

Fig. 1: Known experimental values for heavy particle emission of the odd-Z T_z = +27/2 nuclei.

Last updated 7/19/2023

Table 1

Observed and predicted β -delayed particle emission from the odd-Z, $T_z = +27/2$ nuclei. Unless otherwise stated, all Q-values are taken from [2021Wa16] or deduced from values therein.

Nuclide	Ex	J^{π}	$T_{1/2}$	Qε	$Q_{\varepsilon p}$	$Q_{\varepsilon \alpha}$	Experimental
			-/ -				
¹⁴¹ La*		7/2+	3.92(3) h	-3.197(7)			[1981Ge04]
¹⁴⁵ Pr*		$7/2^{+}$	5.984(10) h	-2.560(30)			[1980Ge11]
¹⁴⁹ Pm*		7/2+	53.09(9) h	-1.689(3)			[1960Bu06]
¹⁵³ Eu		$5/2^{+}$	stable	stable			
¹⁵⁷ Tb		3/2+	99(10) y	0.060	-7.970(3)	-0.629(1)	[1983Be42]
¹⁶¹ Ho		7/2-	2.48(5) h	0.859(2)	-6.649(2)	1.203(2)	[1965Ab04]
¹⁶⁵ Tm		$1/2^{+}$	30.06(5) h	1.591(2)	-5.238(2)	2.701(2)	[1970Ka23]
¹⁶⁹ Lu		7/2+	34.06(5) h	2.293(3)	-4.059(3)	4.014(3)	[1970Ka23]
¹⁷³ Ta		5/2-	3.65(5) h	3.020(40)	-2.949(28)	5.554(28)	[1963Sa14]
¹⁷⁷ Re		5/2-	14(1) m	3.430(40)	-2.193(42)	6.718(40)	[1970Go20]
¹⁸¹ Ir		5/2-	4.90(15) m	4.087(26)	-0.915(22)	7.814(28)	[1978La04]
¹⁸⁵ Au		$5/2^{-}$	4.2(1) m	4.830(26)	0.464(28)	9.267(25)	[1995Bi01]
¹⁸⁹ Tl		$(1/2^+)$	2.3(2) m	5.010(30)	0.466(9)	9.647(27)	[1976Ha25]
¹⁹³ Bi		$(9/2^{-})$	67(3) s**	6.345(13)	2.699(33)	11.317(32)	[1985Co06, 1972Ga27]
^{193m} Bi	0.307(7)	$(1/2^+)$	3.4(2) s***	6.652(15)	3.006(34)	11.624(33)	[1985Co06, 1972Ga27]
¹⁹⁷ At		(9/2-)	388(6) ms	7.038(13)	4.365(26)	13.449(13)	[1999Sm07]
^{197m} At	0.048(10)	$(1/2^+)$	2.0(2) s	7.086(16)	4.413(28)	13.497(16)	[1999Sm07]
²⁰¹ Fr		$(9/2^{-})$	63(3) ms@	7.696(14)	5.287(26)	14.557(13)	[2014Ka23, 2005De01, 2005Uu02]
^{201m} Fr	0.130(14)	$(1/2^+)$	10^{+12}_{-3} ms ^{@@}	7.826(20)	5.417(30)	14.687(19)	[2014Ka23, 2005Uu02]
²⁰⁵ Ac		(9/2-)	20^{+97}_{-9} ms	8.300(60)	6.210(64)	15.789(60)	[2014Zh03]

* 100% β^- emitter.

** Weighted average of 67(3) s [1985Co06] and 62.2(36) s [1972Ga27].

*** Weighted average of 3.2(2) s [1905C006] and 3.48(18) s [1972Ga27]. [@] Weighted average of 64(3) ms [2014Ka23], 67(3) ms [2005De01] and 53(4) ms [2005Uu02]. [@] Weighted average of 8^{+12}_{-3} ms [2014Ka23], and 19^{+19}_{-6} ms [2005Uu02].

Table 2

Particle separation, Q-values, and measured values for direct particle emission of the odd-Z, $T_z = +27/2$ nuclei. Unless otherwise stated, all S and Q-values are taken from [2021Wa16] or deduced from values therein.

