VECTORWORKS EDUCATIONAL VERSION

Last updated 3/31/2025

Table 1

Observed and predicted β -delayed particle emission from the odd-*Z*, $T_z = +27$ nuclei. Unless otherwise stated, all Q-values are taken from [2021Wa16] or deduced from values therein. J^{π} values are taken from ENSDE.

Nuclide	J^{π}	$T_{1/2}$	$Q_{arepsilon}$	Q _β -	Q_{β} - α	Experimental	
²²⁰ Bi*		9 5(57) s	-3 17(50)#	5 70(30)#	16 93(30)#	[2010A]24]	
²²⁴ At*		obs	-2.20(20)#	5.266(24)	10.203(28)	[2012Ch19]	
²²⁸ Fr*	2^{-}	38*1) s	-1.859(19)	4.444(7)	8.694(12)	[1982Ru04]	
²³² Ac*	(1^{+})	119(5) s	-1.343(16)	3.708(13)	7.969(13)	[1986Gi08]	
²³⁶ Pa*	1+		-0.921(20)	2.889(14)	7.642(14)	[1984Mi02]	
²⁴⁰ Np*	(5+)	61.9(2) m	-0.399(17)	2.191(17)	7.626(17)	[1982Pa23]	
•				$Q_{\varepsilon p}$	$Q_{\varepsilon \alpha}$		
²⁴⁴ Am*	(6 ⁻)	10.01(3) h	0.073(3)	-7.220(30)#	4.739(3)	[2019Tr05]	
²⁴⁸ Bk*	(6^{+})		0.740(50)	-6.31(11)#	5.899(50)	[1973Fi06]	
²⁵² Es	(5 ⁻)	471.7(17) d	1.260(50)	-5.227(51)	7.472(50)	[1977Ah03]	-
²⁵⁶ Md	(1^{-})	78.1(18) m	1.97(12)#	-3.92(12)#	9.00(12)#	[1993Mo18]	
²⁶⁰ Lr		180(30) s	2.67(24)#	-2.58(16)#	10.37(13)#	[1971Es01]	
²⁶⁴ Db			3.19(43)#	-1.70(33)#	11.23(31)#		
²⁶⁸ Bh			3.91(61)#	-0.60(54)#	12.201(53)#		-
²⁷² Mt			4.48(70)#	0.33(62)#	14.26(68)#		
²⁷⁶ Rg			4.85(83)#	1.33(74)#	15.96(81)#		
²⁸⁰ Nh			5.59(71)#	2.23(58)#	16.28(68)#		

* 100% β^- emitter.

** Taken from α decay of ²⁵²Es [1973Fi06], might not be the ground state.

Table 2

Particle separation, Q-values, and measured values for direct particle emission of the odd-Z, $T_z = +27$ nuclei. Unless otherwise stated, all S and Q-values are taken from [2021Wa16] or deduced from values therein.

Nuclide	\mathbf{S}_p	Qα	BRα	BR _{SF}	Experimental	
2205.	< 0.5 (50) H					
²²⁰ B1	6.95(50)#	3.66(42)#				
²²⁴ At	6.66(20)#	4.33(30)#				
²²⁸ Fr	6.791(16)	3.248(23)				
²³² Ac	6.351(17)	3.345(15)				
²³⁶ Pa	5.973(19)	3.755(19)				
²⁴⁰ Np	5.545(17)	4.557(22)				
²⁴⁴ Am	5.164(3)	5.138(17)				
²⁴⁸ Bk	4.691(50)	5.827(50)				
²⁵² Es	4.129(50)	6.739(1)	78(6)%		[1973Fi06, 1977Ah03, 1973AhZQ, 1965Mc11, 1956Ha80]	
²⁵⁶ Md	3.63(12)#	7.74(11)#	9.5(4)%*		[2000Ah02, 1993Mo18, 1971Ho16, 1970Fi12, 2019Ah04, 1965Si14,	
						1955Gh02]
²⁶⁰ Lr	3.09(13)#	8.40(14)#	100%		[1971Es01]	
²⁶⁴ Db	2.78(28)#	8.56(20)#				
²⁶⁸ Bh	2.39(46)#	9.02(30)#				
²⁷² Mt	1.50(56)#	10.35(30)#				
276 R g	1.53(30)#	11 48(40)#				
280 NIL	$1.57(72)\pi$ 1.07(56)#	11.40(40)#				
INII	1.07(30)#	11.45(75)#				

* Weighted average of 9.9(5)% [1971Ho16] and 8.5(8)% [1970Fi12].

