

Last updated 11/25/24

Table 1

Observed and predicted β -delayed particle emission from the odd-Z, $T_z = +25$ nuclei. Unless otherwise stated, all Q-values are taken from [2021Wa16] or deduced
from values therein, J^{π} values for ²⁰⁸ Au, ²¹² Tl, ²²⁰ At, ²²⁴ Fr, ²²⁸ Ac, ²³² Pa, and ²³⁶ N are taken from ENSDF.

Nuclide	Ex.	J^{π}	$T_{1/2}$	Q_{ε}	Q _β -	Qβ- α	$BR_{\varepsilon F}$	Experimental
²⁰⁸ Au*			obs	-5.41(50)#	7.360(30)#	1.42(50)#		[2010Al24]
²¹² Tl*		(5^{+})	30.9(80) s	-4.57(36)#	6.00(20)#	3.476(30)		[2016Ca25]
²¹⁶ Bi*		$(6^{-},7^{-})$	135(5) s	-1.640(20)#	4.092(11)	11.178(11)		[2000Ku06]
²²⁰ At		(6 ⁻)	3.7(4) m	-0.888(23)	3.764(14)	10.349(14)		[1989Li04]
²²⁴ Fr*		1(-)	3.33(10) m	-0.696(15)	2.923(11)	8.892(11)		[1981Ku02]
²²⁸ Ac(MsTh)		3+	6.15(2) h	-0.046(1)	2.124(3)	7.824(3)		[1985Sk02]
²³² Pa*			31.4(2) h**	0.500(8)	-1.337(7)	6.931(8)		[1950Ja51]
					$Q_{\varepsilon p}$	$Q_{\varepsilon \alpha}$		
²³⁶ Np			$1.55(1) \times 10^5$ y	0.930(50)	-6.200(52)	5.506(50)		[1981Li30]
²⁴⁰ Am			50.8(3) h	1.385(14)	-5.090(14)	6.641(14)		[1972Ah07]
^{240m} Am	3.0(2)		940(40) μs	4.4(2)	-2.1(2)	9.6(2)		[1979Be46, 1971Br39]
²⁴⁴ Bk			5.02(3) h	2.262(14)	-3.750(14)	8.164(14)		[2014So17]
^{244m} Bk	х		820(60) ns	2.262(14)+x	-3.750(14)+x	8.164(14) + x		[1972Wo07]
²⁴⁸ Es			24.5(23) m***	3.060(50)#	-2.479(53)#	9.422(52)#	$3.5(18) \times 10^{-4}\%$	[2001Sh09, 1989Ha27, 1956Ch67,
								1980Ga07, 1980GaZZ]
²⁵² Md			2.3(8) m	3.650(90)	-1.333(91)	10.804(91)		[1973Es01]
²⁵⁶ Lr			28(1) s	3.920(80)	-0.384(83)	12.505(83)		[2014Sa21]
²⁶⁰ Db			1.52(13) s	4.53(22)#	0.53(12)#	13.425(93)#		[1977Be36]
²⁶⁴ Bh			$0.9^{+0.3}$ s	5.18(33)#	1.56(24)#	14.39(27)#		[2004Mo26, 2004Mo27]
²⁶⁸ Mt			21^{+8} ms	6.18(38)#	3.10(35)#	15.94(37)#		[2004Mo26, 2004Mo27]
272 R g			$38^{+1.4}$ ms	6 69(48)#	4 38(40)#	17 38(38)#		[2004Mo26, 2004Mo27]
Rg			5.0 _{-0.8} ms	0.07(40)#	1.50(10)#	17.50(50)#		[200411020, 200411027]

* 100% β^- emitter.

** Weighted average of 32.3(4) h and 31.2(2) h [1950Ja51].

** Weighted average of 23(3) m [2001Sh09], 28(5) m [1989Ha27] and 25(5) m [1956Ch67].

Table 2

Particle separation, Q-values, and measured values for direct particle emission of the odd-Z, $T_z = +25$ nuclei. Unless otherwise stated, all S and Q-values are taken from [2021Wa16] or deduced from values therein.