Nuclide	S_p	S_{2p}	Qα	BR_{α}	Experimental
¹⁴¹ La	6.951(9)	16.807(5)	1.191(4)		
¹⁴⁵ Pr	6.483(7)	16.032(10)	0.879(8)		
¹⁴⁹ Pm	5.945(2)	15.198(16)	1.137(7)		
¹⁵³ Eu	5.893(1)	14.559(5)	0.272(2)		
¹⁵⁷ Tb	5.517(0)	13.523(1)	0.179(1)		
¹⁶¹ Ho	4.813(2)	12.242(2)	1.143(2)		
¹⁶⁵ Tm	4.276(1)	11.130(2)	1.841(3)		
¹⁶⁹ Lu	3.792(3)	10.117(3)	2.423(3)		
¹⁷³ Ta	3.283(37)	9.146(28)	3.261(28)		
¹⁷⁷ Re	2.917(40)	8.438(40)	3.702(40)		
¹⁸¹ Ir	2.396(17)	7.457(25)	4.381(28)		
¹⁸⁵ Au	1.815(15)	6.234(25)	5.180(5)	0.26(6)%	[1995Bi01, 1993BiZY, 1991Bi04, 1970Ha18, 1968De01,
					1968Si01, 1965Si07]
¹⁸⁹ Tl	1.707(11)	6.165(24)	4.817(9)		
¹⁹³ Bi	0.622(9)	4.180(11)	6.307(5)	2.2(5)%	[2005De01, 1985Co06, 1972Ga27, 2004DeZV, 1993An19,
					1990AnZR, 1989AnZF, 1984Co13, 1982LeZN, 1978Va21,
					1974Le02, 1970Ta14, 1967Tr06]
^{193m} Bi	0.315(11)	3.873(13)	6.614(9)	75(25)%	[1993An19, 1985Co06, 1972Ga27, 2005De01, 2004DeZV
					1984Co13, 1982LeZN, 1978Va21, 1974Le02, 1970Ta14,
					1967Tr06]
¹⁹⁷ At	0.175(10)	2.908(10)	7.104(3)	$\approx 100\%^*$	[2014Ka23, 2005De01, 2005Uu02, 1999Sm07, 1996En01,
					2015We13, 2004DeZV, 1986Co12, 1985HuZY, 1967Tr04,
					1967Tr06]
^{19/m} At	0.127(14)	2.860(14)	7.152(10)	$\approx 100\%^*$	[2014Ka23, 2005De01, 1999Sm07, 2004DeZV, 1986Co12,
					1985HuZY]
²⁰¹ Fr	-0.300(11)	2.166(11)	7.519(4)	$\approx 100\%^*$	[2014Ka23, 2005De01, 2005Uu02, 1996En01, 2004DeZV,]
					1980Ew03, 1979Ca16]
²⁰¹ <i>m</i> Fr	-0.430(17)	2.036(18)	7.649(14)	100%*	[2014Ka23, 2005Uu02]
²⁰⁵ Ac	-0.757(60)	1.348(60)	8.093(59)	$\approx 100\%^*$	[2014Zh03]

* Based on short half-life.