Table 3				
direct α emission from	$^{252}\text{Es*}, J^{\pi} = (3$	5^{-}), $T_{1/2} = 471$.	7(19) d**, Bl	$R_{\alpha} = 78(6)\%$

$E_{\alpha}(c.m.)$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(\text{rel})$	$I_{\alpha}(abs)$	\mathbf{J}_f^{π}	<i>E</i> _{daughter} (²⁴⁸ Bk)	coincident γ -rays (keV)	R ₀ (fm)***	HF
6.038(4)	5 942(4)	0.050(10)%	0.031(12)%	e +	0.700(5)		1 48566(81)	35+22
6.081(4)	5.942(4) 5.984(4)	0.050(19)%	0.031(12)% 0.039(12)%	6-	0.700(3)		1.48566(81)	33_{-10} 47^{+22}
6.001(4)	5.96+(+) 6.016(4)	0.002(17)% 0.15(4)%	0.09(2)%	7+	0.625(5)		1.48566(81)	29^{+11}
6.148(3)	6.050(3)	1.27(11)%	0.80(9)%	5^{-}	0.590(4)	377.4, 418.5, 590.0	1.48566(81)	$5.1^{+0.8}_{-6}$
6.207(5)	6.108(5)	0.15(4)%	0.09(2)%		0.531(6)	529.1	1.48566(81)	87 ⁺³²
6.254(5)	6.155(5)	$\approx 0.05\%$	≈0.03%		0.483(6)		1.48566(81)	$\approx 500^{-20}$
6.280(5)	6.180(5)	0.10(4)%	0.06(2)%		0.458(6)		1.48566(81)	300^{+190}_{-90}
6.314(5)	6.214(5)	0.12(4)%	0.08(2)%		0.424(6)		1.48566(81)	360^{+170}_{-90}
6.339(3)	6.238(3)	0.71(6)%	0.44(5)%		0.399(4)	399.7	1.48566(81)	$\frac{-90}{83^{+13}_{-10}}$
6.365(3)	6.264(3)	0.94(9)%	0.59 (7)%		0.373(4)	193.5, 228.0	1.48566(81)	85^{+13}_{-11}
6.399(5)	6.297(5)	$\approx 0.05\%$	≈0.03%		0.339(6)		1.48566(81)	$\approx 2 \times 10^3$
6.476(5)	6.373(5)	0.09(4)%	0.05(2)%		0.262(6)		1.48566(81)	$3.1^{+2.4}_{-1.0} \times 10^3$
6.527(5)	6.423(5)	0.56(6)%	0.35(5)%	(5 ⁻)	0.211(6)		1.48566(81)	840+150
6.564(3)	6.460(3)	0.31(5)%	0.20(3)%	(4^{-})	0.174(4)		1.48566(81)	$1.6^{+0.3}_{-0.2} \times 10^3$
6.586(3)	6.481(3)	2.73(12)%	1.71(15)%	8+	0.152(4)	70.7, 80.7, 151.3	1.48566(81)	326(34)
6.602(5)	6.497(5)	0.39(5)%	0.24(4)%		0.136(6)	64.4, 70.7	1.48566(81)	$2.7(5) \times 10^3$
6.667(3)	6.561(3)	17.0(4)%	10.6(9)%	7+	0.071(4)	70.7	1.48566(81)	123(12)
6.738(3)	6.631(3)	100%	62.6(7)%	(6 ⁺)	0.0		1.48566(81)	44(4)

* All values from [1973Fi06], except where noted.