Nuclide	\mathbf{S}_p	Qα	BR_{α}	BR _{SF}	Experimental
²⁰⁸ Au ²¹² TI	9.06(50)#	1.24(50)#			
216 p ;	8.45(28)# 5.757(54)	1.93(30)#			
220 A t	5.757(54)	5.00(20)#	8(2)%		[1080B100 1080] ;0/]
224 Er	5.930(14)	4.948(18)	0(2)70		[1909Du09, 1909Di04]
228 Ac(MsTh)	5 572(2)	4 721(11)			
232Pa	5.158(8)	4 627(8)			
²³⁶ Np	4.830(50)	5.007(51)	0.16(6)%*		[1981Li30]
²⁴⁰ Am	4.367(14)	5.707(52)	$1.9 \times 10^{-4}\%$		[1970Go42]
^{240m} Am	1.4(2)	8.7(2)		100%	[2015Ba55, 1985Be58, 1979Be46, 1971Br39, 1981Lu06,
					1976BeZM, 1973Be04, 1972Wo07]
²⁴⁴ Bk	3.757(14)	6.779(4)	$6(3) \times 10^{-3}\%$		[1966Ah02, 1956Ch77, 1950Th55]
^{244m} Bk	3.757(14)-x	6.779(4)+x		$\approx 100\%$	[1972Wo07, 1972Ga42, 1972WoZP]
²⁴⁸ Es	3.099(54)#	7.160(50)#	$\approx 0.25\%$		[1989Ha27, 1956Ch67, 2001Sh09, 1970Ah01]
²⁵² Md	2.781(92)	7.74(11)#			
²⁵⁶ Lr	2.354(84)	8.86(12)	>80%		[2014Sa21, 1971Es01, 2010SaZV, 2008An16, 2004Fo08,
					2004Mo14, 2004Mo26, 2002Ho11, 2001HoZY, 1976BeYM,
					1976BeZY, 1970Dr08, 1968Do19, 1968Fl08, 1967Fl06]
²⁶⁰ Db	1.98(12)#	9.501(42)#	90.4(5)%	9.6(6)%	[1977Be36, 2004Fo08, 2004Mo14, 2004Mo26, 2004Mo27,
					2002Ho11, 2001HoZY, 1995Ho04, 1976DiZY, 1970FlZY,
244					1970ZvZZ, 1968Fl09]
²⁶⁴ Bh	1.53(20)#	9.86(15)#	86(6)%	14(6)%	[2004Mo027, 1995Ho04, 2004Fo08, 2004Mo26, 2004Mo14,
					2002Ho11, 2001HoZY]
²⁶⁸ Mt	0.80(25)#	10.77(15)#	$\approx 100\%$		[2004Mo027, 1995Ho04, 2004Fo08, 2004Mo26, 2004Mo14,
272					2002Ho11, 2001HoZY]
272 Rg	0.47(25)#	11.197(13)	$\approx 100\%$		

* α decay was not observed. It was inferred to have happened from the observation of the α daughter ²³²Pa arising from ²³⁶Np [1981Li30].

Table 3

direct α emission from ²²⁰ At*, T _{1/2} = 3.7(4) m**, BR _{α} = 8(2)%.											
$E_{\alpha}(c.m.)$	$E_{\alpha}(lab)$	$I_{\alpha}(abs)$	${ m J}_f^{m \pi}$	$E_{daughter}(^{216}\mathrm{Bi})$	coincident γ -rays (keV)	R ₀ (fm)**	HF				
6.053(6)	5.943(6)	8(2)%	(6 ⁻ ,7 ⁻)	0.0		1.5433(25)	3.8^{+18}_{-11}				
* All va ** [1989 *** Inte	lues from [19Bu(9Li04]. rpolated between	09], except when 1.53788(19) fn	re noted. n (²¹⁸ Po) and 1.5	4863(17) fm (²²² Rn).							
Table 4 direct α emis	ssion from ²⁴⁰ An	$1^*, T_{1/2} = 50.8($	3) h**, $BR_{\alpha} = 1$.	9×10^{-4} %.							

$E_{\alpha}(c.m.)$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(\text{rel})$	$I_{\alpha}(abs)$	\mathbf{J}_f^{π}	$E_{daughter}(^{236}Np)$	coincident γ -rays (keV)	$R_0 (fm)^{***}$	HF
5 276(2)	5 296(2)	1 42(12)07	2.2×10^{-4}				1 50426(14)	111
3.370(3)	5.280(5)	1.42(12)%	2.5×10 %				1.30430(14)	111
5.427(2)	5.337(2)	13.8(5)%	$2.3 \times 10^{-3}\%$				1.50436(14)	23
5.469(1)	5.378(1)	100(1)%	0.017%				1.50436(14)	5.5

* All values from [1970Go42], except where noted.

