

Fig. 1: Known experimental values for heavy particle emission of the odd-Z T_z = +25/2 nuclei.

Last updated 2/6/2024

Table 1

Observed and predicted β -delayed particle emission from the odd-Z, $T_z = +25/2$ nuclei. Unless otherwise stated, all Q-values are taken from [2021Wa16] or deduced from values therein.

Nuclide	Ex	J^{π}	$T_{1/2}$	Q _ε	$Q_{\varepsilon p}$	Qεα	Experimental
¹⁴³ Pr		7/2+	13.56(2) d*	-1.462(3)			[1971Ba28, 1957Pe09, 1965Is01]
¹⁴⁷ Pm		7/2+	2.62346(27) y	0.105(2)	-9.657(34)	0.139(3)	[1999Po32]
¹⁵¹ Eu		5/2+	$4.6(12) \times 10^{18} \text{ y}^{**}$	stable			[2014Ca03]
¹⁵⁵ Tb		3/2+	5.32(6) d	0.820(10)	-6.801(10)	0.901(10)	[1970Ch09]
¹⁵⁹ Ho		7/2-	33.05(11) m	1.838(3)	-5.148(3)	2.316(3)	[1982Vy02]
¹⁶³ Tm		$1/2^{+}$	1.810(5) h	2.439(3)	-3.977(6)	4.014(6)	[1982Vy02]
¹⁶⁷ Lu		7/2+	51.5(10) m	3.060(40)	-2.929(39)	5.216(38)	[1976Me06]
¹⁷¹ Ta		$(5/2^+)$	23.3(3) m	3.710(40)	-1.703(33)	6.445(28)	[1972Ch45]
¹⁷⁵ Re		$(5/2^{-})$	5.89(5) m	4.340(40)	-0.837(40)	7.718(40)	[1984Sz07]
¹⁷⁹ Ir		$(5/2^{-})$	79(1) s	4.938(18)	0.283(30)	9.126(30)	[1992Bo19]
¹⁸³ Au		(5/2-)	44.6(19) s	5.582(17)	1.571(23)	10.404(18)	[1995Bi01]
¹⁸⁷ Tl		$(1/2^+)$	\approx 45 s	5.674(15)	1.981(22)	10.904(16)	[1981Mi12]
^{187m} Tl	0.333(8)***	(9/2-)	15.60(12) s	6.007(17)	2.314(23)	11.237(18)	[1981Mi12]
¹⁹¹ Bi		(9/2-)	12.1(4) s [@]	7.052(10)	3.838(10)	12.454(15)	[2013Ny01, 2003Ke04]
^{191m} Bi	0.234(8)	$(1/2^+)$	116(5) ms ^{@@}	7.052(10)	3.838(10)	12.454(15)	[2013Ny01, 2003Ke04, 1999An36]
¹⁹⁵ At		$(1/2^+)$	309(20) ms@@@@	7.646(11)	5.264(11)	14.396(12)	[2013Ny01, 2003Ke04]
^{195m} At	0.033(8)***	$(7/2^{-})$	$144(3) \text{ ms}^a$	7.679(14)	5.297(14)	14.429(14)	[2013Ny01, 2003Ke04]
¹⁹⁹ Fr		$(1/2^+)$	5^{+7}_{-2} ms	8.331(16)	6.191(15)	15.463(15)	[2013Uu01]
^{199m1} Fr	0.057(26)***	$(7/2^{-})$	7^{+3}_{-2} ms	8.388(16)	6.191(15)	15.463(15)	[2013Uu01]
^{199m2} Fr	≤0.300***	$(13/2^+)$	$1.6^{+1.6}_{-0.6}$ ms	≤8.631(31)	≤6.548(30)	≤15.811(30)	[2013Uu01]
²⁰³ Ac			56^{+269}_{-25} µs	$8.977(23)^{b}$	$7.187(22)^b$	$16.722(22)^b$	[2024WaXX]

* weighted average of 13.57(2) d [1971Ba28], 13.59(4) d [1957Pe09] and 13.55(2) d [1965Is01]. ** Reported as 4.62 (95 stat.) (68 syst.) $\times 10^{18}$ y [2014Ca03].

*** Deduced from α energies.

[@] Weighted average of 11.7(4) s [2013Ny01] and 12.4(4) s [2003Ke04]. [@] Weighted average of 114(6) ms [2013Ny01], 121^{+8}_{-7} ms [2003Ke04] and 115(10) ms [1999An36].

^{@@@@} Weighted average of 290(20) ms [2013Ny01] and 328(20) ms [2003Ke04].

^a Weighted average of 143(3) ms [2013Ny01] and 147(5) ms [2003Ke04].

^b Deduced from α energy and mass of daughter [2021Wa16].

