

Fig. 1: Known experimental values for heavy particle emission of the odd-Z T_z = +2 nuclei.

Last updated 3/21/23

Table 1

Observed and predicted β -delayed particle emission from the odd-Z, $T_z = +2$ nuclei. Unless otherwise stated, all Q-values are taken from [2021Wa16] or deduced
from values therein. J^{π} values for 66 Ga, 70 As, 74 Br, 78 Rb, 82 Y, 86 Nb 90 Tc, are taken from ENSDF.

Nuclide	J^{π}	$T_{1/2}$	0s	0 s.n	BRen	O_{s2n}	0sa	BRag	Experimental
	-	-1/2	ζċ	εεp	p <i>p</i>	2e2p	Leu	pu	
⁶⁶ Ga	0^{+}	9.57(6) h	5.1755(8)	-3.7490(12)		-11.203(1)	0.598(1)		[1956Ru45]
⁷⁰ As	4^{+}	52.5(3) m	6.2281(16)	-2.295(2)		-8.905(2)	2.140(2)		[1968Bo40]
⁷⁴ Br	(0^{-})	11.5(1) m	6.925(6)	-1.624(7)		-7.280(6)	2.849(6)		[1975Sc07]
⁷⁸ Rb	0+	17.66(3) m	7.243(3)	-0.990(4)		-6.261(3)	2.853(3)		[1981Ba40]
⁸² Y	1^{+}	8.3(2) s	7.946(8)	0.104(7)		-4.749(5)	3.689(5)		[1998Oi02]
⁸⁶ Nb	(6+)	88(1) s	8.835(7)	1.419(20)		-3.062(5)	4.451(8)		[1985Wa10]
⁹⁰ Tc	(8+)	49.2(4) s	9.448(4)	2.612(24)		-1.674(5)	4.819(4)		[1981Ox01]
⁹⁴ Rh	(4^{+})	70.6(6) s	9.676(5)	3.410(4)	1.8(5)%	-0.677(3)	4.840(4)		[1982Ku15]
⁹⁸ Ag	(6+)	47.5(3) s	8.250(30)	2.240(50)	0.0011(5)%	-1.568(30)	7.089(30)		[1996He25, 1997Ra22,
-									1982Ku15]
¹⁰² In	(6 ⁺)	23.3(1) s	8.965(5)	3.351(7)	0.0093(13)%	-0.060(19)	8.201(7)		[1995Sz01]
¹⁰⁶ Sb	$(1^+, 2^+)$	0.6(2) s	10.880(9)	5.878(13)		2.917(7)	10.76(7)		[2005So06]
^{110}I	(1^{+})	664(24) ms	11.760(60)	8.490(60)	11(3)%	7.022(60)	14.459(60)	1.1(3)%	[1977Ki11, 1981Sc17,
									1994Pa11, 1985Ti02]
¹¹⁴ Cs	(1^+)	0.57(2) s	12.400(90)	9.140(90)	8.7(13)%	8.300(90)	15.115(90)	0.16(6)%	[1985Ti02, 1978Ro19]
¹¹⁸ La			12.58(36)#	9.58(31)#		8.85(30)#	15.04(30)#		
¹²² Pr			13.09(64)#	10.12(58)#		9.53(58)#	15.00(54)#		
¹²⁶ Pm			13.63(5)#	11.03(58)#		10.59(58)#	15.70(64)#		
¹³⁰ Eu		$0.90^{+0.49}_{-0.29} \mathrm{ms}$	14.19(67)#	12.38(62)#		12.44(58)#	17.45(62)#		[2004Da04]

Table 2

Particle emission from the odd-Z, $T_z = +2$ nuclei. Unless otherwise stated, all Q-values and separation energies are taken from [2021Wa16] or deduced from values therein.