** [1972Ah07].

*** Interpolated between 1.50745(13) fm (²³⁸Pu) and 1.501258(57) fm (²⁴²Cm).

Table 5

direct α emission from ²⁴⁴ Bk*, T _{1/2} = 5.0	$D2(3)$ h**, $BR_{\alpha} = 6(3) \times 10^{-3} \%$ ***.
--	--

$E_{\alpha}(c.m.)$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(\text{rel})$	$I_{\alpha}(abs)$	$\mathbf{J}_f^{\boldsymbol{\pi}}$	$E_{daughter}(^{240}\mathrm{Am})$	coincident γ -rays (keV)	$R_0 \; (fm)^@$	HF
6.736(4) 6.779(4)	6.626(4) 6.668(4)	$\approx 50\%$ $\approx 50\%$	$ \substack{\approx 3 \times 10^{-3} \% \\ \approx 3 \times 10^{-3} \% } $		0.0?		1.49827(10) 1.49827(10)	$\substack{\approx 3 \times 10^3 \\ \approx 4 \times 10^3}$

* All values from [1966Ah02], except where noted. $E_{\alpha}(lab)$ are modified by +1.5 keV as reccommended int [1991Ry01].

** [2014So17].

*** [1956Ch77].

[@] Interpolated between 1.501258(57) fm (²⁴²Cm) and 1.49528(88) fm (²⁴⁶Cf).

Table 6

direct α emission from ²⁴⁸Es*, T_{1/2} = 24.5(23) m**, BR_{α} = $\approx 0.25\%$ ***.

$E_{\alpha}(c.m.)$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(\text{rel})$	$I_{\alpha}(abs)$	\mathbf{J}_f^{π}	$E_{daughter}(^{244}\mathrm{Bk})$	coincident γ -rays (keV)	$R_0 (fm)^@$	HF
6.960(14) 6.992(5) 7.020(5)	6.848(14) 6.879(5) 6.907(5)	14(13)% 100(22)% 44(21)%	$\approx 0.02\%$ $\approx 0.16\%$ $\approx 0.07\%$				1.4871(39) 1.4871(39) 1.4871(39)	≈ 40 ≈ 7 ≈ 20

* All values from [1989Ha27], except where noted.

** Weighted average of 23(3) m [2001Sh09], 28(5) m [1989Ha27] and 25(5) m [1956Ch67].

*** [1956Ch67].

[@] Interpolated between 1.49528(88) fm (246 Cf) and 1.4789(38) fm (250 Fm).

Table 7

direct α emission from ²⁵⁶Lr*, T_{1/2} = 28(1) s, *BR*_{α} = >80%**.

$E_{\alpha}(\text{c.m.})$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(\text{rel})$	$I_{\alpha}(abs)$	${f J}_f^\pi$	$E_{daughter}(^{252}Md)$	coincident γ-rays (keV)	$R_0 (fm)^@$	HF
8.462(10)	8.330(10)	17(4)%	>4.8%				1.469(18)	< 25
8.523(10)	8.390(10)	71(13)%	>20%				1.469(18)	< 10
8.564(10)	8.430(10)	100(20)%	>28%				1.469(18)	< 9
8.604(10)	8.470(10)	23(7)%	>6.4%				1.469(18)	< 50
8.645(10)	8.510(10)	57(10)%	>16%				1.469(18)	< 29
8.737(10)	8.600(10)	11(3)%	>3.2%				1.469(18)	< 280
8.767(10)	8.630(10)	9(3)%	>2.4%				1.469(18)	< 460

* All values from [2014Sa21], except where noted.

** [1971Es01].

[@] Interpolated between 1.4672(33) fm (254 No) and 1.470(18) fm (258 Rf).