Table 2

Particle separation, Q-values, and measured values for direct particle emission of the odd-Z, $T_z = +25/2$ nuclei. Unless otherwise stated, all S and Q-values are taken from [2021Wa16] or deduced from values therein.

Nuclide	\mathbf{S}_p	S_{2p}	Qα	BR_{α}	Experimental
142-					
¹⁴⁵ Pr	5.824(2)	14.716(4)	1.729(2)		
¹⁴⁷ Pm	5.405(1)	13.994(7)	1.601(1)		
¹⁵¹ Eu	4.891(1)	13.167(2)	1.964(1)	100%*	[2014Ca03 , 2012Pa16]
¹⁵⁵ Tb	4.833(10)	12.461(10)	0.978(10)		
¹⁵⁹ Ho	4.211(4)	11.144(3)	1.496(10)		
¹⁶³ Tm	3.683(5)	10.110(6)	2.176(6)		
¹⁶⁷ Lu	3.222(38)	9.174(37)	2.777(38)		
¹⁷¹ Ta	2.755(40)	8.216(28)	3.381(47)		
¹⁷⁵ Re	2.350(40)	7.470(40)	4.007(40)		
¹⁷⁹ Ir	1.826(17)	6.390(30)	4.782(30)		
¹⁸³ Au	1.312(16)	5.306(11)	5.465(3)	0.8(2)%	[1995Bi01, 1992BiZZ, 1984BrZR, 1982Bo04,
					1982BoZL, 1970Ha18, 1970Ma24, 1968De01,
					1968Si01, 1965Si07]
¹⁸⁷ Tl	1.195(14)	5.164(8)	5.322(7)		
^{187m} Tl	0.862(16)	4.831(11)	5.655(11)	0.15(5)%	[1991Wa21, 1980Sc09 , 1976To06, 1976BoYC]
¹⁹¹ Bi	0.112(15)	3.201(11)	6.780(3)	51(10)%	[2013Ny01, 2003Ke04, 1999An36, 2000Sc46
					1999Ta20, 1999TaZS, 1998Kr23, 1993An19,
					1991Wa21, 1985Co06, 1982LeZN, 1978Va21,
					1974Le02, 1972Ga27]
^{191m} Bi	-0.122(16)	2.967(13)	7.014(7)	68(5)%	[2013Ny01, 2003Ke04, 1999An36, 2024WaXX,
					1993An19, 1991Wa21, 1985Co06, 1982LeZN,
					1978Va21, 1974Le02, 1972Ga27]
¹⁹⁵ At	-0.245(16)	2.164(12)	7.344(6)	$\approx 100\%$	[2013Ny01, 2003Ke04, 2024WaXX, 1999Ta20,
					1999TaZS, 1996PuZZ, 1995Le15, 1995NoZW,
					1984YaZY]
^{195m} At	-0.278(18)	2.131(14)	7.377(10)	88(4)%	[2013Ny01, 2003Ke04, 1999Ta20, 1999TaZS,

Table 2

Particle separation, Q-values, and measured values for direct particle emission of the odd-Z, $T_z = +25/2$ nuclei. Unless otherwise stated, all S and Q-values are taken from [2021Wa16] or deduced from values therein.

					1996PuZZ, 1995Le15, 1995NoZW, 1984YaZY]
¹⁹⁹ Fr	-0.713(19)	1.451(16)	7.817(10)	100%	[2013Uu01 , 2024WaXX]
^{199m1} Fr	-0.770(32)	1.394(31)	7.874(28)	100%	[2013Uu01, 2013Ka16, 1999Ta20, 1999TaZS, 2024WaXX]
^{199m2} Fr	> -1.013(19)	>1.151(16)	<8.117(10)	100%	[2013Uu01]
²⁰³ Ac	-1.214(26)***	0.589(23)***	8.382(16)**	100%	[2024WaXX]

* Only decay available.

** Deduced from α energy.

*** Deduced from α energy and mass of daughter [2021Wa16].

Table 3

|--|

$E_{\alpha}(\text{c.m.})$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(abs)$	\mathbf{J}_f^{π}	$E_{daughter}(^{147}\mathrm{Pm})$	coincident γ-rays	R ₀ (fm)	HF
1.9489(86)	1.8973(86)	100%	7/2-	0.0	_	1.583(16)	18^{+11}_{-9}

* All values from [2014Ca13].

Table 4

direct α emission from ¹⁸³Au*, J^{π} = (5/2⁻), T_{1/2}= 44.6(19) s, BR_{α} = 0.8(2)%.

