

Fig. 1: Known experimental values for heavy particle emission of the odd-Z T_z = +28 nuclei.

Last updated on 4/25/25

Table 1

Observed and predicted β -delayed particle emission from the odd-Z, $T_z = +28$ nuclei. Unless otherwise stated, all Q-values are taken from [2021Wa16] or deduced from values therein. J^{π} values are taken from ENSDE.

Nuclide	J^{π}	Ex.	$T_{1/2}$	$Q_{\mathcal{E}}$	Q _β -	Q_{β} - α	Experimental
²²² Bi			obs		6.46(30)#	11.08(42)#	[2010Al24]
²²⁶ At			obs	-2.89(50)#	5.91(30)#	9.93(30)#	[2010Al24]
²³⁰ Fr*			19.1(5) s	-2.68(20)#	4.970(12)	8.495(12)	[1987Ku04]
²³⁴ Ac*			44(7) s	-2.089(16)	4.228(14)	8.080(17)	[1986Gi08]
²³⁸ Pa*		(3 ⁻)	2.3(1) m	-1.63(28)#	3.586(16)	8.036(16)	[1968Tr07]
²⁴² Np*		(1^+)	2.2(2) m	-1.20(28)#	2.70(20)	7.87(20)	[1979Ha26]
²⁴⁶ Am*		(7-)	39(3) m	-0.401(14)#	2.377(18)#	8.032(18)	[1968Fi03]
²⁵⁰ Bk*		2^{-}	192.7(3) m	-0.038(11)	1.782(3)	8.090(3)	[1979Re01]
					$Q_{\varepsilon p}$	$Q_{\varepsilon \alpha}$	
²⁵⁴ Es		(7+)	275.7(5) d	0.653(12)	-6.22(36)#	6.580(11)	[1975Ah04]
^{254m} Es	0.082(5)	2^{+}	39.3(2) h	0.735(13)	-6.23(36)#	6.662(12)	[1962Un01]
²⁵⁸ Md		8-	51.50(29) d	1.26(20)#	-5.00(41)#	7.924(12)#	[1993Mo18]
²⁶² Lr			$\approx 4 h$	2.00(41)#	-3.76(55)#	9.25(28)#	[1989HuZU]
²⁶⁶ Db			11^{+21}_{-4} m	2.60(50)#	-2.78(62)#	10.22(46)#	[2022Og08]
²⁷⁰ Bh			$2.4^{+4.4}_{-0.9}$ m	2.80(55)#	-2.21(69)#	11.67(55)#	[2022Og08]
²⁷⁴ Mt			$0.64^{+0.76}_{-0.23}$ s	3.84(60)#	-0.72(76)#	13.39(59)#	[2022Og08]
²⁷⁸ Rg			$4.6^{+5.5}_{-1.6}$ ms	4.27(64)#	0.22(77)#	14.69(64)#	[2022Og08]
²⁸² Nh			61^{+73}_{-22} ms	4.90(68)#	1.11(87)#	15.05(68)#	[2022Og08]
²⁸⁶ Mc			20^{+98}_{-9} ms	5.41(68)#**	1.96(88)#**	20.61(68)#**	[2022Og08]

* 100% β^- -emitter.

** Deduced from measured E_{α} and mass excesses of daughter nuclei [2021Wa16].

Table 2

Particle separation, Q-values, and measured values for direct particle emission of the odd-Z, $T_z = +28$ nuclei. Unless otherwise stated, all S and Q-values are taken from [2021Wa16] or deduced from values therein.