Table 8

direct α en	nission from	²⁶⁰ Db*, T	1/2 = 1.52((13) s, BR_{α}	=90.4(6)%.
--------------------	--------------	-----------------------	-------------	-----------------------	------------

$E_{\alpha}(c.m.)$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(\text{rel})$	$I_{\alpha}(abs)$	\mathbf{J}_f^{π}	$E_{daughter}(^{256}\mathrm{Lr})$	coincident γ -rays (keV)	R ₀ (fm)**	HF
9.182(14) 9.216(14) 9.263(17)	9.041(14) 9.074(14) 9.120(17)	100(10)% 52(8)% 35(7)%	43(5) % 23(3)% 15(3)%				1.466(41) 1.466(41) 1.466(41)	$5^{+18}_{-4}\\12^{+21}_{-8}\\20^{+40}_{-20}$

* All values from [1977Be36].

** Interpolated between 1.470(18) fm (258Rf), and 1.462(37) fm (²⁶²Sg).

Table 9

	-					
direct	α emission	from ²⁶⁴ Bh	$T_{1/2} = 0.5$	$9^{+0.3}_{-0.2}$ s*, I	$BR_{\alpha} = 86(6)$ %	Ъ

$E_{\alpha}(c.m.)$	$E_{\alpha}(\text{lab})^{**}$	$I_{\alpha}(\text{rel})^{**}$	$I_{\alpha}(abs)$	\mathbf{J}_f^{π}	$E_{daughter}(^{260}\text{Db})$	coincident γ-rays (keV)	R ₀ (fm)***	HF
9.621(20) 9.767(20)	9.475(20) 9.619(20)	$\approx 50\%$ 100%	$\approx 28\%$ $\approx 57\%$				1.472(39) 1.472(39)	≈ 30 ≈ 30

* [2004Mo27, 2004Mo26].

** Values are taken from [1995Ho04], which reported 2 events at 9.619(20) MeV and 1 event at 9.475(20) MeV. [2004Mo27] report 12 events from the α decay of ²⁶⁴Bh, and 2 fission events. They report: "Observed decay energy ranges from 8.86 to 9.83 MeV showing broad distribution, although the 'peak' is located at 9.7 MeV." Figure 2a from this reference roughly supports the assignment of the two peaks reported in [1995Ho04].

*** Interpolated between 1.462(37) fm (262 Sg) and 1.481(12) fm (266 Hs).

Table 10

direct α emission from ²⁶⁸Mt, $T_{1/2} = 21^{+8}_{-5}$ ms*, $BR_{\alpha} = \approx 100\%$ **.

$E_{\alpha}(\text{c.m.})$	$E_{\alpha}(\text{lab})^{**}$	$I_{\alpha}(\text{rel})^{**}$	$I_{\alpha}(abs)$	\mathbf{J}_f^{π}	$E_{daughter}(^{264}\mathrm{Bh})$	coincident γ-rays (keV)	$R_0 (fm)^@$	HF
10.250(20) 10.395(20)	10.097(20) 10.240(20)	$\approx 50\%$ 100%	≈33% ≈67%				1.477(17) 1.477(17)	$\approx 6 \approx 7$

* [2004Mo27, 2004Mo26].

** Only α -decay has been observed.

*** Values are taken from [1995H004], which reported 2 events at 10.240(20) MeV and 1 event at 10.097(20) MeV. [2004M027] report 14 events from the α decay of ²⁶⁸Mt, and 2 fission events. They report: "Observed decay energy ranges from 9..40 to 10.77 MeV showing broad distribution, although the ' peak' is located at 10.4 MeV." Figure 2a from this reference shows a peak with 7 counts at roughly 10.3 MeV, 1 count at roughly 19,1 MeV and three counts from 10.5-10.8 MeV.

[@] Interpolated between 1.481(12) fm (266 Hs) and 1.472(12) fm (270 Ds).

Table 11

direct α emission from ²⁷² Rg, $T_{1/2} = 3.8^{+1.4}_{-0.8}$ ms*, $BR_{\alpha} = \approx 100\%$ **.									
$E_{\alpha}(c.m.)$	$E_{\alpha}(\text{lab})^{**}$	$I_{\alpha}(abs)^{**}$	\mathbf{J}_f^{π}	$E_{daughter}(^{268}\mathrm{Mt})$	coincident γ -rays (keV)	$R_0 (fm)^@$	HF		
10.981(20)	10.820(20)	$\approx 100\%$				1.47	≈5		

* [2004Mo27, 2004Mo26].