$E_{\alpha}(c.m.)$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(\text{rel})$	$I_{\alpha}(abs)$	${f J}_f^\pi$	$E_{daughter}(^{179}\mathrm{Ir})$	coincident γ -rays	R ₀ (fm)	HF
5.075(10)	4.964(10)	0.2(1)%	0.0016(9)%		0.394		1.5330(75)	6^{+8}_{-3}
5.198(10)	5.084(10)	0.4(1)%	0.0032(11)%		0.271		1.5330(75)	13_{-4}^{+9}
5.275(5)	5.160(5)	0.6(1)%	0.0048(14)%		0.1932	0.0925, 0.0997, 0.1932	1.5330(75)	23^{+12}_{-7}
5.469(5)	5.349(5)	100(1)%	0.8(2)%	(5/2 ⁻)	0.0		1.5330(75)	$1.3_{-0.4}^{+0.6}$

* All values from [1995Bi01].

Table 5

direct α emission from ^{187m}Tl, Ex = 333(8) keV*, J^{π} = (9/2⁻), T_{1/2} = 15.60(12) s**, BR_{α} = 0.15(5)%***.

$E_{\alpha}(\text{c.m.})$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(abs)$	$\mathbf{J}_f^{\boldsymbol{\pi}}$	$E_{daughter}(^{183}\mathrm{Au})$	coincident γ -rays	R ₀ (fm)	HF
5.648(10)	5.528(10) [@]	0.15(5)%***	(9/2 ⁻)	0.0124(4) ^{@@}		1.494(10)	$0.9\substack{+0.6 \\ -0.4}$
* Deduced ** [1981M *** [1991V [@] [1980Sc ^{@@} [2016E	from α energies o i12]. Wa21]. 09]. Ba19].	of ¹⁹¹ Bi decay.					

Table 6

direct α emission from ¹⁹¹Bi, J^{π} = (9/2⁻), T_{1/2} = 12.1(4) s*, BR_{α} = 51(10)%**.

$E_{\alpha}(c.m.)$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(\text{rel})$	$I_{\alpha}(abs)$	\mathbf{J}_f^{π}	$E_{daughter}(^{187}\mathrm{Tl})$	coincident γ -rays	R ₀ (fm)	HF
6.450(4) 6.723(15) 6.783(7)	6.315(4)*** 6.582(15) [@] 6.641(7)***	100% [@] 0.78% [@] 3% [@]	49(10)% 0.40% 1.5(3)%	(9/2 ⁻) (3/2 ⁺) (1/2 ⁺)	0.333(8) 0.300 0.0	1.5030(34) 0.300	$1.1^{+0.4}_{-0.3}$ 1.5030(34) 1.5030(34)	200 670

* Weighted average of 11.7(4) s [2013Ny01] and 12.4(4) s [2003Ke04].

** [2003Ke04].

*** [2013Ny01].

@ [1999An36].