Table 3

direct α em	ission from ¹⁸⁵ A	Au*, $J_i^{\pi} = 5/2^-$, $T_{1/2} = 4.2(1) \text{ m}$, E	$BR_{\alpha} = 0.26(6)\%.$				
$E_{\alpha}(c.m.)$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(\text{rel})$	$I_{\alpha}(abs)$	J_f^{π}	$E_{daughter}(^{181}\mathrm{Ir})$	coincident γ-rays**	* R_0 (fm)	HF
4.680(10) 4.933(10) 5.181(5)	4.579(10) 4.826(10) 5.069 5(5)	0.03(1)% 0.15(1)% 100(1)%	$7.8(32) \times 10^{-5} \%$ 3.9(9)×10 ⁻⁴ % 0.26(6)%	(3/2 ⁻ , 5//2 ⁻) (5/2 ⁻)	0.501 0.243 0.0	0.112, 0.131, 0.243	1.521(22) 1.521(22) 1.521(22)	$\begin{array}{c} 3.0^{+2.8}_{-1.4} \\ 20^{+14}_{-9} \\ 0.7^{+4}_{-3} \end{array}$
* All va ** [200	alues from 1005)5Wu07].	Bi01], except	where noted.					
Table 4 direct α emi	ission from ¹⁹³ E	Bi, $J_i^{\pi} = (9/2^-)$, $T_{1/2} = 67(3) s^*$, B	$R_{\alpha} = 2.2(5)\%^{**}.$				
$E_{\alpha}(\text{c.m.})$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(\text{rel})$	$I_{\alpha}(abs)$	\mathbf{J}_f^{π} i	$E_{daughter}(^{189}\mathrm{Tl})$	coincident γ-rays	R ₀ (fm)	HF
6.024(5) 6.305(5)	5.899(5)*** 6.174(5)***	100% 4.4(5)%	$\begin{array}{c} 0.021(5)\%\\ 9.3(2){\times}10^{-4}\%\end{array}$	$(9/2^{-})$ ($(1/2^{+})$ (0.281(7) 0.0		1.5059(63) 1.5059(63)	$2.9^{+1.1}_{-0.8}$ 1000^{+500}_{-300}
* Weig ** [200 *** [19	hted average of)5De01]. 985Co06].	67(3) s [19850	Co06] and 62.2(36)	s [1972Ga27].				
Table 5 direct α emi	ission from ^{193m}	Bi, Ex = 307(7) keV, $J_i^{\pi} = (1/2^+)$,	$T_{1/2} = 3.4(2) s^*,$	$BR_{\alpha} = 75(25)\%^{**}.$			
$E_{\alpha}(c.m.)$	$E_{\alpha}(\text{lab})$	I_{α} (abs) J_f^{π}	$E_{daughter}(^{18}$	⁹ Tl) coinciden	tt γ -rays R_0 (fm)	HF	
6.612(5)	6.475(5)***	* 75(25)	%** (1/2 ⁺)	0.0		1.5059(63) 1.0^{+0}_{-0}	0.6 0.3
* Weig ** [199 *** [19	hted average of 93An19]. 985Co06].	3.2(2) s [1985	Co06] and 3.48(18)	s [1972Ga27].				
Table 6 direct α emi	ission from ¹⁹⁷ A	At, $J_i^{\pi} = (9/2^-)$, $T_{1/2} = 388(6) \text{ ms}^*$	$BR_{\alpha} = \approx 100\%.$				
$E_{\alpha}(\text{c.m.})$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(abs)$	${f J}_f^{\pi}$	E _{daughter} (¹⁹³ Bi	i) coincident γ	r-rays R ₀ (fm)	HF	
7.105(3)	6.961(3)**	≈ 1009	% (9/2 ⁻)	0.0		1.5291(28)) 1.53(10))
* [1999 ** Weig	9Sm07]. ghted average of	6.963(5) MeV	7 [2014Ka23], 6.963	8(4) MeV [2005De	e01], 6.959(6) MeV [2005Uu02], 6.960(5) [1	1999Sm07] and	6.956(5) MeV [1996En01].
Table 7 direct α em	ission from ^{197m}	$At^*, Ex = 48($	10) keV, $J_i^{\pi} = (1/2^+)$), $T_{1/2} = 2.0(2) s$,	$BR_{\alpha} = \approx 100\%.$			
$E_{\alpha}(c.m.)$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(abs)$	J_f^π	E _{daughter} (¹⁹³ Bi	i) coincident γ	r-rays R ₀ (fm)	HF	
6.846(5)	6.707(5)**	≈ 1009	% (1/2 ⁺)	0.307(7)		1.5291(28)) 0.93(12	
* All va	alues from [1999	9Sm07].						
Table 8 direct α emin	ission from ²⁰¹ F	Fr, $J_i^{\pi} = (9/2^-)$.	$T_{1/2} = 63(3) \text{ ms}^*, h$	$BR_{\alpha} = \approx 100\%.$				
$E_{\alpha}(\text{c.m.})$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(abs)$) J_f^{π}	$E_{daughter}(^{197}A)$	At) coincident	γ -rays R ₀ (fm)	HF	
7.519(5)	7.369(5)**	$\approx 100^{\circ}$	% (9/2 ⁻)	0.0		1.547(12	$1.7^{+0.5}_{-0.4}$	

* Weighted average of 64(3) ms [2014Ka23], 67(3) ms [2005De01] and 53(4) ms [2005Uu02]. ** Weighted average of 7.369(5) MeV [2014Ka23], 7.379(7) MeV [2005De01], 7.369(8) MeV [2005Uu02], and 7.361(7) MeV [1996En01].

Table 9

E (am)	$E_{(1-1)}$	L (-h-)	Tπ	E (197 A t)		D (free)	ШЕ
$E_{\alpha}(c.m.)$	$E_{\alpha}(lab)$	$I_{\alpha}(abs)$	J_f^n	$E_{daughter}(1)$ (At)	coincident γ -rays	R_0 (fm)	HF
7.601(8)	7.450(8)**	100%	$(1/2^+)$	0.048(10)		1.547(12)	$0.5\substack{+0.5 \\ -0.2}$
			. 40				

direct α emission from ^{201m}Fr, Ex = 130(14) keV, $J_i^{\pi} = (1/2^+)$, $T_{1/2} = 10^{+12}_{-3}$ ms*, $BR_{\alpha} = 100\%$.