** Only α -decay has been observed.

*** Values are taken from [1995Ho04], which reported 2 events at 10.240(20) MeV and 1 event at 10.097(20) MeV. [2004Mo27] report 14 events from the α decay of ²⁶⁴Bh, and 2 fission events. They report: "Observed decay energy ranges from 10.20 to 11.56 MeV showing broad distribution, although the ' peak' is located at 11.0 MeV." Figure 2a from this reference shows a peak with 7 counts at roughly 11 MeV.

[@] 1.47 fm is used to calculate HF.

References used in the Tables

- [1] 1950Ja51 A. H. Jaffey, E. K. Hyde, Phys. Rev. 79, 280 (1950). https://doi.org/10.1103/PhysRev.79.280
- [2] 1950Th55 S. G. Thompson, A. Ghiorso, G. T. Seaborg, Phys. Rev. 77, 838 (1950). https://doi.org/10.1103/PhysRev.77.838.2
- [3] 1956Ch67 A. Chetham-Strode, L. W. Holm, Phys. Rev. 104, 1314 (1956). https://doi.org/10.1103/PhysRev.104.1314

- [4] 1956Ch77 A. Chetham-Strode, Jr., Thesis, Univ. California (1956).; UCRL-3322 (1956).
- [5] 1966Ah02 I. Ahmad, Thesis, Univ. California (1966).; UCRL-16888 (1966).
- [6] 1967Fl06 G. N. Flerov, Y. S. Korotkin, V. L. Mikheev, M. B. Miller, S. M. Polikanov, V. A. Shchegolev, JINR-E7-3257 (1967).
- [7] 1968Do19 E. D. Donets, V. A. Druin, V. L. Mikheev, Ann. Phys. (Paris). 3, 331 (1968).
- [8] 1968Fl08 G. N. Flerov, G. N. Akapev, A. G. Demin, V. A. Druin, Y. V. Lobanov, B. V. Fefilov, Yadern. Fiz. 7, 977 (1968).; Soviet J. Nucl. Phys. 7, 588 (1968).
- [9] 1968F109 G. N. Flerov, V. A. Druin, A. G. Demin, Y. V. Lobanov, N. K. Skobelev, G. N. Akapev, B. V. Fefilov, I. V. Kolesov, K. A. Gavrilov, Y. P. Kharitonov, L. P. Chelnokov, JINR-P7-3808(1968).
- [10] 1970Ah01 I. Ahmad, R. K. Sjoblom, R. F. Barnes, E. P. Horwitz, P. R. Fields, Nucl. Phys. A140, 141 (1970). https://doi.org/10.1016/0375-9474(70).90890-0
- [11] 1970Dr08 V. A. Druin, Yad. Fiz. 12, 268 (1970).; Sov. J. Nucl. Phys. 12, 146 (1971).
- [12] 1970FIZY G. N. Flerov, Y. T. Oganesyan, Y. V. Lobanov, Y. A. Lazarev, V. I. Kuznetsov, S. P. Tretiakova, JINR-P7-5108 (1970).
- [13] 1970Go42 D. J. Gorman, F. Asaro, Phys. Rev. C2, 2406 (1970). https://doi.org/10.1103/PhysRevC.2.2406
- [14] 1970ZvZZ I. Zvara, Proc. Robert A. Welch Foundation Conf. On Chem. Research, W. O. Milligan, Ed., Houston, Texas (1969)., Vol. XIII, p. 153 (1970).
- [15] **1971Br39** H. C. Britt, S. C. Burnett, B. H. Erkkila, J. E. Lynn, W. E. Stein, Phys. Rev. C4, 1444 (1971). https://doi.org/10.1103/PhysRevC.4.1444
- [16] 1971Es01 K. Eskola, P. Eskola, M. Nurmia, A. Ghiorso, Phys. Rev. C 4, 632 (1971). https://doi.org/10.1103/PhysRevC.4.632
- [17] 1972Ah07 I. Ahmad, R. F. Barnes, R. K. Sjoblom, P. R. Fields, J. Inorg. Nucl. Chem. 34, 3335 (1972). https://doi.org/10.1016/0022-1902(72).80227-6
- [18] 1972Ga42Y. P. Gangrskii, Nguen Kong Khan, D. D. Pulatov, At. Energ. 33, 829 (1972).; Sov. At. Energy 33, 948 (1973).
- [19] 1972W007 K. L. Wolf, J. P. Unik, Phys. Lett. 38B, 405 (1972). https://doi.org/10.1016/0370-2693(72)90167-0
- [20] 1972WoZP K. L. Wolf, J. P. Unik, D. Henderson, A. Gorski, REPT ANL-7930, P36, 11/2/72, CRL.
- [21] 1973Be04 A. G. Belov, Y. P. Gangrsky, B. Dalkhsuren, A. M. Kucher, T. Nagy, D. M. Nadkarni, Indian J. Phys. 47, 232 (1973).
- [22] 1973Es01 P. Eskola, Phys. Rev. C7, 280 (1973). https://doi.org/10.1103/PhysRevC.7.280
- [23] 1976BeYM C. E. Bemis, Jr., D. C. Hensley, P. F. Dittner, R. L. Hahn, R. J. Silva, J. R. Tarrant, L. D. Hunt, ORNL-5137, p. 73 (1976).
- [24] 1976BeZM A. G. Belov, Y. P. Gangrsky, B. Dalkhsuren, M. B. Miller, JINR-P6-9397 (1976).
- [25] 1976BeZY C. E. Bemis, Jr., D. C. Hensley, P. F. Dittner, R. L. Hahn, R. J. Silva, J. R. Tarrant, L. D. Hunt, ORNL-5111, p. 58 (1976).
- [26] 1976DiZY P. F. Dittner, C. E Bemis. Jr., D. C. Hensley, R. J. Salva, R. L. Hahn, J. R. Tarrant, REPT ORNL-5111, P57.
- [27] 1977Be36 C. E. Bemis, Jr., P. F. Dittner, R. J. Silva, R. L. Hahn, J. R. Tarrant, L. D. Hunt, D. C. Hensley, Phys. Rev. C16, 1146 (1977). https://doi.org/10.1103/PhysRevC.16.1146
- [28] 1979Be46 C. E. Bemis, Jr., J. R. Beene, J. P. Young, S. D. Kramer, Phys. Rev. Lett. 43, 1854 (1979); Erratum Phys. Rev. Lett. 44, 500 (1980). https://doi.org/10.1103/PhysRevLett.43.1854
- [29] 1980Ga07 Yu. P. Gangrsky, M. B. Miller, L. V. Mikhailov, I. F. Kharisov, Yad. Fiz. 31, 306 (1980); Sov. J. Nucl. Phys. 31, 162 (1980)
- [30] 1980GaZZ Yu. P. Gangrsky, M. B. Miller, L. V. Mikhailov, I. F. Kharisov, Preprint of the Joint Institute for Nuclear Research. Dubna 1979, P7 - 12584.
- [31] **1981Ku02** W. Kurcewicz, E. Ruchowska, N. Kaffrell, T. Bjornstad, G. Nyman, Nucl. Phys. A**356**, 15 (1981). https://doi.org/10.1016/0375-9474(81).90114-7
- [32] 1981Li30 M. Lindner, R. J. Dupzyk, R. W. Hoff, R. J. Nagle, J. Inorg. Nucl. Chem. 43, 3071 (1981). https://doi.org/10.1016/0022-1902(81).80064-4
- [33] 1981Lu06 T. Lund, D. Hirdes, H. Jungclas, D. Molzahn, P. Vater, R. Brandt, P. Lemmertz, R. Fass, H. Wollnik, H. Gaggeler, Z. Phys. A303, 115 (1981). https://doi.org/10.1007/BF01420268