Table 7

$E_{\alpha}(c.m.)$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(\text{rel})$	$I_{\alpha}(abs)$	$\mathbf{J}_f^{\boldsymbol{\pi}}$	$E_{daughter}(^{187}\text{Tl})$	coincident 7	Y-rays 1	R_0 (fm)	HF
6.723(15) 7.022(4)	6.582(15) 6.875(4) [@]	$0.24\%^{@@}$ $100\%^{@@}$	0.163(12)% 68(5)%	(3/2 ⁺) (1/2 ⁺)	0.300 0.0	0.300		1.5030(34) 71.5030(34)	36 1.03(12)
* Deduc ** Weig *** [20 [@] [2013 [@] [199	ted from α energi hted average of 1 03Ke04]. Ny01]. 09An36].	ies. 14(6) ms [2013]	Ny01], 121 ⁺⁸ ms	[2003Ke04] ar	nd 115(10) ms [1999.	An36].			
Table 8 direct α emi	ssion from ¹⁹⁵ At,	$J^{\pi} = (1/2^+), T_{1/2}$	$r_2 = 309(20) \text{ ms}^*$	$BR_{\alpha} = \approx 1009$	%.				
$E_{\alpha}(c.m.)$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(abs)$	${\sf J}_f^{{m \pi}}$	$E_{daughter}($	¹⁹¹ Bi) coincid	ent γ-rays	R ₀ (fm)	HF	
7.100(3)	6.954(3)**	$\approx 100\%$	(1/2 ⁺),	0.234(8)			1.5482(9	5) $1.6^{+0.4}_{-0.2}$	4 3
* Weigh ** Weig	ated average of 29 shted average of 6	00(20) ms [2013] 5.956(4) MeV [20	Ny01] and 328(20 013Ny01] and 6.9	0) ms [2003Ket 953(3) MeV [2	04]. 003Ke04]				
Table 9 direct α emi	ssion from ^{195m} A	t, Ex = 33(8) ke	$V, J^{\pi} = (7/2^{-}), T_{1}$	$_{/2} = 144(3)$ ms	$S^*, BR_{\alpha} = 88(4)\%^{**}.$				
$E_{\alpha}(c.m.)$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(\text{rel})$	$I_{\alpha}(abs)$	${f J}_f^\pi$	<i>E</i> _{daughter} (¹⁹¹ Bi)	coincident	γ-rays	R ₀ (fm)	HF
									. 12
7.223(3) 7.373(4) * Weigh ** [201	7.075(3)*** 7.222(4) [@] atted average of 14 3Nv011.	100% 4.7(5)% 43(3) ms [2013N	84(4)% 4.0((5)% y01] and 147(5)	(9/2 ⁻) ms [2003Ke04]	0.1486 0.0].	0.1486		1.5482(95) 1.5482(95)	$49^{+13}_{-11} \\ 7.2^{+1.6}_{-1.4}$
7.223(3) 7.373(4) * Weigh ** [201 *** Wei @ Weig Table 10 direct α emi	7.075(3)*** 7.222(4) [@] atted average of 14 3Ny01]. ighted average of 7. ssion from ¹⁹⁹ Fr*	100% 4.7(5)% (3(3) ms [2013N 7.076(5) MeV [20 222(4) MeV [20 5, J ^{π} = (1/2 ⁺), T ₁	84(4)% 4.0((5)% y01] and 147(5) 2013Ny01] and 7 2013Ny01] and 7.2 $y_{1/2} = 5^{+7}_{-2}$ ms, <i>BR</i>	$(9/2^{-})$ ms [2003Ke04] 2.075(4) MeV [20 221(4) MeV [20 $\alpha = 100\%$.	0.1486 0.0]. 2003Ke04] 003Ke04]	0.1486		1.5482(95) 1.5482(95)	$49^{+13}_{-11} \\ 7.2^{+1.6}_{-1.4}$
7.223(3) 7.373(4) * Weigt ** [201 *** Wei @ Weig Table 10 direct α emi E_{α} (c.m.)	7.075(3)*** 7.222(4) [@] atted average of 14 3Ny01]. ighted average of 7. ssion from ¹⁹⁹ Fr* $E_{\alpha}(\text{lab})$	$100\% \\ 4.7(5)\% \\ 3(3) \text{ ms } [2013N \\ 7.076(5) \text{ MeV } [2013] \\ .222(4) \text{ MeV } [2013] \\ .300 \\$	84(4)% 4.0((5)% y01] and 147(5) 2013Ny01] and 7 2013Ny01] and 7.2 $J_{1/2}^{\pi} = 5^{+7}_{-2}$ ms, <i>BR</i>	$(9/2^{-})$ ms [2003Ke04] 2.075(4) MeV [221(4) MeV [20] $\alpha = 100\%.$ $E_{daughter}(^{-1})$	0.1486 0.0]. 2003Ke04] 003Ke04] ⁹⁵ At) coincid	0.1486 —- ent γ-rays	R ₀ (fm)	1.5482(95) 1.5482(95) HF	$49^{+13}_{-11} \\ 7.2^{+1.6}_{-1.4}$