Nuclide	\mathbf{S}_p	Qα	BRα	BR _{SF}	Experimental
222 D:		2 825(50)#			
226 •	7.01/40\#	2.823(30)#			
220 At	7.21(42)#	3.29(42)#			
230 Fr	7.165(15)	2.40(30)#			
²³⁴ Ac	6.782(16)	2.930(15)			
²³⁸ Pa	6.350(22)	3.628(21)			
²⁴² Np	6.07(28)#	4.10(20)			
²⁴⁶ Am	5.473(22)#	5.15(20)#			
²⁵⁰ Bk	5.088(4)	5.533(18)			
²⁵⁴ Es	4.596(5)	6.617(1)	100%*		[2008Ah02, 1999Po35, 1988Po05, 1987Po22, 1985Ok04, 1975Ah04,
					1972Bb24, 1971Bb10, 1966Mc02, 1965Me02, 1964Mc13, 1958Sc35,
					1956Jo09, 1955Ha35]
^{254m} Es	4.678(7)	6.699(5)	0.33(1)%		[1973Ah04 , 1972AhZS, 1972HaWO, 1972HaWR, 1967Fi03, 1964Mc13,
					1956Jo09, 1954Ch23, 1954Fi14]
²⁵⁸ Md	4.189(6)	7.271(2)	100%		[1993Mo18 , 1970Fi12, 1968Hu06]
²⁶² Lr	3 64(28)#	7.99(20)#		obs	[1989HuZU, 1987LoZR, 1990HuZV, 1991HeZT]
²⁶⁶ Db	3 24(46)#	8 21(20)#		obs	[2022Og08 2013Og01 2007Og02 2023 K ₀ 22 2012 Og77 2011 Og 07
20	5.21(10)#	0.21(20)#		005	20070g05 20070g011
²⁷⁰ Bh	2 75(47)#	9 ()64(95)#	100%**		[20070g08, 20070g01] 20070g02, 2023Ko22, 20120g77, 20110g07
DII	2.75(47)	9.004(99)	100%		20070g05 20070g011
274 Mt	1 201(52)#	10 60(22)#	1000/**		$[20070g03, 20070g01] = [20070g03, 20070g01, 20070g02, 2002K_022, 20120g77, 20110g07, 20070g02, 2002K_022, 20120g77, 20110g07, 20070g02, 2002K_022, 20120g77, 20120g77, 20110g07, 2002K_022, 2002K_02, 20$
IVIL	1.601(55)#	10.00(23)#	100%		[20220g00, 20130g01, 20070g02, 2023K022, 20120g22, 20110g07, 20070g05, 20070g01]
278 р	1.0((55))	10.05(05)#	1000 **		20070g03, 20070g01]
2 ¹⁰ Rg	1.86(55)#	10.85(95)#	100%**		[2022Og08, 2013Og01, 2007Og02, 2023K622, 2012OgZZ, 2011Og07,
- 192					2007Og05, 2007Og01]
²⁸² Nh	1.51(56)#	10.783(95)#	100%**		[2022Og08, 2013Og01, 2007Og02 , 2023Ko22, 2012OgZZ, 2011Og07,
					2007Og05, 2007Og01]
²⁸⁶ Mc	1.20(57)#***	10.86(2)	100%**		[2022Og08 , 2023Ko22]

* [1985Ok04] report a β^- branch of 1.74(8)×10⁻⁴%.

** Only α -decay has been observed.

*** Deduced from measured E_{α} and mass excesses of daughter nuclei [2021Wa16].

Table 3			
direct α emission from	$^{254}\text{Es*}, J^{\pi} = (7^+), T_1$	$_{1/2} = 275.7(5) d^*,$	$BR_{\alpha} = 100\%^{***}$