- [34] 1985Be58 C. E. Bemis, Jr., Hyperfine Interactions 24, 139 (1985). https://doi.org/10.1007/BF02354808
- [35] 1985Sk02 G. Skarnemark, M. Skalberg, Int. J. Appl. Radiat. Isotop. 36, 439 (1985). https://doi.org/10.1016/0020-708X(85).90206-6
- [36] 1989Bu09 D. G. Burke, H. Folger, H. Gabelmann, E. Hagebo, P. Hill, P. Hoff, O. Jonsson, N. Kaffrell, W. Kurcewicz, G. Lovhoiden, K. Nybo, G. Nyman, H. Ravn, K. Riisager, J. Rogowski, K. Steffensen, T. F. Thorsteinsen, and the ISOLDE Collaboration, Z. Phys. A333, 131 (1989).
- [37] 1989Ha27 Y. Hatsukawa, T. Ohtsuki, K. Sueki, H. Nakahara, I. Kohno, M. Magara, N. Shinohara, H. L. Hall, R. A. Henderson, C. M. Gannett, J. A. Leyba, R. B. Chadwick, K. E. Gregorich, D. Lee, M. J. Nurmia, D. C. Hoffman, Nucl. Phys. A500, 90 (1989). https://doi.org/10.1016/0375-9474(89)90131-0
- [38] 1989Li04 C. F. Liang, P. Paris, E. Ruchowska, Ch. Briancon, J. Phys. (London). G15, L31 (1989). https://doi.org/10.1088/0954-3899/15/3/002
- [39] 1991Ry01 A Rytz, At Data NuclData Tables 47, 205 (1991). https://doi.org/10.1016/0092-640X(91)90002-L
- [40] 1995Ho04 S. Hofmann, V. Ninov, F. P. Hessberger, P. Armbruster, H. Folger, G. Munzenberg, H. J. Schott, A. G. Popeko, A. V. Yeremin, A. N. Andreyev, S. Saro, R. Janik, M. Leino, Z. Phys. A350, 281 (1995). https://doi.org/10.1007/BF01291182
- [41] 2000Ku06 J. Kurpeta, A. Andreyev, J. Aysto, A. -H. Evensen, M. Huhta, M. Huyse, A. Jokinen, M. Karny, E. Kugler, J. Lettry, A. Nieminen, A. Plochocki, M. Ramdhane, H. L. Ravn, K. Rykaczewski, J. Szerypo, P. Van Duppen, G. Walter, A. Wohr, and the ISOLDE Collaboration, Eur. Phys. J. A 7, 49 (2000). https://doi.org/10.1007/s100500050010
- [42] 2001HoZY S. Hofmann, F. P. Hessberger, D. Ackermann, B. Kindler, J. Kojouharova, B. Lommel, R. Mann, G. Munzenberg, S. Reshitko, H. J. Schott, A. G. Popeko, A. V. Yeremin, S. Antalic, P. Cagarda, S. Saro, H. Kettunen, M. Leino, J. Uusitalo, GSI 2001-1, p. 1 (2001).
- [43] 2001Sh09 D. A. Shaughnessy, K. E. Gregorich, M. R. Lane, C. A. Laue, D. M. Lee, C. A. McGrath, D. A. Strellis, E. R. Sylwester, P. A. Wilk, D. C. Hoffman, Phys. Rev. C 63, 037603 (2001). https://doi.org/10.1103/PhysRevC.63.037603
- [44] 2002Ho11 S. Hofmann, F. P. Hessberger, D. Ackermann, G. Munzenberg, S. Antalic, P. Cagarda, B. Kindler, J. Kojouharova, M. Leino, B. Lommel, R. Mann, A. G. Popeko, S. Reshitko, S. Saro, J. Uusitalo, A. V. Yeremin, Eur. Phys. J. A 14, 147 (2002). https://doi.org/10.1140/epja/i2001-10119-x