7.223(3) 7.373(4) * Weigh ** [201. *** Weig @ Weig Table 10 direct α emi $E_{\alpha}(c.m.)$ 7.801(20)	7.075(3)*** 7.222(4) [@] atted average of 14 3Ny01]. ighted average of 7. ssion from ¹⁹⁹ Fr* $E_{\alpha}(\text{lab})$ 7.644(20)	$\frac{100\%}{4.7(5)\%}$ $\frac{4.7(5)\%}{3(3) \text{ ms } [2013N]}$ $\frac{7.076(5) \text{ MeV } [200]}{(222)(4) \text{ MeV } [200]}$ $\frac{1}{2}, J^{\pi} = (1/2^{+}), T_{1}$ $\frac{I_{\alpha}(\text{abs})}{100\%}$	84(4)% 4.0((5)% y01] and 147(5) f 2013Ny01] and 7 2013Ny01] and 7.2 J_{f}^{π} (1/2 ⁺)	$(9/2^{-})$ ms [2003Ke04] 2.075(4) MeV [221(4) MeV [20] $\alpha = 100\%.$ $E_{daughter}(^{-1})$ 0.0	0.1486 0.0]. 2003Ke04] 003Ke04] 9 ⁵ At) coincid	0.1486 ent γ-rays	R ₀ (fm) 1.576(11	1.5482(95) 1.5482(95) HF) 1.7 ^{+2.4} _{-0.8}	$49^{+13}_{-11} \\ 7.2^{+1.6}_{-1.4}$
7.223(3) 7.373(4) * Weigh *** [201. *** Weig @ Weig Table 10 direct α emi $E_{\alpha}(c.m.)$ 7.801(20) * All va	7.075(3)*** 7.222(4) [@] atted average of 14 3Ny01]. ighted average of 7. ssion from ¹⁹⁹ Fr* $E_{\alpha}(1ab)$ 7.644(20) lues from [2013U	$100\% \\ 4.7(5)\% \\ 3(3) \text{ ms } [2013N \\ 7.076(5) \text{ MeV } [2013] \\ .222(4) \text{ MeV } [2013] \\ .3333 \\ $	84(4)% 4.0((5)% y01] and 147(5) = 2013Ny01] and 7 2013Ny01] and 7.2 $J_{1/2}^{-2} = 5^{+7}_{-2}$ ms, <i>BR</i> J_{f}^{π} (1/2 ⁺)	$(9/2^{-})$ ms [2003Ke04] 2.075(4) MeV [221(4) MeV [20] $\alpha = 100\%.$ $E_{daughter}(^{-1})$ 0.0	0.1486 0.0]. 2003Ke04] 003Ke04] 9 ⁵ At) coincid 	0.1486 ent γ-rays	R ₀ (fm) 1.576(11	HF 1.5482(95) 1.5482(95) HF 1.7 ^{+2.4} _{-0.8}	$49^{+13}_{-11} \\ 7.2^{+1.6}_{-1.4}$
7.223(3) 7.373(4) * Weigh ** [201 *** Weige @ Weigi Table 10 direct α emi $E_{\alpha}(c.m.)$ 7.801(20) * All va Table 11 direct α emi	7.075(3)*** 7.222(4) [@] atted average of 14 3Ny01]. ighted average of 7. ission from ¹⁹⁹ Fr* $E_{\alpha}(lab)$ 7.644(20) lues from [2013U ssion from ^{199m1} F	$100\% \\ 4.7(5)\% \\ 3(3) \text{ ms } [2013N \\ 7.076(5) \text{ MeV } [2000] \\ 2.22(4) \text{ MeV } [2000] \\ 3.00\% \\ 100\% $	84(4)% 4.0((5)% y01] and 147(5) = 2013Ny01] and 7.2 13Ny01] and 7.2 $J_{1/2} = 5^{+7}_{-2}$ ms, <i>BR</i> J ^{π} (1/2 ⁺) keV, J ^{π} = (7/2 ⁻),	(9/2 ⁻) ms [2003Ke04] (.075(4) MeV [(.21(4) MeV [20] $\alpha = 100\%.$ $E_{daughter}(1)$ 0.0 $T_{1/2} = 7^{+3}_{-2} ms$	0.1486 0.0]. 2003Ke04] $\frac{95}{\text{At}}$ coincid	0.1486 —— ent γ-rays	R ₀ (fm) 1.576(11	1.5482(95) 1.5482(95) HF) 1.7 ^{+2.4} _{-0.8}	49 ⁺¹³ ₋₁₁ 7.2 ^{+1.6} 7.2 ^{-1.4}