$E_{\alpha}(c.m.)$	$E_{\alpha}(lab)$	$I_{\alpha}(\text{rel})$	$I_{\alpha}(abs)$	J_f^π	$E_{daughter}(^{250}\mathrm{Bk})$	coincident γ -rays (keV)	HF [@]
5.879(3)	5.786(3)	6.1(3)×10 ⁻⁴ %	5.6(3)×10 ⁻⁴ %		0.739		238(25)
5.888(3)	5.795(3)	$4.0(2) \times 10^{-4}\%$	$3.7(2) \times 10^{-4}\%$		0.730		400(40)
5.902(3)	5.809(3)	$1.2(5) \times 10^{-3}\%$	$1.1(5) \times 10^{-3}\%$		0.716		160^{+140}_{-50}
5.928(3)	5.835(3)	$3.3(9) \times 10^{-3}\%$	$3.0(8) \times 10^{-3}\%$		0.689		84_{-19}^{+32}
5.964(3)	5.870(3)	2.6(8)×10 ⁻³ %	2.4(7)×10 ⁻³ %		0.654		160^{+70}_{-40}
5.979(3)	5.885(3)	$1.0(4) \times 10^{-3}\%$	9.3(4)×10 ⁻⁴ %	(9^{+})	0.637		520(50)
6.018(3)	5.923(3)	$1.7(7) \times 10^{-3}\%$	$1.6(6) \times 10^{-3}\%$		0.600		470^{+290}_{-140}
6.032(3)	5.937(3)	8.2(4)×10 ⁻⁴ %	$7.5(4) \times 10^{-4}\%$		0.586		$1.20(12) \times 10^3$
6.072(3)	5.976(3)	0.105(5)%	0.096(5)%	8+	0.5450	310.2, 390.3, 460.8	15.4(16)
6.096(3)	6.000(3)	$5.3(1) \times 10^{-3}\%$	$4.9(10) \times 10^{-3}\%$	(9-)	0.520		410^{+110}_{-80}
6.142(2)	6.045(2)	$2.2(2) \times 10^{-3}\%$	$2.1(2) \times 10^{-3}\%$	8^+	0.4748	320.6, 390.3	$1.63(21) \times 10^3$
6.151(2)	6.054(2)	0.22(6)%	0.20(5)%	7^{+}	0.4648	310.2, 380.4	19^{+7}_{-4}
6.174(3)	6.077(3)	4.9(11)×10 ⁻³ %	$4.5(10) \times 10^{-3}\%$	9-	0.442		$1.1^{+0.3}_{-0.2} \times 10^3$
6.185(2)	6.088(2)	0.083(2)%	0.076(2)%	(8^{-})	0.431	346.6	76(7)
6.211(2)	6.113(2)	0.59(11)%	0.54(10)%	6^{+}	0.4050	320.6	14^{+4}_{-3}
6.246(2)	6.148(2)	2.2(3)×10 ⁻³ %	2.0(3)×10 ⁻³ %	6^{+}	0.3696	285.2	$5.9^{+1.2}_{-0.9} \times 10^3$
6.263(2)	6.164(2)	0.033(2)%	0.030(2)%	6^{+}	0.3539	269.5	470(50)
6.277(2)	6.178(2)	0.038(2)%	0.035(2)%	8-	0.339		480(50)
6.289(2)	6.190(2)	0.015(8)%	0.0142(7)%	10^{+}	0.3273		$1.35(14) \times 10^3$
6.300(2)	6.201(2)	$5.9(5) \times 10^{-3}\%$	$5.4(5) \times 10^{-3}\%$	5^{+}	0.3165	35.6, 42.6, 238.2, 280.9	$4.0(5) \times 10^3$
6.353(3)	6.253(3)	0.0113(6)%	0.0104(5)%	8^{+}	0.263		$3.8(4) \times 10^3$
6.368(2)	6.268(2)	0.26(6)%	0.243(5)%	7-	0.248		194(17)
6.380(2)	6.280(2)	0.18(6)%	0.168(5)%	9^{+}	0.2355		322^{+31}_{-29}
6.413(3)	6.312(3)	$1.5(2) \times 10^{-3}\%$	$1.4(2) \times 10^{-3}\%$	4^{-}	0.203		$5.6^{+1.1}_{-0.9} \times 10^4$
6.424(2)	6.323(2)	0.050(1)%	0.046(1)%	7+	0.192		$1.9(2) \times 10^3$
6.450(2)	6.348(2)	0.98(1)%	0.90(1)%	6-	0.167		129(11)
6.462(2)	6.360(2)	3.31(1)%	3.04(1)%	8^{+}	0.1547		44(4)
6.487(3)	6.385(3)	0.163(7)%	0.150(5)%	6^{+}	0.129		$1.17(11) \times 10^3$
6.502(3)	6.400(3)	0.049(2)%	0.045(2)%	3+	0.114		$4.6(5) \times 10^3$
6.520(3)	6.417(3)	2.50(2)%	2.29(2)%	5-	0.0975	35.6, 61.9	108(9)
6.532(2)	6.429(2)	100%	91.8(2)%	7+	0.0844		3.1(3)
6.581(2)	6.477(2)	0.34(1)%	0.31(1)%	4+	0.0356	35.6	$1.55(14) \times 10^3$
6.616(3)	6.512(3)	$2.6(3) \times 10^{-3} \sqrt{\%}$	$2.4(3) \times 10^{-3} $ %	2-	0.0		$2.9^{+0.5}_{-0.4} \times 10^5$

* All values from [2008Ah02], except where noted.

** [1975Ah04].

*** There is also a β^- branch of 1.74(8)×10⁻⁴% [1985Ok04].

[@] $R_0 = 1.5000(35)$ fm. Value is interpolated between 1.50113(23) (²⁵²Cf) and 1.4989(35) (²⁵⁶Fm).