- [45] 2004Fo08 C. M. Folden III, K. E. Gregorich, Ch. E. Dullmann, H. Mahmud, G. K. Pang, J. M. Schwantes, R. Sudowe, P. M. Zielinski, H. Nitsche, D. C. Hoffman, Phys. Rev. Lett. 93, 212702 (2004). https://doi.org/10.1103/PhysRevLett.93.212702
- [46] 2004Mo14 K. Morita, K. Morimoto, D. Kaji, S. Goto, H. Haba, E. Ideguchi, R. Kanungo, K. Katori, H. Koura, H. Kudo, T. Ohnishi, A. Ozawa, J. C. Peter, T. Suda, K. Sueki, I. Tanihata, F. Tokanai, H. Xu, A. V. Yeremin, A. Yoneda, A. Yoshida, Y. -L. Zhao, T. Zheng, Nucl. Phys. A734, 101 (2004). https://doi.org/10.1016/j.nuclphysa.2004.01.019
- [47] 2004Mo26 K. Morita, K. Morimoto, D. Kaji, H. Haba, E. Ideguchi, J. C. Peter, R. Kanungo, K. Katori, H. Koura, H. Kudo, T. Ohnishi, A. Ozawa, T. Suda, K. Sueki, I. Tanihata, H. Xu, A. V. Yeremin, A. Yoneda, A. Yoshida, Y. -L. Zhao, T. Zheng, S. Goto, F. Tokanai, J. Phys. Soc. Jpn. 73, 1738 (2004). https://doi.org/10.1143/JPSJ.73.1738
- [48] 2004Mo27 K. Morimoto, K. Morita, D. Kaji, S. Goto, H. Haba, E. Ideguchi, R. Kanungo, K. Katori, H. Koura, H. Kudo, T. Ohnishi, A. Ozawa, J. C. Peter, T. Suda, K. Sueki, I. Tanihata, F. Tokanai, H. Xu, A. V. Yeremin, A. Yoneda, A. Yoshida, T. -L. Zhao, T. Zheng, Nucl. Phys. A738, 129 (2004). https://doi.org/10.1016/j.nuclphysa.2004.04.021
- [49] 2008An16 S. Antalic, F. P. Hessberger, S. Hofmann, D. Ackermann, S. Heinz, B. Kindler, I. Kojouharov, P. Kuusiniemi, M. Leino, B. Lommel, R. Mann, K. Nishio, S. Saro, B. Streicher, B. Sulignano, M. Venhart, Eur. Phys. J. A 38, 219 (2008). https://doi.org/10.1140/epja/i2008-10665-7
- [50] 2010Al24 H. Alvarez-Pol, J. Benlliure, E. Casarejos, L. Audouin, D. Cortina-Gil, T. Enqvist, B. Fernandez-Dominguez, A. R. Junghans, B. Jurado, P. Napolitani, J. Pereira, F. Rejmund, K. -H. Schmidt, O. Yordanov, Phys. Rev. C 82, 041602 (2010). https://doi.org/10.1103/PhysRevC.82.041602
- [51] 2010SaZV N. Sato, M. Asai, K. Tsukada, T. K. Sato, A. Toyoshima, Z. J. Li, T. Kikuchi, S. Ichikawa, Y. Nagame, JAEA-Review 2010-056, p. 52 (2010).
- [52] 2014Sa21 N. Sato, T. K. Sato, M. Asai, A. Toyoshima, K. Tsukada, Z. J. Li, K. Nishio, Y. Nagame, M. Schadel, H. Haba, S. Ichikawa, H. Kikunaga, Radiochim. Acta 102, 211 (2014). https://doi.org/10.1515/ract-2014-2142
- [53] 2014So17 S. Sodaye, R. Tripathi, K. Sudarshan, S. K. Sharma, P. K. Pujari, R. Palit, S. Mukhopadhyay, J. Phys. (London). G41, 125103 (2014). https://doi.org/10.1088/0954-3899/41/12/125103
- [54] 2015Ba55 H. Backe, W. Lauth, M. Block, M. Laatiaoui, Nucl. Phys. A944, 492 (2015). https://doi.org/10.1016/j.nuclphysa.2015.07.002