7.223(3) 7.373(4) * Weigt ** [201] *** Weig @ Weig Table 10 direct α emi <i>E</i> _{α} (c.m.) 7.801(20) * All va Table 11 direct α emi <i>E</i> _{α} (c.m.)	7.075(3)*** 7.222(4) [@] atted average of 14 3Ny01]. ighted average of 7. ssion from ¹⁹⁹ Fr* <u>E_{\alpha}(lab)</u> 7.644(20) lues from [2013U ssion from ^{199m1} F <u>E_{\alpha}(lab)</u>	$100\% \\ 4.7(5)\% \\ 4.7(5)\% \\ 3(3) \text{ ms } [2013N \\ 7.076(5) \text{ MeV } [2000] \\ 222(4) \text{ MeV } [2000] \\ 3.00\% \\ 100$	84(4)% 4.0((5)% y01] and 147(5) f 2013Ny01] and 7 2013Ny01] and 7.2 J_{f}^{π} (1/2 ⁺) keV, $J^{\pi} = (7/2^{-}),$ J_{f}^{π}	(9/2 ⁻) ms [2003Ke04] 2.075(4) MeV [221(4) MeV [20] $\alpha = 100\%.$ $E_{daughter}(^{-1})$ 0.0 $T_{1/2} = 7^{+3}_{-2}$ ms $E_{daughter}(^{-195}_{-2})$	0.1486 0.0]. 2003Ke04] 2003Ke04 2003Ke04 3003Ke04	0.1486 ent γ-rays t γ-rays	R ₀ (fm) 1.576(11 R ₀ (fm)	1.5482(95) 1.5482(95) HF) 1.7 ^{+2.4} 1.7 ^{+2.4} HF	$49^{+13}_{-11} \\ 7.2^{+1.6}_{-1.4}$
7.223(3) 7.373(4) * Weigt ** [2011 *** Weige Table 10 direct α emining E_{\alpha}(c.m.) 7.801(20) * All van Table 11 direct α emining E_{\alpha}(c.m.) 7.825(15)	$7.075(3)^{***}$ $7.222(4)^{@}$ atted average of 14 3Ny01]. ighted average of f ssion from ¹⁹⁹ Fr* <u>E_{\alpha}(lab)</u> 7.644(20) lues from [2013U ssion from ^{199m1} F <u>E_{\alpha}(lab)</u> 7.668(15)	$100\% \\ 4.7(5)\% \\ 4.7(5)\% \\ 3(3) \text{ ms } [2013N \\ 7.076(5) \text{ MeV } [200 \\ 222(4) \text{ MeV } [200 \\ 3, J^{\pi} = (1/2^{+}), T_{1} \\ \hline I_{\alpha}(abs) \\ 100\% \\ 100\% \\ 5T, Ex. = 57(26) 1 \\ \hline I_{\alpha}(abs) \\ 100\%$	84(4)% 4.0((5)% y01] and 147(5) = 2013Ny01] and 7.2 1/2 = 5^{+7}_{-2} ms, <i>BR</i> J_f^{π} (1/2 ⁺) keV, $J^{\pi} = (7/2^{-})$, J_f^{π}	(9/2 ⁻) ms [2003Ke04] 2.075(4) MeV [221(4) MeV [20] $\alpha = 100\%.$ $E_{daughter}(^{-1})$ 0.0 $T_{1/2} = 7^{+3}_{-2}$ ms $E_{daughter}(^{-195}_{-2})$ 0.033(8)	0.1486 0.0]. 2003Ke04] 2003Ke04	0.1486 ent γ-rays t γ-rays	R ₀ (fm) 1.576(11 R ₀ (fm) 1.576(11)	$\frac{\text{HF}}{1.5482(95)}$	49 ⁺¹³ ₋₁₁ 7.2 ^{+1.6} 7.2 ^{-1.4}
7.223(3) 7.373(4) * Weigt ** [201 *** Weig @ Weig Table 10 direct α emi E_{α} (c.m.) 7.801(20) * All va Table 11 direct α emi E_{α} (c.m.) 7.825(15) * All va	$7.075(3)^{***}$ $7.222(4)^{@}$ atted average of 14 3Ny01]. ighted average of 14 3Ny01]. ighted average of 7. ssion from ¹⁹⁹ Fr* <u>E_{\alpha}(lab)</u> 7.644(20) lues from [2013U <u>ssion from ^{199m1}F</u> <u>E_{\alpha}(lab)</u> 7.668(15) lues from [2013U	$100\% \\ 4.7(5)\% \\ 4.7(5)\% \\ 3(3) \text{ ms } [2013N \\ 7.076(5) \text{ MeV } [2000 \\ 222(4) \text{ MeV } [2000 \\ 3000 \\$	84(4)% 4.0((5)% y01] and 147(5) = 2013Ny01] and 7.2 1/2 = 5^{+7}_{-2} ms, <i>BR</i> J_f^{π} (1/2 ⁺) keV, $J^{\pi} = (7/2^{-})$, J_f^{π}	(9/2 ⁻) ms [2003Ke04] 2.075(4) MeV [221(4) MeV [20] $\alpha = 100\%.$ <u>$E_{daughter}(1)$</u> 0.0 <u>$T_{1/2} = 7^{+3}_{-2}$ ms <u>$E_{daughter}(195)$</u> 0.033(8)</u>	0.1486 0.0]. 2003Ke04] $\frac{95}{\text{At}}$ coincid $\frac{95}{\text{At}}$ coinciden 5, $BR_{\alpha} = 100\%$.	0.1486 ent γ-rays t γ-rays	R ₀ (fm) 1.576(11 R ₀ (fm) 1.576(11)	$\frac{\text{HF}}{1.5482(95)}$	49 ⁺¹³ ₋₁₁ 7.2 ^{+1.6} 7.2 ^{-1.4}