Table 4

direct α emission from ^{254m}Es*, Ex. = 82(5) keV, $J^{\pi} = 2^+$, $T_{1/2} = 39.3(2)$ h*, $BR_{\alpha} = 0.33(1)\%$.

$E_{\alpha}(c.m.)$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(\text{rel})$	$I_{\alpha}(abs)$	\mathbf{J}_f^{π}	$E_{daughter}(^{250}\mathrm{Bk})$	coincident γ -rays (keV)	HF [@]
6.383(3)	6.282(3)	0.21(4)%	$5.3(10) \times 10^{-4}\%$	5+	0.316	34.5, 42.7, 238.1***, 280.9***	620^{+100}_{-110}
6.400(2)	6.299(2)	0.64(8)%	$1.6(2) \times 10^{-3}\%$		0.298		250^{+50}_{-40}
6.428(2)	6.327(2)	2.9(3)%	$7.3(7) \times 10^{-3}\%$	4+	0.270	34.5, 58.6***, 42.7, 52.2***, 79.9, 96.3,	75(10)
						177.3, 211.8, 236.0***	
6.461(2)	6.359(2)	11.1(7)%	0.027(2)%	3^{+}	0.2367***	34.5, 79.9***, 121.3***, 202.3***	$28.7^{3.3}_{-3.1}$
6.486(2)	6.384(2)	100(2)%	0.248(8)%	2^{+}	0.2118	34.5, 42.7, 52.2***, 79.9, 96.3, 177.3, 211.8	4.2(4)
6.520(2)	6.417(2)	2.4(3)%	$5.9(7) \times 10^{-3}\%$	(1^{+})	0.1753	50.1, 71.3, 90.7, 104.0, 126.0, 175.1***	260(40)
6.560(3)	6.457(3)	0.16(5)%	4.0(13)×10-4%	(5 ⁻)***	0.1373***	34.5, 45,8***, 57.1***, 80.3***, 102.8***	$5.8^{+3.0}_{-1.6} \times 10^3$
6.568(2)	6.465(2)	0.83(9)%	$2.0(2) \times 10^{-3}\%$	6^{+}	0.1319	34.5, 42.7, 52.2***, 96.3	$1.2(2) \times 10^3$
6.575(4)	6.471(4)	$\approx 0.11\%$	$\approx 2.6 \times 10^{-4}\%$		0.1253	34.5, 90.7	$\approx 10^4$
6.619(2)	6.515(2)	1.9(2)%	$4.6(5) \times 10^3\%$		0.079	34.5,42.7	930^{+140}_{-120}
6.664(2)	6.559(2)	7.7(5)%	0.019(1)%	3-	0.0345	34.5	360(40)
6.698(4)	6.593(4)	5.3(7)%	0.013(2)%	2^{-}	0.0		740^{+140}_{-110}

* All values from [1973Ah04], except where noted. E_{α} values are adjusted by +1.9 keV as recommended in [1991Ry01].

** [1962Un01].

*** [2019Si11].

[@] $R_0 = 1.5000(35)$ fm. Value is interpolated between 1.50113(23) (²⁵²Cf) and 1.4989(35) (²⁵⁶Fm).

Table 5 direct α emission from ²⁵⁸Md*, $J^{\pi} = (7^+)$, $T_{1/2} = 275.7(5)$ d*, $BR_{\alpha} = 100\%$ ***.

$E_{\alpha}(c.m.)$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(\text{rel})$	$I_{\alpha}(abs)$	J_f^π	$E_{daughter}(^{254}\mathrm{Es})$	coincident γ -rays (keV)	HF**
6.802(2) 6.824(2)	6.697(2) 6.718(2)	5.2(21)% 100(19)%	3.4(14)% 65.8(13)%	9- 8-	0.4692 0.4479	80.1, 91.0, 171.1, 298.1, 389.1 71.1, 80.1, 86.9, 91.0, 171.1, 205.7, 276.8, 206.7, 367.8, 376.8, 447.9	$180^{+130}_{-60}\\11.7^{+2.0}_{-1.7}$
6.870(4) 6.895(2)	6.763(4) 6.788(2)	31.6(18)% 15.1(15)%	20.8(12)% 9.9(10)%	(7 ⁻ ,8 ⁻) 8 ⁻	0.4038 0.3768	189.7, 214.7 80.1, 86.9, 91.0, 171.1, 205.7, 296.7,	58^{+10}_{-9} 161^{+33}_{-22}
						376.8	-28
7.100(2)	6.99(2)	$\leq 0.3\%$	$\leq 0.2\%$	9+	0.1711	80.1, 91.0, 171.1	$\geq 6.1 \times 10^4$
7.191(2)	7.08(2)	$\leq 0.3\%$	$\leq 0.2\%$	8^+	0.0801	80.1	$\geq 1.5 \times 10^{5}$
7.272(2)	7.159(2)	$\leq 0.3\%$	$\leq 0.2\%$	7+	0.0		$\geq 3.1 \times 10^{5}$

