁷⁴ Bh*	, $T_{1/2} = 44^{+34}_{-13}$ s,	$BR_{\alpha} = 100\%$	6.				
$E_{\alpha}(\text{c.m.})$	$E_{\alpha}(lab)$	$I_{\alpha}(abs)$	\mathbf{J}_f^{π}	$E_{daughter}(^{270}\text{Db})$	coincident γ-rays (keV)	HF		
8.86-8.97	8.73-8.84	100%						

* All values from [2017Og01], based on all available measurements.

Table 5

direct α emiss	ion from ²⁷⁸ Mt*, T	$_{1/2} = 4.5^{+3.5}_{-1.3}$ s, <i>I</i>	$BR_{\alpha} = 100\%$				
$E_{\alpha}(\text{c.m.})$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(abs)$	J_f^π	$E_{daughter}(^{274}\mathrm{Bh})$	coincident γ-rays (keV)	HF	
9.52-9.69	9.38-9.55	100%					
* All valu	es from [2017Og0]], based on all a	vailable me	asurements.			
Table 6 direct α emiss	ion from ²⁸² Rg*, T	$_{1/2} = 100^{+70}_{-30}$ s, <i>I</i>	$BR_{\alpha} = 100\%$	·.			
$E_{\alpha}(\text{c.m.})$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(abs)$	${f J}_f^{m \pi}$	$E_{daughter}(^{278}\mathrm{Mt})$	coincident γ-rays (keV)	HF	
8.99-9.18	8.86-9.05	100%					
* All valu	es from [2017Og0]], based on all a	vailable me	asurements.			
Table 7 direct α emiss	ion from ²⁸⁶ Nh*, T	$f_{1/2} = 9.5^{+6.3}_{-2.7}$ s, <i>I</i>	$3R_{\alpha} = 100\%$	·.			
$E_{\alpha}(\text{c.m.})$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(abs)$	$J_f^{\boldsymbol{\pi}}$	$E_{daughter}(^{282}\mathrm{Rg})$	coincident γ-rays (keV)	HF	
9.75-9.89	9.61-9.75	100%					
* All valu	es from [2017Og0]], based on all a	vailable me	asurements.			
Table 8 direct α emiss	ion from ²⁹⁰ Mc*, T	$\Gamma_{1/2} = 650^{+490}_{-200} \text{ m}$	is, $BR_{\alpha} = 10$	00%.			
$E_{\alpha}(\text{c.m.})$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(abs)$	\mathbf{J}_f^{π}	E _{daughter} (²⁸⁶ Nh)	coincident γ-rays (keV)	HF	
9.92-10.45	9.78-10.31	100%					
* All valu	es from [2017Og0]], based on all a	vailable me	asurements.			
Table 9 direct α emiss	ion from ²⁹⁴ Ts*, T	$_{1/2} = 51^{+38}_{-16} \text{ ms}, 1$	$BR_{\alpha} = 100\%$	6.			
$E_{\alpha}(\text{c.m.})$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(abs)$	$\mathbf{J}_f^{m{\pi}}$	$E_{daughter}(^{290}\mathrm{Mc})$	coincident γ-rays (keV)	HF	
10.96-11.22	10.81-11.07	100%					

* All values from [2017Og01], based on all available measurements.

References used in the Tables

- **2004Og07** Yu. Ts. Oganessian, V. K. Utyonkov, Yu. V. Lobanov, F. Sh. Abdullin, A. N. Polyakov, I. V. Shirokovsky, Yu. S. Tsyganov, G. G. Gulbekian, S. L. Bogomolov, B. N. Gikal, A. N. Mezentsev, S. Iliev, V. G. Subbotin, A. M. Sukhov, A. A. Voinov, G. V. Buklanov, K. Subotic, V. I. Zagrebaev, M. G. Itkis, J. B. Patin, K. J. Moody, J. F. Wild, M. A. Stoyer, N. J. Stoyer, D. A. Shaughnessy, J. M. Kenneally, R. W. Lougheed, Phys. Rev. C 69, 054607 (2004). https://doi.org/10.1103/PhysRevC.69.054607
- [2] 2004OgZZ Yu. Ts. Oganessian, V. K. Utyonkov, Yu. V. Lobanov, F. Sh. Abdullin, A. N. Polyakov, I. V. Shirokovsky, Yu. S. Tsyganov, G. G. Gulbekian, S. L. Bogomolov, B. N. Gikal, A. N. Mezentsev, S. Iliev, V. G. Subbotin, A. M. Sukhov, A. A. Voinov, G. V. Buklanov, K. Subotic, V. I. Zagrebaev, M. G. Itkis, J. B. Patin, K. J. Moody, J. F. Wild, M. A. Stoyer, N. J. Stoyer, D. A. Shaughnessy, J. M. Kenneally, P. A. Wilk, R. W. Lougheed, R. I. Ilkaev, S. P. Vesnovskii, JINR-E7-2004-160 (2004).
- [3] 2010DuZY Ch. E. Dullmann, D. Ackermann, M. Block, W. Bruchle, H. G. Essel, J. M. Gates, W. Hartmann, F. P. Hessberger, A. Hubner, E. Jager, J. Khuyagbaatar, B. Kindler, J. Krier, N. Kurz, B. Lommel, M. Schadel, B. Schausten, E. Schimpf, J. Steiner, A. Gorshkov, R. Graeger, A. Turler, A. Yakushev, K. Eberhardt, J. Even, D. Hild, J. V. Kratz, D. Liebe, J. Runke, P. Thorle-Pospiech, N. Wiehl, L. -L. Andersson, R. -D. Herzberg, E. Parr, J. Dvorak, P. A. Ellison, K. E. Gregorich, H. Nitsche, S. Lahiri, M. Maiti, J. P. Omtvedt, A. Semchenkov, D. Rudolph, J. Uusitalo, M. Wegrzecki, Univ. Mainz, 2009 Ann. Rept., p. A1 (2010). ; IKMz 2010-1 (2010).