7.223(3) 7.373(4) * Weigh ** [201] *** Wei @ Weigi Table 10 direct α emi $E_{\alpha}(c.m.)$ 7.801(20) * All va Table 11 direct α emi $E_{\alpha}(c.m.)$ 7.825(15) * All va Table 12 direct α emi	7.075(3)*** 7.222(4) [@] atted average of 14 3Ny01]. ighted average of 7. ssion from ¹⁹⁹ Fr* <u>E_{\alpha}(lab) 7.644(20) lues from [2013U ssion from ^{199m1}F <u>E_{\alpha}(lab)</u> 7.668(15) lues from [2013U ssion from ^{199m2}F</u>	$100\% \\ 4.7(5)\% \\ 4.7(5)\% \\ 3(3) \text{ ms } [2013N \\ 7.076(5) \text{ MeV } [2000 \\ (222(4) \text{ MeV } [2000 \\ (222(4) \text{ MeV } [2000 \\ (222(4) \text{ MeV } [2000 \\ (2200 $	84(4)% 4.0((5)% y01] and 147(5) = 2013Ny01] and 7.2 1/2 = 5^{+7}_{-2} ms, <i>BR</i> J_f^{π} (1/2 ⁺) keV, $J^{\pi} = (7/2^{-}),$ J_f^{π} seV, $J^{\pi} = (13/2^{+})$	(9/2 ⁻) ms [2003Ke04] (0.075(4) MeV [2003Ke04] (2.21(4) MeV [2003Ke04] (2.21	0.1486 0.0]. 2003Ke04] 95 At) coincid 95 At) coincid 6 ms, $BR_{\alpha} = 100\%$.	0.1486 ent γ-rays t γ-rays	R ₀ (fm) 1.576(11 R ₀ (fm) 1.576(11)	$\frac{\text{HF}}{1.5482(95)}$	49 ⁺¹³ ₋₁₁ 7.2 ^{+1.6} 7.2 ^{-1.4}
7.223(3) 7.373(4) * Weigh ** [201] *** Wei @ Weigi Table 10 direct α emi $E_{\alpha}(c.m.)$ 7.801(20) * All va Table 11 direct α emi $E_{\alpha}(c.m.)$ 7.825(15) * All va Table 12 direct α emi $E_{\alpha}(c.m.)$	$7.075(3)^{***}$ $7.222(4)^{(a)}$ atted average of 14 3Ny01]. ighted average of 7. ighted average of 14 ighted average of 100 ighted averag	$100\% \\ 4.7(5)\% \\ 4.7(5)\% \\ 3(3) \text{ ms } [2013N \\ 7.076(5) \text{ MeV } [200 \\ 222(4) \text{ MeV } [200 \\ 3.37 \\ 1$	84(4)% 4.0((5)% y01] and 147(5) = 2013Ny01] and 7.2 1/2 = 5^{+7}_{-2} ms, <i>BR</i> J ^{π} (1/2 ⁺) keV, J ^{π} = (7/2 ⁻), J ^{π} J_{f} keV, J ^{π} = (13/2 ⁺) J ^{π}	(9/2 ⁻) ms [2003Ke04] 2.075(4) MeV [221(4) MeV [20] $\alpha = 100\%.$ $E_{daughter}(1)$ 0.0 $T_{1/2} = 7^{+3}_{-2}$ ms $E_{daughter}(1)$ 0.0 0.033(8) $T_{1/2} = 1.6^{+1.}_{-0.}$ $E_{daughter}(1)$	0.1486 0.0]. 2003Ke04] $\frac{95}{\text{At}}$ coincid $\frac{95}{\text{At}}$ coincid $\frac{95}{\text{At}}$ coinciden $\frac{6}{6}$ ms, $BR_{\alpha} = 100\%$. $\frac{195}{\text{At}}$ coinci	0.1486 ent γ-rays t γ-rays	R ₀ (fm) 1.576(11 R ₀ (fm) 1.576(11)	1.5482(95) 1.5482(95) HF 1.7 ^{+2.4} 1.7 ^{+2.4} 1.7 ^{+2.4} 1.7 ^{+2.4} 1.7 ^{+2.4} 1.7 ^{+2.4} 1.7 ^{+2.4} 1.7 ^{+2.4} 1.7 ^{+2.1} 1.5 ⁺	49 ⁺¹³ ₋₁₁ 7.2 ^{+1.6} 7.2 ^{-1.4}