* All values from [1993Mo18], ** $R_0 = 1.4921(62)$ fm. Value is interpolated between 1.4989(35) (²⁵⁶Fm) and 1.4852(51) (²⁶⁰No).

Table 6	270						
direct α emis	sion from ²⁷⁰ Bh, T ₁	$_{1/2} = 2.4^{+4.4}_{-0.9} \text{ m*}, B$	$R_{\alpha} = 100\%$	***.			
$E_{\alpha}(\text{c.m.})$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(abs)$	${ m J}_f^\pi$	$E_{daughter}(^{266}\text{Db})$	coincident γ-rays (keV)	HF***	
9.06(2)	8.93(2)**	100%***					
* [20220 ** [2011 *** Only	Dg08]. Og07]. γ α-decay has been	observed.					
Table 7 direct α emis	sion from ²⁷⁴ Mt, T ₁	$_{/2} = 0.64^{+0.76}_{-0.23}$ s*,	$BR_{\alpha} = 100\%$	<i>6***</i> .			
$E_{\alpha}(c.m.)$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(abs)$	${ m J}_f^\pi$	$E_{daughter}(^{270}\mathrm{Bh})$	coincident γ-rays (keV)	HF**	
10.1(11)	10.0(11)**	100%***					
* [20220 ** [2011 *** Only	Dg08]. Og07]. γ α-decay has been	observed.					
Table 8 direct α emis	sion from ²⁷⁸ Rg, T ₁	$_{/2} = 4.6^{+5.5}_{-1.6} \mathrm{ms}^*,$	$BR_{\alpha} = 100\%$	<i>°</i> 0***.			
$E_{\alpha}(\text{c.m.})$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(abs)$	\mathbf{J}_f^{π}	$E_{daughter}(^{274}\mathrm{Mt})$	coincident γ -rays (keV)	HF**	
10.84(8)	10.69(8)**	100%***					
* [20220 ** [2011 *** Only	Dg08]. Og07]. γ α-decay has been	observed.					
Table 9 direct α emis	sion from ²⁸² Nh, T ₁	$_{1/2} = 61^{+73}_{-22} \text{ ms*}, B$	$R_{\alpha} = 100\%$	***.			
$E_{\alpha}(\text{c.m.})$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(abs)$	J_f^π	$E_{daughter}(^{278}\mathrm{Rg})$	coincident γ -rays (keV)	HF**	
10.78(8)	10.63(8)**	100%***	4	~			
* [20220	Dg08].						

** [2011Og07]. *** Only α-decay has been observed.

Table 10 direct α emission from ²⁸⁶Mc*, $T_{1/2} = 20^{+98}_{-9}$ ms, $BR_{\alpha} = 100\%^{**}$.

$E_{\alpha}(c.m.)$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(abs)$	$\mathbf{J}_f^{\boldsymbol{\pi}}$	$E_{daughter}(^{282}\mathrm{Nh})$	coincident γ -rays (keV)	HF**	
10.86(2)	10.71(2)	100%**					

* All values from [2022Og08].