Nuclide	S_p	BR_{1p}	S_{2p}	Q_{α}	BR_{α}	Experimental
⁶⁶ Ga	5.101(1)		12.877(1)	-3.361(1)		
⁷⁰ As	7.781(1)		17.921(2)	-5.077(1)		
⁷⁴ Br	4.350(9)		11.636(7)	-3.379(6)		
⁷⁸ Rb	4.055(4)		11.224(10)	-4.072(7)		
⁸² Y	3.825(6)		10.467(6)	-3.554(6)		
⁸⁶ Nb	3.248(8)		9.818(7)	-3.495(8)		
⁹⁰ Tc	2.999(4)		9.130(60)	-4.015(6)		
⁹⁴ Rh	2.980(4)		8.560(5)	-4.608(4)		
⁹⁸ Ag	2.550(30)		7.960(30)	-2.580(30)		
¹⁰² In	2.147(5)		7.135(7)	-0.050(30)		
¹⁰⁶ Sb	0.424(8)		4.869(9)	1.797(9)		
^{110}I	0.040(60)		2.600(50)	3.536(10)*	17(4)%	[1981Sc17, 1991He21, 1978Ro19, 1994Pa11, 1985Ti02]
114Cs	-0.230(90)		2.200(90)	3.360(60)	0.018(6)%	[1994Pa11, 1985Ti02, 1981Sc17, 1980Ro04, 1978Ro19, 1996He25]
¹¹⁸ La	-0.55(39)#		2.16(32)#	2.64(31)#		
¹²² Pr	-0.62(64)#		1.79(58)#	2.42(58)#		
¹²⁶ Pm	-1.03(64)#		1.18(64)#	2.610(71)#		
¹³⁰ Eu	-1.028(15)**	100%	-0.13(62)#	3.81(74)#		[2004Da04 , 2003SeZZ, 2002Ma61]

* From α decay to ground state of ¹⁰⁶Sb [1991He21, 1978Ro19], 3.580(50) in [2021Wa16]. ** From p emission to the ground state of ¹²⁹Sm [2004Da04], -1.53(20)# in [2021Wa16].

Table 3

direct α emission from ¹¹⁰ I. J ^{π}	$=(1^{+}).$	$T_{1/2} = 664(24)$) ms*, $BR_{\alpha} =$	17(4)%**.
---	-------------	---------------------	------------------------	-----------

$E_{\alpha}(\text{c.m.})$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(\text{rel})$	$I_{\alpha}(abs)$	J_f^π	$E_{daughter}(^{106}\mathrm{Sb})$	coincident γ -rays
3.536(10)	3.447(10)***	100%	17(4)%**	$(1^+, 2^+)$	0.0	

*Weighted average of 0.69(4) s [1977Ki11] and 0.65(3) s [1981Sc17].

** [1981Sc17]

*** Weighted average of 3.457(10) [1991He21], and 3.424(15) [1978Ro19].

Table 4

direct α emission	n from ¹¹⁴ Cs, $J^{\pi} = (1^+)$	$T_{1/2} = 0.57(2) \text{ s*}, BR_{\alpha} = 0.57(2) \text$	= 0.018(6)%*			
$E_{\alpha}(\text{c.m.})$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(\text{rel})$	$I_{\alpha}(abs)$	${\sf J}_f^\pi$	$E_{daughter}(^{110}\mathrm{I})$	coincident γ-rays
3.351(30)**	3.233(30)	100%	0.018(6)%***	(1 ⁺)	0.0	
* [1978Ro1 ** Weightec *** [1994Pa	9]. 1 average of 3.239(30) a11]	[1981Sc17], and 3.226(30) MeV [1980Ro04].			
Table 5 β -p emission fro	m ¹¹⁴ Cs*, $BR_{\beta p} = 8.7($	13)%.				
$E_p(\text{c.m.})$	$I_p(\text{rel})$	$I_p(abs)$	$E_{emitter}$ (¹¹⁴ Xe)	$E_{daughter}(^{113}\mathrm{I})$	coincident γ-rays	
	14.4(43)% 11.7(1.2)% 7.5(8)% 3.2(8)% 3.9(10)%	1.25(19)% 1.02(15)% 0.65(10)% 0.28(14)% 0.34(5)%			$\begin{array}{c} 0.0307(5) \\ 0.121.2(5) \\ 0.2388(5) \\ 0.4004(5) \\ 0.4035(5) \end{array}$	
* All values	from [1985Ti02].					
Table 6 β - α emission from β - α	pm ¹¹⁴ Cs*, $BR_{\beta p} = 0.1$	6(6)%.				
$E_{\alpha}(\text{c.m.})$	$I_{\alpha}(\text{rel})$	$I_{\alpha}(abs)$	$E_{emitter}$ (¹¹⁴ Xe)	$E_{daughter}(^{110}\text{Te})$	coincident γ-rays	
	17(8)%	0.027(10)%		0.6572(3)	0.6572(3)	
* All values	from [1985Ti02].					
Table 7 direct proton eminant	ission from ¹³⁰ Eu*, J ^{π}	$= T_{1/2} = 0.90^{+0.49}_{-0.29}$ ms, BF	$R_p = 100\%.$			
$E_p(\text{c.m.})$	$E_p(\text{lab})$	$I_p(abs)$	$\mathrm{J}_f^{m{\pi}}$	E _{dat}	ughter(¹²⁹ Sm)	coincident γ -rays
1.028(15)	1.020(15)	100%	$(1/2^+, 3/2^+)$	0.0		
*All values	from [2004Da04].					