- [55] 2016Ca25 R. Caballero-Folch, C. Domingo-Pardo, J. Agramunt, A. Algora, F. Ameil, A. Arcones, Y. Ayyad, J. Benlliure, I. N. Borzov, M. Bowry, F. Calvino, D. Cano-Ott, G. Cortes, T. Davinson, I. Dillmann, A. Estrade, A. Evdokimov, T. Faestermann, F. Farinon, D. Galaviz, A. R. Garcia, H. Geissel, W. Gelletly, R. Gernhauser, M. B. Gomez Hornillos, C. Guerrero, M. Heil, C. Hinke, R. Knobel, I. Kojouharov, J. Kurcewicz, N. Kurz, Yu. A. Litvinov, L. Maier, J. Marganiec, T. Marketin, M. Marta, T. Martinez, G. Martinez-Pinedo, F. Montes, I. Mukha, D. R. Napoli, C. Nociforo, C. Paradela, S. Pietri, Zs. Podolyak, A. Prochazka, S. Rice, A. Riego, B. Rubio, H. Schaffner, Ch. Scheidenberger, K. Smith, E. Sokol, K. Steiger, B. Sun, J. L. Tain, M. Takechi, D. Testov, H. Weick, E. Wilson, J. S. Winfield, R. Wood, P. Woods, A. Yeremin, Phys. Rev. Lett. 117, 012501 (2016). https://doi.org/10.1103/PhysRevLett.117.012501
- [56] 2021Wa16 M. Wang, W. J. Huang, F. G. Kondev, G. Audi, S. Naimi, Chin. Phys. C 45, 030003 (2021). https://doi.org/10.1088/1674-1137/abddaf