** Only α -decay has been observed.

References used in the Tables

- [1] 1954Ch23 G. R. Choppin, S. G. Thompson, A. Ghiorso, B. G. Harvey, Phys. Rev. 94, 1080 (1954). https://doi.org/10.1103/PhysRev.94.1080
- [2] 1954Fi14 P. R. Fields, M. H. Studier, J. F. Mech, H. Diamond, A. M. Friedman, L. B. Magnusson, J. R. Huizenga, Phys. Rev. 94, 209 (1954). https://doi.org/10.1103/PhysRev.94.209
- [3] 1955Ha35 B. G. Harvey, S. G. Thompson, G. R. Choppin, A. Ghiorso, Phys. Rev. 99, 337 (1955). https://doi.org/10.1103/PhysRev.99.337
- [4] 1956J009 M. Jones, R. P. Schuman, J. P. Butler, G. Cowper, T. A. Eastwood, H. G. Jackson, Phys. Rev. 102, 203 (1956). https://doi.org/10.1103/PhysRev.102.203
- [5] 1958Sc35 R. P. Schuman, T. A. Eastwood, H. G. Jackson, J. P. Butler, J. Inorg. Nuclear Chem. 6, 1 (1958). https://doi.org/10.1016/0022-1902(58).80092-5
- [6] 1962Un01 J. Unik, P. Day, S. Vandenbosch, Nuclear Phys. 36, 284 (1962). https://doi.org/10.1016/0029-5582(62).90452-2
- [7] 1964Mc13 W. C. McHarris, F. S. Stephens, F. Asaro, I. Perlman, UCRL-11213, p. 14 (1964).
- [8] 1965Me02 D. Metta, H. Diamond, R. F. Barnes, J. Milsted, J. Gray, Jr., D. J. Henderson, C. M. Stevens, J. Inorg. Nucl. Chem. 27, 33 (1965). https://doi.org/10.1016/0022-1902(65).80187-7
- [9] 1966Mc02 W. McHarris, F. S. Stephens, F. Asaro, I. Perlman, Phys. Rev. 144, 1031 (1966). https://doi.org/10.1103/PhysRev.144.1031
- [10] 1967Fi03 P. R. Fields, H. Diamond, A. M. Friedman, J. Milsted, J. L. Lerner, R. F. Barnes, R. K. Sjoblom, D. N. Metta, E. P. Horwitz, Nucl. Phys. A96, 440 (1967). https://doi.org/10.1016/0375-9474(67).90725-7
- [11] 1968Fi03 P. R. Fields, I. Ahmad, R. K. Sjoblom, R. F. Barnes, E. P. Horwitz, J. Inorg. Nucl. Chem. 30, 1345 (1968). https://doi.org/10.1016/0022-1902(68).80272-6
- [12] 1968Hu06 E. K. Hulet, A. Ghiorso, R. W. Lougheed, J. E. Evans, J. D. Brady, R. W. Hoff, R. E. Stone, B. J. Qualheim, Bull. Am. Phys. Soc. 13, No. 4, 604, DF7 (1968).
- [13] 1970Fi12 P. R. Fields, I. Ahmad, R. F. Barnes, R. K. Sjoblom, E. P. Horwitz, Nucl. Phys. A154, 407 (1970). https://doi.org/10.1016/0375-9474(70).90166-1
- [14] 1971Bb10 S. A. Baranov, V. M. Shatinskii, V. M. Kulakov, Yad. Fiz. 14, 1101 (1971); Sov. J. Nucl. Phys. 14, 614 (1972).
- [15] 1972AhZS P. R. Fields, H. Diamons, I. Ahmad, R. F. Barnes, R. Sjoblom, F. Wagner, W. McHarris, -REPT ANL-7930, P2, I Ahmad, 11/2/72, CRL
- [16] 1972Bb24 S. A. Baranov, V. M. Shatinskii, V. M. Kulakov, Y. F. Rodionov, Zh. Eksp. Teor. Fiz. 63, 375 (1972). ; Sov. Phys. JETP 36, 199 (1973).
- [17] 1972HaWO J. Milsted, N. J. Hansen, A. H. Jaffey, P. R. Fields, R. G. Scott, ANL-7930, p. 43 (1972).
- [18] 1972HaWR N. J. Hansen, A. H. Jaffey, P. R. Fields, R. G. Scott, REPT ANL-7930, P43, 11/2/72.
- [19] 1973Ah04 I. Ahmad, H. Diamond, J. Milsted, J. Lerner, R. K. Sjoblom, Nucl. Phys. A208, 287 (1973). https://doi.org/10.1016/0375-9474(73).90376-X
- [20] 1975Ah04 I. Ahmad, J. P. Unik, J. Inorg. Nucl. Chem. 37, 1851 (1975). https://doi.org/10.1016/0022-1902(75).80900-6
- [21] 1979Ha26 P. E. Haustein, H-C. Hseuh, R. L. Klobuchar, E-M. Franz, S. Katcoff, L. K. Peker, Phys. Rev. C19, 2332 (1979). https://doi.org/10.1103/PhysRevC.19.2332
- [22] 1979Re01 C. W. Reich, R. G. Helmer, R. J. Gehrke, Phys. Rev. C19, 188 (1979). https://doi.org/10.1103/PhysRevC.19.188
- [23] 1985Ok04 G. D. O'Kelley, J. Halperin, Radiochim. Acta 38, 1 (1985). https://doi.org/10.1524/ract.1985.38.1.1