* Weighted average of 8^{+12}_{-3} ms [2014Ka23], and 19^{+19}_{-6} ms [2005Uu02].

** Weighted average of 7.445(8) MeV [2014Ka23], and 7.454(8) MeV [2005Uu02].

Table 10

direct α emission from ²⁰⁵Ac*, $J_i^{\pi} = (9/2^-)$, $T_{1/2} = 20^{+97}_{-9}$ ms, $BR_{\alpha} = \approx 100\%$.

$E_{\alpha}(\text{c.m.})$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(abs)$	${ m J}_f^{\pi}$	$E_{daughter}(^{201}\mathrm{Fr})$	coincident γ-rays	R ₀ (fm)	HF
8.093(30)	7.935(30)	$\approx 100\%$	(9/2-)	0.0		1.541(17)	6^{+6}_{-3}

* All values from [2014Zh03].

References used in the Tables

- [1] 1960Bu06 L. R. Bunney, J. O. Abriam, E. M. Scadden, J. Inorg. Nuclear Chem. 12, 228 (1960). https://doi.org/10.1016/0022-1902(60)80365-X
- [2] 1963Sa14 A. Santoni, A. Caruette, J. Valentin, J. Phys. (Paris) 24, 407 (1963). https://doi.org/10.1051/jphys:01963002406040701
- [3] 1965Ab04 A. A. Abdurazakov, K. Y. Gromov, V. V. Kuznetsov, Ma Ho Ik, G. Muziol, F. Molnar, A. Molnar, F. Mukhtasimov, S. J. Han, Yadern. Fiz. 1, 951 (1965); Soviet J. Nucl. Phys. 1, 678 (1965).
- [4] 1965Si07 A. Siivola, UCRL-11828, p. 25 (1965).
- [5] 1967Tr04 W. J. Treytl, K. Valli, UCRL-17299, p. 32 (1967).
- [6] 1967Tr06 W. Treytl, K. Valli, Nucl. Phys. A97, 405 (1967). https://doi.org/10.1016/0375-9474(67)90495-2
- [7] 1968De01 A G Demin, T Fenyes, I Mahunka, V G Subbotin, L Tron, Nucl Phys A106, 337 (1968). https://doi.org/10.1016/0375-9474(67)90878-0
- [8] 1968Si01 A. Siivola, Nucl. Phys. A109, 231 (1968). https://doi.org/10.1016/0375-9474(68)90571-X
- [9] 1970Go20 P. F. A. Goudsmit, J. Konijn, F. W. N. de Boer, Nucl. Phys. A151, 513 (1970). https://doi.org/10.1016/0375-9474(70)90394-5
- [10] 1970Ha18 P. G. Hansen, H. L. Nielsen, K. Wilsky, M. Alpsten, M. Finger, A. Lindahl, R. A. Naumann, O. B. Nielsen, Nucl. Phys. A148, 249 (1970). oi: 10.1016/0375-9474(70)90622-6. https://doi.org/10.1016/0375-9474(70)90622-6
- [11] **1970Ka23** P. J. Karol, J. Inorg. Nucl. Chem. **32**, 2817 (1970). https://doi.org/10.1016/0022-1902(70)80343-8
- [12] 1970Ta14 N. I. Tarantin, A. P. Kabachenko, A. V. Demyanov, Yad. Fiz. 12, 455 (1970); Sov. J. Nucl. Phys. 12, 248 (1971)
- [13] **1972Ga27** H Gauvin, Y Le Beyec, M Lefort, N T Porile, Phys Rev Lett **29**, 958 (1972). https://doi.org/10.1103/PhysRevLett.29.958
- [14] **1974Le02** Y Le Beyec, M Lefort, J Livet, N T Porile, A Siivola, Phys Rev C **9**, 1091 (1974). https://doi.org/10.1103/PhysRevC.9.1091
- [15] 1976Ha25 J. H. Hamilton, K. R. Baker, C. R. Bingham, E. L. Bosworth, H. K. Carter, J. D. Cole, R. W. Fink, G. Garcia Bermudez, G. W. Gowdy, K. J. Hofstetter, M. A. Ijaz, A. C. Kahler, B. D. Kern, W. Lourens, B. Martin, R. L. Mlekodaj, A. V. Ramayya, L. L. Riedinger, W. D. Schmidt-Ott, E. H. Spejewski, B. N. Subba Rao, E. L. Robinson, K. S. Toth, F. Turner, J. L. Weil, J. L. Wood, A. Xenoulis, E. F. Zganjar, Izv. Akad. Nauk SSSR, Ser. Fiz. 40, 2 (1976); Bull. Acad. Sci. USSR, Phys. Ser. 40, No. 1, 1 (1976).
- [16] 1978La04 I. M. Ladenbauer-Bellis, P. Sen, H. Bakhru, Can. J. Phys. 56, 321 (1978). https://doi.org/10.1139/p78-040
- [17] 1978Va21 V. M. Vakhtel, S. G. Kadmenskii, A. A. Martynov, V. I. Furman, Yad. Fiz. 28, 1241 (1978); Sov. J. Nucl. Phys. 28, 639 (1978).
- [18] 1979Ca16 L. C. Carraz, S. Sundell, H. L. Ravn, M. Skarestad, L. Westgaard, Nucl. Instrum. Methods 158, 69 (1979). https://doi.org/10.1016/s0029-554x(79)90595-0