** [1977Ah03].

*** Interpolated between 1.48260(30) fm (^{250}Cf) and 1.48871(75) fm $(^{254}Fm).$

Table 4

direct α emission from ²⁵⁶ Md*, $J^{\pi} = (1^{-}), T_{1/2} = 78.1(18) \text{ m**}, BR_{\alpha} = 9.5(4)\%^{***}$.								
$E_{\alpha}(\text{c.m.})$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(\text{rel})$	$I_{\alpha}(abs)$	J_f^π	$E_{daughter}(^{252}\mathrm{Es})$	coincident γ -rays (keV)	$R_0 (fm)^@$	HF
7.255(5)	7.142(5)	31(2)%	2.1(1)%		0.542(9)		1.483(24)	$3.6^{+3.0}_{-1.7}$
7.320(4)	7.206(4)	100(3)%	6.8(3)%		0.477(9)		1.483(24)	$2.1^{+1.7}_{-1.0}$
7.362(5)	7.247(5)	3.5(7)%	0.24(5)%		0.436(9)		1.483(24)	90_{-40}^{+70}
7.763(8)	7.642(8)	3.0(7)%	0.20(5)%		0.035(11)		1.483(24)	$3.4^{+3.0}_{-1.7} \times 10^3$
7.798(8)	7.676(8)	3.5(7)%	0.24(5)%	(5^{-})	0.0		1.483(24)	$3.8^{+3.3}_{-1.9} \times 10^3$

* All values from [2000Ah02], except where noted.

** [1993Mo18].

*** Weighted average of 9.9(5)% [1971Ho16] and 8.5(8)% [1970Fi12].

[@] Interpolated between 1.48871(75) fm (254 Fm) and 1.477(24) fm (258 No).

Table 5

Table 5				
direct α emission from	1^{260} Lr*, T _{1/2} =	180(30) s,	$BR_{\alpha} = 10$	0%

$E_{\alpha}(\text{c.m.})$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(abs)$	\mathbf{J}_f^{π}	$E_{daughter}(^{256}Md)$	coincident γ-rays (keV)	R ₀ (fm)**	HF
8.155(20)	8.030(20)	100%	(1 ⁻)	0.0		1.479(28)	$1.1 \stackrel{1.2}{_{-0.6}}$

* All values from [1971Es01].

** Interpolated between 1.477(24) fm ($^{258}\mathrm{No})$ and 1.480(14) fm ($^{262}\mathrm{Rf}).$

References used in the Tables

- [1] 1955Gh02 A. Ghiorso, B. G. Harvey, G. R. Choppin, S. G. Thompson, G. T. Seaborg, Phys. Rev. 98, 1518 (1955). https://doi. org/10. 2172/914464
- [2] 1956Ha80 B. G. Harvey, A. Chetham-Strode, A. Ghiorso, G. R. Choppin, S. G. Thompson, Phys. Rev. 104, 1315 (1956). https://doi.org/10.1103/PhysRev.104.1315
- Phys. [3] **1965Si14** T. Sikkeland, A. Ghiorso, R. Latimer, E. Larsh, Rev. 140. B277 (1965). Α. https://doi.org/10.1103/PhysRev.140.B277
- [4] 1965Mc11 W. C. McHarris, Thesis, Univ. California (1965); UCRL-11784 (1965).