- [24] 1986Gi08 K. -L. Gippert, E. Runte, W. -D. Schmidt-Ott, P. Tidemand-Petersson, N. Kaffrell, P. Peuser, R. Kirchner, O. Klepper, W. Kurcewicz, P. O. Larsson, E. Roeckl, D. Schardt, K. Rykaczewski, Nucl. Phys. A453, 1 (1986). https://doi.org/10. 1016/0375-9474(86)90025-4
- [25] 1987Ku04 W. Kurcewicz, E. Ruchowska, P. Hill, N. Kaffrell, G. Nyman, and the ISOLDE Collaboration, Nucl. Phys. A464, 1 (1987). https://doi.org/10.1016/0375-9474(87).90418-0
- [26] 1987LoZR R. W. Lougheed, K. J. Moody, R. J. Dougan, J. F. Wild, E. K. Hulet, R. J. Dupzyk, C. M. Henderson, c. M. Gannett, R. A. Henderson, D. C. Hoffman, D. M. Lee, K. Summerer, R. L. Hahn, UCAR 10062-87, p. 4-2 (1987).
- [27] 1987Po22 Yu. S. Popov, G. A. Timofeev, V. B. Mishenev, V. N. Kovantsev, A. A. Elesin, Radiokhimiya 29, 447 (1987).; Sov. J. Radiochemistry 29, 431 (1987).
- [28] 1988Po05 Yu. S. Popov, V. N. Kovantsev, A. A. Elesin, G. A. Timofeev, Radiokhimiya 30, 10 (1988).; Sov. J. Rad. Chem. 30, 8 (1988).
- [29] **1989HuZU** E. K. Hulet, UCRL-100763 (1989).
- [30] 1990HuZV E. K. Hulet, Proc. Conf on Chemical Research XXXIV Fifty Years with Transuranium Elements, Houston, Texas, October 22-23, 1990, p. 279 (1990).
- [31] 1991HeZT R. A. Henderson, K. E. Gregorich, H. L. Hall, J. D. Leyba, K. R. Czerwinski, B. Kadkhodayan, S. A. Kreek, N. J. Hannink, M. J. Nurmia, D. M. Lee, D. C. Hoffman, LBL-30798, p. 65 (1991).
- [32] 1993Mo18 K. J. Moody, R. W. Lougheed, J. F. Wild, R. J. Dougan, E. K. Hulet, R. W. Hoff, C. M. Henderson, R. J. Dupzyk, R. L. Hahn, K. Summerer, G. D. O'Kelley, G. R. Bethune, Nucl. Phys. A563, 21 (1993). https://doi.org/10.1016/0375-9474(93)90010-U
- [33] 1999Po35 Yu. S. Popov, G. A. Timofeev, A. A. Elesin, Radiochemistry 41, 37 (1999).; Radiokhimiya 41, 36 (1999).
- [34] 2007Og01 Y. Oganessian, J. Phys. (London). G34, R165 (2007). https://doi.org/10.1088/0954-3899/34/4/R01
- [35] 2007Og02 Yu. Ts. Oganessian, V. K. Utyonkov, Yu. V. Lobanov, F. Sh. Abdullin, A. N. Polyakov, R. N. Sagaidak, I. V. Shirokovsky, Yu. S. Tsyganov, A. A. Voinov, G. G. Gulbekian, S. L. Bogomolov, B. N. Gikal, A. N. Mezentsev, V. G. Subbotin, A. M. Sukhov, K. Subotic, V. I. Zagrebaev, G. K. Vostokin, M. G. Itkis, R. A. Henderson, J. M. Kenneally, J. H. Landrum, K. J. Moody, D. A. Shaughnessy, M. A. Stoyer, N. J. Stoyer, P. A. Wilk, Phys. Rev. C 76, 011601 (2007). https://doi.org/10.1103/PhysRevC.76.011601
- [36] 2007Og05 Yu. Ts. Oganessian, Nucl. Phys. A787, 343c (2007). https://doi.org/10.1016/j.nuclphysa.2006.12.055
- [37] 2008Ah02 I. Ahmad, F. G. Kondev, Z. M. Koenig, Wm. C. McHarris, S. W. Yates, Phys. Rev. C 77, 054302 (2008). https://doi.org/10.1103/PhysRevC. 77. 054302