- [19] 1980Ew03 G. T. Ewan, E. Hagberg, B. Jonson, S. Mattsson, P. Tidemand-Petersson, Z. Phys. A296, 223 (1980). https://doi.org/10.1007/BF01415836
- [20] 1980Ge11 R. J. Gehrke, J. D. Baker, Int. J. Appl. Radiat. Isotop. 31, 509 (1980). https://doi.org/10.1016/0020-708X(80)90315-4
- [21] 1981Ge04 R. J. Gehrke, Int. J. Appl. Radiat. Isotop. 32, 377 (1981). https://doi.org/10.1016/S0020-708X(81)81003-4
- [22] 1982LeZN M. Leino, S. Yashita, A. Ghiorso, LBL-13366, p. 44 (1982).
- [23] 1983Be42 G. J. Beyer, A. De Rujula, R. -D. Von Dincklage, H. A. Gustafsson, P. G. Hansen, P. Hoff, B. Jonson, H. L. Ravn, K. Riisager, Nucl. Phys. A408, 87 (1983). https://doi.org/10.1016/0375-9474(83)90350-0
- [24] 1984Co13 E. Coenen, K. Deneffe, M. Huyse, P. Van Duppen, ATOMKI Kozlem. 26, 56 (1984).
- [25] 1985Co06 E. Coenen, K. Deneffe, M. Huyse, P. Van Duppen, J. L. Wood, Phys. Rev. Lett. 54, 1783 (1985). https://doi.org/10.1103/PhysRevLett.54.1783
- [26] 1985HuZY L. Huyse, E. Coenen, K. Deneffe, P. Van Duppen, J. L. Wood, Amer. Chem. Soc. Symposium Ser. 324 on Nuclei Off the Line of Stability, Chicago, p. 258 (1985); R. A. Meyer, D. S. Brenner Eds., ACS, Washington, p. 258 (1986).
- [27] 1986Co12 E. Coenen, K. Deneffe, M. Huyse, P. van Duppen, J. L. Wood, Z. Phys. A324, 485 (1986).
- [28] 1989AnZF A. N. Andreev, D. D. Bogdanov, A. V. Eremin, A. P. Kabachenko, O. A. Orlova, G. M. Ter-Akopyan, V. I. Chepigin, Sh. Sharo, L. I. Salamatin, JINR-P15-89-684 (1989).
- [29] 1990AnZR A. N. Andreev, D. D. Bogdanov, A. V. Eremin, A. P. Kabachenko, O. A. Orlova, G. M. Ter-Akopyan, V. I. Chepigin, Sh. Sharo, Program and Thesis, Proc. 40th Ann. Conf. Nucl. Spectrosc. Struct. At. Nuclei, Leningrad, p. 124 (1990)
- [30] **1991Bi04** C. R. Bingham, M. B. Kassim, M. Zhang, Y. A. Akovali, K. S. Toth, W. D. Hamilton, H. K. Carter, J. Kormicki, J. von Schwarzenberg, M. M. Jarrio, Phys. Rev. C44, 1208 (1991). https://doi.org/10.1103/PhysRevC.44.1208
- [31] 1993An19 A N Andreyev, D D Bogdanov, V I Chepigin, V A Gorshkov, K V Mikhailov, A P Kabachenko, G S Popeko, S Saro, G M Ter-Akopian, A V Yeremin, Sh S Zeinalov, Nucl Instrum Methods Phys Res A330, 125 (1993). https://doi.org/10.1016/0168-9002(93)91313-C
- [32] 1993BiZY C. R. Bingham, Y. A. Akovali, H. K. Carter, W. D. Hamilton, M. M. Jarrio, M. B. Kassim, J. Kormicki, J. Schwarzenberg, K. S. Toth, M. Zhang, Proc. 6th Intern. Conf. on Nuclei Far from Stability + 9th Intern. Conf. on Atomic Masses and Fundamental Constants, Bernkastel-Kues, Germany, 19-24 July, 1992, R. Neugart, A. Wohr, Eds., p. 735 (1993).