- [4] 2010Og01 Yu. Ts. Oganessian, F. Sh. Abdullin, P. D. Bailey, D. E. Benker, M. E. Bennett, S. N. Dmitriev, J. G. Ezold, J. H. Hamilton, R. A. Henderson, M. G. Itkis, Yu. V. Lobanov, A. N. Mezentsev, K. J. Moody, S. L. Nelson, A. N. Polyakov, C. E. Porter, A. V. Ramayya, F. D. Riley, J. B. Roberto, M. A. Ryabinin, K. P. Rykaczewski, R. N. Sagaidak, D. A. Shaughnessy, I. V. Shirokovsky, M. A. Stoyer, V. G. Subbotin, R. Sudowe, A. M. Sukhov, Yu. S. Tsyganov, V. K. Utyonkov, A. A. Voinov, G. K. Vostokin, P. A. Wilk, Phys. Rev. Lett. 104, 142502 (2010). https://doi.org/10.1103/PhysRevLett.104.142502
- [5] 2011Ga19 J. M. Gates, Ch. E. Dullmann, M. Schadel, A. Yakushev, A. Turler, K. Eberhardt, J. V. Kratz, D. Ackermann, L. -L. Andersson, M. Block, W. Bruchle, J. Dvorak, H. G. Essel, P. A. Ellison, J. Even, U. Forsberg, J. Gellanki, A. Gorshkov, R. Graeger, K. E. Gregorich, W. Hartmann, R. -D. Herzberg, F. P. Hessberger, D. Hild, A. Hubner, E. Jager, J. Khuyagbaatar, B. Kindler, J. Krier, N. Kurz, S. Lahiri, D. Liebe, B. Lommel, M. Maiti, H. Nitsche, J. P. Omtvedt, E. Parr, D. Rudolph, J. Runke, H. Schaffner, B. Schausten, E. Schimpf, A. Semchenkov, J. Steiner, P. Thorle-Pospiech, J. Uusitalo, M. Wegrzecki, N. Wiehl, Phys. Rev. C 83, 054618 (2011). https://doi.org/10.1103/PhysRevC.83.054618
- [6] 2012Ho12 S. Hofmann, S. Heinz, R. Mann, J. Maurer, J. Khuyagbaatar, D. Ackermann, S. Antalic, W. Barth, M. Block, H. G. Burkhard, V. F. Comas, L. Dahl, K. Eberhardt, J. Gostic, R. A. Henderson, J. A. Heredia, F. P. Hessberger, J. M. Kenneally, B. Kindler, I. Kojouharov, J. V. Kratz, R. Lang, M. Leino, B. Lommel, K. J. Moody, G. Munzenberg, S. L. Nelson, K. Nishio, A. G. Popeko, J. Runke, S. Saro, D. A. Shaughnessy, M. A. Stoyer, P. Thorle-Pospiech, K. Tinschert, N. Trautmann, J. Uusitalo, P. A. Wilk, A. V. Yeremin, Eur. Phys. J. A 48, 62 (2012). https://doi.org/10.1140/epja/i2012-12062-1
- [7] 2012Og06 Yu. Ts. Oganessian, F. Sh. Abdullin, C. Alexander, J. Binder, R. A. Boll, S. N. Dmitriev, J. Ezold, K. Felker, J. M. Gostic, R. K. Grzywacz, J. H. Hamilton, R. A. Henderson, M. G. Itkis, K. Miernik, D. Miller, K. J. Moody, A. N. Polyakov, A. V. Ramayya, J. B. Roberto, M. A. Ryabinin, K. P. Rykaczewski, R. N. Sagaidak, D. A. Shaughnessy, I. V. Shirokovsky, M. V. Shumeiko, M. A. Stoyer, N. J. Stoyer, V. G. Subbotin, A. M. Sukhov, Yu. S. Tsyganov, V. K. Utyonkov, A. A. Voinov, G. K. Vostokin, Phys. Rev. Lett. 109, 162501 (2012). https://doi.org/10.1103/PhysRevLett.109.162501
- [8] 2012OgZZ Yu. Ts. Oganessian, F. Sh. Abdullin, S. N. Dmitriev, J. M. Gostic, J. H. Hamilton, R. A. Henderson, M. G. Itkis, K. J. Moody, A. N. Polyakov, A. V. Ramayya, J. B. Roberto, K. P. Rykaczewski, R. N. Sagaidak, D. A. Shaughnessy, I. V. Shirokovsky, M. A. Stoyer, V. G. Subbotin, A. M. Sukhov, Yu. S. Tsyganov, V. K. Utyonkov, A. A. Voinov, G. K. Vostokin, JINR-E7-2012-58 (2012).