References used in the Tables

- [1] 1956Ru45 G. Rudstam, Thesis, University of Uppsala (1956).
- [2] 1968Bo40 G. G. J.Boswell, T. McGee, J. Inorg. Nucl. Chem. 30, 2571 (1968). https://doi.org/10.1016/0022-1902(68)80381-1
- [3] 1975Sc07 H. Schmeing, J. C.H ardy, R. L. Graham, J. S. Geiger, Nucl. Phys. A242, 232 (1975). https://doi.org/10.1016/0375-9474(75)90045-7
- [4] 1977Ki11 R. Kirchner, O. Klepper, G. Nyman, W. Reisdorf, E. Roeckl, D. Schardt, N. Kaffrell, P. Peuser, K. Schneeweiss, Phys. Lett. 70B, 150 (1977). https://doi.org/10.1016/0370-2693(77)90508-1
- [5] 1978Ro19 E. Roeckl, R. Kirchner, O. Klepper, G. Nyman, W. Reisdorf, D. Schardt, K. Wien, R. Fass, S. Mattsson, Phys. Lett. 78B, 393 (1978). https://doi.org/10.1016/0370-2693(78)90468-9
- [6] 1980Ro04 E. Roeckl, G. M. Gowdy, R. Kirchner, O. Klepper, A. Piotrowski, A. Plochocki, W. Reisdorf, P. Tidemand-Petersson, J. ZyliCz, D. Schardt, G. Nyman, W. Lindenzweig, Z. Phys. A294, 221 (1980). https://doi.org/10.1007/BF01438159
- [7] 1981Ba40 G. K. Bavaria, J. E. Crawford, S. Calamawy, J. E. Kitching, Z. Phys. A302, 329 (1981). https://doi.org/10.1007/BF01414264
- [8] 1981Ox01 K. Oxorn, S. K. Mark, Z. Phys. A303, 63 (1981). https://doi.org/10.1007/BF01420011
- [9] 1981Sc17 D. Schardt, T. Batsch, R. Kirchner, O. Klepper, W. Kurcewicz, E. Roeckl, P. Tidemand-Petersson, Nucl. Phys. A368, 153 (1981). https://doi.org/10.1016/0375-9474(81)90737-5