- [33] **1995Bi01** C. R. Bingham, M. B. Kassim, M. Zhang, Y. A. Akovali, K. S. Toth, W. D. Hamilton, H. K. Carter, J. Kormicki, J. von Schwarzenberg, M. M. Jarrio, Phys. Rev. C**51**, 125 (1995). https://doi.org/10.1103/PhysRevC.51.125
- [34] 1996En01 T. Enqvist, K. Eskola, A. Jokinen, M. Leino, W. H. Trzaska, J. Uusitalo, V. Ninov, P. Armbruster, Z. Phys. A354, 1 (1996). https://doi.org/10.1007/s002180050001
- [35] 1999Sm07 M. B. Smith, R. Chapman, J. F. C. Cocks, O. Dorvaux, K. Helariutta, P. M. Jones, R. Julin, S. Juutinen, H. Kankaanpaa, H. Kettunen, P. Kuusiniemi, Y. Le Coz, M. Leino, D. J. Middleton, M. Muikku, P. Nieminen, P. Rahkila, A. Savelius, K. -M. Spohr, Eur. Phys. J. A 5, 43 (1999). https://doi.org/10.1007/s100500050254
- [36] 2004DeZV H. De Witte, Thesis, Leuven Univ. Belgium (2004).
- [37] 2005De01 H. De Witte, A. N. Andreyev, S. Dean, S. Franchoo, M. Huyse, O. Ivanov, U. Koster, W. Kurcewicz, J. Kurpeta, A. Plochocki, K. Van de Vel, J. Van de Walle, P. Van Duppen, Eur. Phys. J. A 23, 243 (2005). https://doi.org/10.1140/epja/i2004-10077-9
- [38] 2005Uu02 J. Uusitalo, M. Leino, T. Enqvist, K. Eskola, T. Grahn, P. T. Greenlees, P. Jones, R. Julin, S. Juutinen, A. Keenan, H. Kettunen, H. Koivisto, P. Kuusiniemi, A. -P. Leppanen, P. Nieminen, J. Pakarinen, P. Rahkila, C. Scholey, Phys. Rev. C 71, 024306 (2005). https://doi.org/10.1103/PhysRevC.71.024306
- [39] 2005Wu07 S. -C. Wu, Nucl.Data Sheets 106, 619 (2005). https://doi.org/10.1016/j.nds.2005.11.002
- [40] 2014Ka23 Z. Kalaninova, S. Antalic, A. N. Andreyev, F. P. Hessberger, D. Ackermann, B. Andel, L. Bianco, S. Hofmann, M. Huyse, B. Kindler, B. Lommel, R. Mann, R. D. Page, P. J. Sapple, J. Thomson, P. Van Duppen, M. Venhart, Phys. Rev. C 89, 054312 (2014). https://doi.org/10.1103/PhysRevC.89.054312
- [41] 2014Zh03 Z. Y. Zhang, Z. G. Gan, L. Ma, L. Yu, H. B. Yang, T. H. Huang, G. S. Li, Y. L. Tian, Y. S. Wang, X. X. Xu, X. L. Wu, M. H. Huang, C. Luo, Z. Z. Ren, S. G. Zhou, X. H. Zhou, H. S. Xu, G. Q. Xiao, Phys. Rev. C 89, 014308 (2014). https://doi.org/10.1103/PhysRevC.89.014308
- [42] 2015We13 T. A. Werke, D. A. Mayorov, M. C. Alfonso, M. E. Bennett, M. J. DeVanzo, M. M. Frey, E. E. Tereshatov, C. M. Folden, Phys. Rev. C 92, 034613 (2015). https://doi.org/10.1103/PhysRevC.92.034613

[43] 2021Wa16 M. Wang, W. J. Huang, F. G. Kondev, G. Audi, S. Naimi, Chin. Phys. C 45, 030003 (2021). https://doi.org/10.1088/1674-1137/abddaf