- [9] 2013Og01 Yu. Ts. Oganessian, F. Sh. Abdullin, S. N. Dmitriev, J. M. Gostic, J. H. Hamilton, R. A. Henderson, M. G. Itkis, K. J. Moody, A. N. Polyakov, A. V. Ramayya, J. B. Roberto, K. P. Rykaczewski, R. N. Sagaidak, D. A. Shaughnessy, I. V. Shirokovsky, M. A. Stoyer, N. J. Stoyer, V. G. Subbotin, A. M. Sukhov, Yu. S. Tsyganov, V. K. Utyonkov, A. A. Voinov, G. K. Vostokin, Phys. Rev. C 87, 014302 (2013). https://doi.org/10.1103/PhysRevC.87.014302
- [10] 2013Og04 Yu. Ts. Oganessian, F. Sh. Abdullin, C. Alexander, J. Binder, R. A. Boll, S. N. Dmitriev, J. Ezold, K. Felker, J. M. Gostic, R. K. Grzywacz, J. H. Hamilton, R. A. Henderson, M. G. Itkis, K. Miernik, D. Miller, K. J. Moody, A. N. Polyakov, A. V. Ramayya, J. B. Roberto, M. A. Ryabinin, K. P. Rykaczewski, R. N. Sagaidak, D. A. Shaughnessy, I. V. Shirokovsky, M. V. Shumeiko, M. A. Stoyer, N. J. Stoyer, V. G. Subbotin, A. M. Sukhov, Yu. S. Tsyganov, V. K. Utyonkov, A. A. Voinov, G. K. Vostokin, Phys. Rev. C 87, 054621 (2013). https://doi.org/10.1103/PhysRevC.87.054621
- [11] 2014Ya33 A. Yakushev, J. M. Gates, A. Turler, M. Schadel, C. E. Dullmann, D. Ackermann, L. -L. Andersson, M. Block, W. Bruchle, J. Dvorak, K. Eberhardt, H. G. Essel, J. Even, U. Forsberg, A. Gorshkov, R. Graeger, K. E. Gregorich, W. Hartmann, R. -D. Herzberg, F. P. Hessberger, D. Hild, A. Hubner, E. Jager, J. Khuyagbaatar, B. Kindler, J. V. Kratz, J. Krier, N. Kurz, B. Lommel, L. J. Niewisch, H. Nitsche, J. P. Omtvedt, E. Parr, Z. Qin, D. Rudolph, J. Runke, B. Schausten, E. Schimpf, A. Semchenkov, J. Steiner, P. Thorle-Pospiech, J. Uusitalo, M. Wegrzecki, N. Wiehl, Inorg. Chem. 53, 1624 (2014). https://doi.org/10.1021/ic4026766
- [12] 2017Og01 Y. T. Oganessian, A. Sobiczewski, G. M. Ter-Akopian, Phys. Scr. 92, 023003 (2017). https://doi.org/10.1088/1402-4896/aa53c1
- [13] 2021Wa16 M. Wang, W. J. Huang, F. G. Kondev, G. Audi, S. Naimi, Chin. Phys. C 45, 030003 (2021). https://doi.org/10.1088/1674-1137/abddaf
- [14] 2023Co04 D. M. Cox, A. Saamark-Roth, D. Rudolph, L. G. Sarmiento, R. M. Clark, J. L. Egido, P. Golubev, J. Heery, A. Yakushev, S. AAberg, H. M. Albers, M. Albertsson, M. Block, H. Brand, T. Calverley, R. Cantemir, B. G. Carlsson, Ch. E. Dullmann, J. Eberth, C. Fahlander, U. Forsberg, J. M. Gates, F. Giacoppo, M. Gotz, S. Gotz, R. -D. Herzberg, Y. Hrabar, E. Jager, D. Judson, J. Khuyagbaatar, B. Kindler, I. Kojouharov, J. V. Kratz, J. Krier, N. Kurz, L. Lens, J. Ljungberg, B. Lommel, J. Louko, C. -C. Meyer, A. Mistry, C. Mokry, P. Papadakis, E. Parr, J. L. Pore, I. Ragnarsson, J. Runke, M. Schadel, H. Schaffner, B. Schausten, D. A. Shaughnessy, P. Thorle-Pospiech, N. Trautmann, J. Uusitalo, Phys. Rev. C 107, L021301 (2023). https://doi.org/10.1103/PhysRevC.107.L021301