- [5] 1970Fi12 P. R. Fields, I. Ahmad, R. F. Barnes, R. K. Sjoblom, E. P. Horwitz, Nucl. Phys. A154, 407 (1970). https://doi.org/10.1016/0375-9474(70).90166-1
- [6] 1971Es01 K. Eskola, P. Eskola, M. Nurmia, A. Ghiorso, Phys. Rev. C4, 632 (1971). https://doi.org/10.1103/PhysRevC. 4. 632
- [7] 1971Ho16 R. W. Hoff, E. K. Hulet, R. J. Dupzyk, R. W. Lougheed, J. E. Evans, Nucl. Phys. A169, 641 (1971). https://doi.org/10.1016/0375-9474(71).90708-1
- [8] 1973AhZQ I. Ahmad, H. Diamond, R. K. Sjoblom, R. F. Barnes, F. Wagner, Jr., J. L. lerner, W. C. McHarris, P. R. Fields, ANL-7996, p. 29 (1973).
- [9] 1973Fi06 P. R. Fields, I. Ahmad, R. F. Barnes, R. K. Sjoblom, W. C. McHarris, Nucl. Phys. A208, 269 (1973). https://doi. org/10. 1016/0375-9474(73)90375-8
- [10] 1977Ah03 I. Ahmad, F. Wagner, Jr., J. Inorg. Nucl. Chem. 39, 1509 (1977). https://doi.org/10.1016/0022-1902(77)80089-4
- [11] 1982Pa23 P. P. Parekh, L. K. Peker, S. Katcoff, E. -M. Franz, Phys. Rev. C26, 2178 (1982). https://doi. org/10. 1103/Phys-RevC. 26, 2178
- [12] 1982Ru04 E. Ruchowska, W. Kurcewicz, N. Kaffrell, T. Bjornstad, G. Nyman, Nucl. Phys. A383, 1 (1982). https://doi.org/10. 1016/0375-9474(82)90073-2
- [13] 1984Mi02 S. Mirzadeh, Y. Y. Chu, S. Katcoff, L. K. Peker, Phys. Rev. C29, 985 (1984). https://doi. org/10. 1103/PhysRevC. 29. 985
- [14] 1986Gi08 K. -L. Gippert, E. Runte, W. -D. Schmidt-Ott, P. Tidemand-Petersson, N. Kaffrell, P. Peuser, R. Kirchner, O. Klepper, W. Kurcewicz, P. O. Larsson, E. Roeckl, D. Schardt, K. Rykaczewski, Nucl. Phys. A453, 1 (1986). https://doi.org/10. 1016/0375-9474(86)90025-4
- [15] 1993Mo18 K. J. Moody, R. W. Lougheed, J. F. Wild, R. J. Dougan, E. K. Hulet, R. W. Hoff, C. M. Henderson, R. J. Dupzyk, R. L. Hahn, K. Summerer, G. D. O'Kelley, G. R. Bethune, Nucl. Phys. A563, 21 (1993). https://doi.org/10.1016/0375-9474(93)90010-U
- [16] 2000Ah02 I. Ahmad, R. R. Chasman, P. R. Fields, Phys. Rev. C61, 044301 (2000). https://doi.org/10.1103/PhysRevC.61.044301
- [17] 2010Al24 H. Alvarez-Pol, J. Benlliure, E. Casarejos, L. Audouin, D. Cortina-Gil, T. Enqvist, B. Fernandez-Dominguez, A. R. Junghans, B. Jurado, P. Napolitani, J. Pereira, F. Rejmund, K. -H. Schmidt, O. Yordanov, Phys. Rev. C 82, 041602 (2010). https://doi.org/10.1103/PhysRevC.82.041602
- [18] 2012Ch19 L. Chen, W. R. Plass, H. Geissel, R. Knobel, C. Kozhuharov, Yu. A. Litvinov, Z. Patyk, C. Scheidenberger, K. Siegien-Iwaniuk, B. Sun, H. Weick, K. Beckert, P. Beller, F. Bosch, D. Boutin, L. Caceres, J. J. Carroll, D. M. Cullen, I. J. Cullen, B. Franzke, J. Gerl, M. Gorska, G. A. Jones, A. Kishada, J. Kurcewicz, S. A. Litvinov, Z. Liu, S. Mandal, F. Montes, G. Munzenberg, F. Nolden, T. Ohtsubo, Zs. Podolyak, R. Propri, S. Rigby, N. Saito, T. Saito, M. Shindo, M. Steck, P. M. Walker, S. Williams, M. Winkler, H. -J. Wollersheim, T. Yamaguchi, Nucl. Phys. A882, 71 (2012). https://doi.org/10.1016/j. nuclphysa. 2012. 03.002
- [19] 2019Ah04 I. Ahmad, F. G. Kondev, Nucl. Instrum. Methods Phys. Res. A940, 56 (2019). https://doi. org/10. 1016/j. nima. 2019. 05. 091
- [20] 2019Tr05 R. Tripathi, T. N. Nag, S. Sodaye, A. Bhattacharyyaa, P. K. Pujari, Nucl. Instrum. Methods Phys. Res. A922, 143 (2019); Erratum Nucl. Instrum. Methods Phys. Res. A935, 239 (2019). https://doi.org/10.1016/j. nima. 2018. 12. 085
- [21] 2021Wa16 M. Wang, W. J. Huang, F. G. Kondev, G. Audi, S. Naimi, Chin. Phys. C 45, 030003 (2021). https://doi.org/10.1088/1674-1137/abddaf