- [38] 2010Al24 H. Alvarez-Pol, J. Benlliure, E. Casarejos, L. Audouin, D. Cortina-Gil, T. Enqvist, B. Fernandez-Dominguez, A. R. Junghans, B. Jurado, P. Napolitani, J. Pereira, F. Rejmund, K. -H. Schmidt, O. Yordanov, Phys. Rev. C 82, 041602 (2010). https://doi.org/10.1103/PhysRevC.82.041602
- [39] 2011Og07 Yu. Ts. Oganessian, Radiochim. Acta 99, 429 (2011). https://doi.org/10.1524/ract.2011.1860
- [40] 2012OgZZ Yu. Ts. Oganessian, F. Sh. Abdullin, S. N. Dmitriev, J. M. Gostic, J. H. Hamilton, R. A. Henderson, M. G. Itkis, K. J. Moody, A. N. Polyakov, A. V. Ramayya, J. B. Roberto, K. P. Rykaczewski, R. N. Sagaidak, D. A. Shaughnessy, I. V. Shirokovsky, M. A. Stoyer, V. G. Subbotin, A. M. Sukhov, Yu. S. Tsyganov, V. K. Utyonkov, A. A. Voinov, G. K. Vostokin, JINR-E7-2012-58 (2012).
- [41] 2013Og01 Yu. Ts. Oganessian, F. Sh. Abdullin, S. N. Dmitriev, J. M. Gostic, J. H. Hamilton, R. A. Henderson, M. G. Itkis, K. J. Moody, A. N. Polyakov, A. V. Ramayya, J. B. Roberto, K. P. Rykaczewski, R. N. Sagaidak, D. A. Shaughnessy, I. V. Shirokovsky, M. A. Stoyer, N. J. Stoyer, V. G. Subbotin, A. M. Sukhov, Yu. S. Tsyganov, V. K. Utyonkov, A. A. Voinov, G. K. Vostokin, Phys. Rev. C 87, 014302 (2013). https://doi.org/10.1103/PhysRevC.87.014302
- [42] 2019Si11 B. Singh, Nucl. Data Sheets 156, 1 (2019). https://doi.org/10.1016/j.nds.2019.02.003
- [43] 2021Wa16 M. Wang, W. J. Huang, F. G. Kondev, G. Audi, S. Naimi, Chin. Phys. C 45, 030003 (2021). https://doi.org/10.1088/1674-1137/abddaf
- [44] 2022Og08 Yu. Ts. Oganessian, V. K. Utyonkov, N. D. Kovrizhnykh, F. Sh. Abdullin, S. N. Dmitriev, A. A. Dzhioev, D. Ibadullayev, M. G. Itkis, A. V. Karpov, D. A. Kuznetsov, O. V. Petrushkin, A. V. Podshibiakin, A. N. Polyakov, A. G. Popeko, I. S. Rogov, R. N. Sagaidak, L. Schlattauer, V. D. Shubin, M. V. Shumeiko, D. I. Solovyev, Yu. S. Tsyganov, A. A. Voinov, V. G. Subbotin, A. Yu. Bodrov, A. V. Sabelnikov, A. V. Khalkin, K. P. Rykaczewski, T. T. King, J. B. Roberto, N. T. Brewer, R. K. Grzywacz, Z. G. Gan, Z. Y. Zhang, M. H. Huang, H. B. Yang, Phys. Rev. C 106, 064306 (2022). https://doi.org/10.1103/PhysRevC.106.064306

[45] 2023Ko22 N. D. Kovrizhnykh, Yu. Ts. Oganessian, V. K. Utyonkov, F. Sh. Abdullin, S. N. Dmitriev, A. A. Dzhioev, D. Ibadullayev, M. G. Itkis, A. V. Karpov, D. A. Kuznetsov, O. V. Petrushkin, A. V. Podshibiakin, A. N. Polyakov, A. G. Popeko, I. S. Rogov, R. N. Sagaidak, L. Schlattauer, V. D. Shubin, M. V. Shumeiko, D. I. Solovyev, Yu. S. Tsyganov, A. A. Voinov, V. G. Subbotin, A. Yu. Bodrov, A. V. Sabelnikov, A. V. Khalkin, Bull. Rus. Acad. Sci. Phys. 87, 1098 (2023). https://doi.org/10.3103/S106287382370291X