- [10] 1982Ku15 W. KurcewiCz, E. F. Zganjar, R. Kirchner, O. Klepper, E. Roeckl, P. Komninos, E. Nolte, D. Schardt, P. Tidemand-Petersson, Z. Phys. A308, 21 (1982). https://doi.org/10.1007/BF01415845
- [11] 1985Ti02 P. Tidemand-Petersson, R. Kirchner, O. Klepper, E. Roeckl, D. Schardt, A. Plochocki, J. ZyliCz, Nucl. Phys. A437, 342 (1985). https://doi.org/10.1016/0375-9474(85)90094-6
- [12] 1985Wa10 E. K. Warburton, C. J. Lister, J. W. Olness, P. E. Haustein, S. K. Saha, D. E. Alburger, J. A. Becker, R. A. Dewberry, R. A. Naumann, Phys. Rev. C31, 1211 (1985). https://doi.org/10.1103/PhysRevC.31.1211
- [13] 1991He21 F. Heine, T. Faestermann, A. Gillitzer, J. Homolka, M. Kopf, W. Wagner, Z. Phys. A340, 225 (1991). https://doi.org/10.1007/BF01303837
- [14] 1994Pa12 R. D. Page, P. J. Woods, R. A. Cunningham, T. Davinson, N. J. Davis, A. N. James, K. Livingston, P. J. Sellin, A. C. Shotter, Phys. Rev. Lett. 72, 1798 (1994). https://doi.org/10.1103/PhysRevC.49.3312
- [15] 1995Sz01 J. Szerypo, M. Huyse, G. Reusen, P. Van Duppen, Z. Janas, H. Keller, R. Kirchner, O. Klepper, A. PiechaCzek, E. Roeckl, D. Schardt, K. Schmidt, R. Grzywacz, M. Pfutzner, A. Plochocki, K. Rykaczewski, J. ZyliCz, G. Alkhazov, L. Batist, A. Bykov, V. Wittmann, B. A. Brown, Nucl. Phys. A 584, 221 (1995). https://doi.org/10.1016/0375-9474(94)00513-M
- [16] 1996He25 M. Hellstrom, Z. Hu, A. Weber, M. Hencheck, M. J. Balbes, R. N. Boyd, D. Cano-Ott, R. Collatz, A. Guglielmetti, Z. Janas, M. Karny, R. Kirchner, J. Morford, D. J. Morrissey, G. Raimann, E. Roeckl, K. Schmidt, J. Szerypo, Z. Phys. A356, 229 (1996). https://doi.org/10.1007/s002180050171
- [17] 1997Ra22 G. Raimann, M. J. Balbes, R. N. Boyd, D. Cano-Ott, R. Collatz, A. Guglielmetti, M. Hellstrom, M. Hencheck, Z. Hu, Z. Janas, M. Karny, R. Kirchner, J. Morford, D. J. Morrissey, E. Roeckl, K. Schmidt, J. Szerypo, A. Weber, Nucl. Phys. A621, 215c (1997). oi: 10.1016/S0375-9474(97)00241-8
- [18] 1998Oi02 M. Oinonen, R. Beraud, G. Canchel, E. Chabanat, P. Dendooven, A. Emsallem, S. Hankonen, A. Honkanen, J. Huikari, A. Jokinen, G. Lhersonneau, Ch. Miehe, A. Nieminen, Yu. Novikov, H. Penttila, K. Perajarvi, A. Popov, D. M. Seliverstov, J. C. Wang, J. Aysto, Nucl. Instrum. Methods Phys. Res. A416, 485 (1998). https://doi.org/10.1016/S0168-9002(98)00613-5
- [19] 2002Ma61 H. Mahmud, C. N. Davids, P. J. Woods, T. Davinson, A. Heinz, J. J. Ressler, K. Schmidt, D. Seweryniak, J. Shergur, A. A. Sonzogni, W. B. Walters, Eur. Phys. J. A 15, 85 (2002). https://doi.org/10.1140/epja/i2001-10231-y
- [20] 2003SeZZ D. Seweryniak, C. N. Davids, P. J. Woods, T. Davinson, A. Heinz, H. Mahmud, G. Mukherjee, P. Munro, J. J. Ressler, A. Robinson, J. Shergur, W. B. Walters, A. Wohr, Proc. Frontiers of Nuclear Structure, Berkeley, California, P. Fallon and R. Clark, Eds., p. 71 (2003); AIP Conf. Proc. 656 (2003).
- [21] 2004Da04 C. N. Davids, P. J. Woods, H. Mahmud, T. Davinson, A. Heinz, J. J. Ressler, K. Schmidt, D. Seweryniak, J. Shergur, A. A. Sonzogni, W. B. Walters, Phys. Rev. C 69, 011302 (2004). https://doi.org/10.1103/PhysRevC.69.011302
- [22] 2005So06 D. Sohler, M. Palacz, Zs. Dombradi, M. Hjorth-Jensen, C. Fahlander, L. -O. Norlin, J. Nyberg, T. Back, K. Lagergren, D. Rudolph, A. Algora, C. Andreoiu, G. de Angelis, A. Atac, D. Bazzacco, J. Cederkall, B. Cederwall, B. Fant, E. Farnea, A. Gadea, M. Gorska, H. Grawe, N. Hashimoto-Saitoh, A. Johnson, A. Kerek, W. Klamra, J. Kownacki, S. M. Lenzi, A. Likar, M. Lipoglavsek, M. Moszynski, D. R. Napoli, C. Rossi-Alvarez, H. A. Roth, T. Saitoh, D. Seweryniak, O. Skeppstedt, J. Timar, M. Weiszflog, M. Wolinska, Nucl. Phys. A753, 251 (2005). https://doi.org/10.1016/j.nuclphysa.2005.02.153
- [23] 2021Wa16 M. Wang, W. J. Huang, F. G. Kondev, G. Audi, S. Naimi, Chin. Phys. C 45, 030003 (2021). https://doi.org/ 10.1088/1674-1137/abddaf