Table 13 direct α emission from ²⁰³Ac*, T_{1/2} = 56⁺²⁶⁹₋₂₅ μ s, BR $_{\alpha}$ = 100%.

$E_{\alpha}(\text{c.m.})$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(abs)$	$\mathbf{J}_f^{\boldsymbol{\pi}}$	$E_{daughter}($ ¹⁹⁹ Fr)	coincident γ-rays	R ₀ (fm)	HF
8.382(16)	8.217(16)	100%					

* All values from [2024WaXX].

References used in the Tables

- [1] 1957Pe09 D. F. Peppard, G. W. Mason, S. W. Moline, J. Inorg. Nuclear Chem. 5, 141 (1957). https://doi.org/10.1016/0022-1902(57)80055-4
- [2] **1965Is01** A. Isola, M. Nurmia, Z. Naturforsch. **20**a, 541 (1965).
- [3] 1965Si07 A. Siivola, UCRL-11828, p. 25 (1965).
- [4] 1968De01 A G Demin, T Fenyes, I Mahunka, V G Subbotin, L Tron, Nucl Phys A106, 337 (1968). https://doi.org/10.1016/0375-9474(67)90878-0
- [5] 1968Si01 A. Siivola, Nucl. Phys. A109, 231 (1968). https://doi.org/10.1016/0375-9474(68)90571-X
- [6] 1970Ch09 Y. Y. Chu, E. M. Franz, G. Friedlander, Phys. Rev. C 1, 1826 (1970). https://doi.org/10.1103/PhysRevC.1.1826
- [7] 1970Ha18 P. G. Hansen, H. L. Nielsen, K. Wilsky, M. Alpsten, M. Finger, A. Lindahl, R. A. Naumann, O. B. Nielsen, Nucl. Phys. A148, 249 (1970). oi: 10.1016/0375-9474(70)90622-6. https://doi.org/10.1016/0375-9474(70)90622-6
- [8] 1970Ma24 I. Mahunka, L. Tron, T. Fenyes, Acta Phys. 28, 237 (1970).
- [9] 1971Ba28 S. Baba, H. Baba, H. Natsume, J. Inorg. Nucl. Chem. 33, 589 (1971). https://doi.org/10.1016/0022-1902(71)80409-8
- [10] 1972Ch45 S. K. Chang, M. C. Cheney, Phys. Rev. C 6, 1898 (1972). https://doi.org/10.1103/PhysRevC.6.1898
- [11] 1972Ga27 H Gauvin, Y Le Beyec, M Lefort, N T Porile, Phys Rev Lett 29, 958 (1972). https://doi.org/10.1103/PhysRevLett.29.958
- [12] 1974Le02 Y Le Beyec, M Lefort, J Livet, N T Porile, A Siivola, Phys Rev C 9, 1091 (1974). https://doi.org/10.1103/PhysRevC.9.1091
- [13] 1976BoYC C. Bourgeois, M. Bouet, A. Caruette, A. Ferro, R. Foucher, J. Fournet, A. Hoglund, L. Kotfila, G. Landois, C. F. Liang, B. Merlant, J. Obert, A. Peghaire, J. C. Putaux, J. L. Sarrouy, W. Watzig, A. Wojtasiewicz, V. Berg, and the ISOCELE Collaboration, Univ. Paris, Ann. Rept., p. N19 (1976).
- [14] 1976To06 K S Toth, M A Ijaz, J Lin, E L Robinson, B O Hannah, E H Spejewski, J D Cole, J H Hamilton, A V Ramayya, Phys Lett 63B, 150 (1976). https://doi.org/10.1016/0370-2693(76)90636-5
- [15] 1976Me06 B. J. Meijer, F. W. N. de Boer, P. F. A. Goudsmit, Nucl. Phys. A259, 213 (1976). https://doi.org/10.1016/0375-9474(76)90063-4
- [16] 1978Va21 V. M. Vakhtel, S. G. Kadmenskii, A. A. Martynov, V. I. Furman, Yad. Fiz. 28, 1241 (1978); Sov. J. Nucl. Phys. 28, 639 (1978).
- [17] 1980Sc09 U J Schrewe, P Tidemand-Petersson, G M Gowdy, R Kirchner, O Klepper, A Plochocki, W Reisdorf, E Roeckl, J L Wood, J Zylicz, R Fass, D Schardt, Phys Lett 91B, 46 (1980). https://doi.org/10.1016/0370-2693(80)90659-0
- [18] 1981Mi12 P. Misaelides, P. Tidemand-Petersson, U. J. Schrewe, I. S. Grant, R. Kirchner, O. Klepper, I. C. Malcolm, P. J. Nolan, E. Roeckl, W. -D. Schmidt-Ott, J. L. Wood, Z. Phys. A 301, 199 (1981). https://doi.org/10.1007/BF01416294
- [19] **1982Bo04** J D Bowman, R E Eppley, E K Hyde, Phys Rev C**25**, 941 (1982). https://doi.org/10.1103/PhysRevC.25.941
- [20] 1982BoZL C. Bourgeois, P. Kilcher, M. I. Macias-Marques, M. G. Porquet, B. Roussiere, J. Sauvage-Letessier, C. Schuck, Univ. Paris, Inst. Phys. Nucl., Ann. Rept., p. E82 (1982).
- [21] 1982LeZN M. Leino, S. Yashita, A. Ghiorso, LBL-13366, p. 44 (1982).
- [22] 1982Vy02 Ts. Vylov, V. M. Gorozhankin, K. Ya. Gromov, V. G. Kalinnikov, T. Kretsu, V. V. Kuznetsov, Izv. Akad. Nauk SSSR, Ser. Fiz. 46, 16 (1982)
- [23] 1984BrZR C. Bourgeois, P. Kilcheb, M. G. Porouet, B. Roussiere, J. Sauvage for the ISOCELE Collaboration, Univ. Paris, Inst. Phys. Nucl., Ann. Rept., p. E13 (1984)
- [24] 1984Sz07 A. Szymanski, G. W. A. Newton, V. J. Robinson, S. M. A. Hoffmann, H. E. Sims, Radiochim. Acta 37, 121 (1984).

- [25] 1984YaZY S. Yashita, Diss. Abst. Int. 45B, 872 (1984).
- [26] 1985Co06 E. Coenen, K. Deneffe, M. Huyse, P. Van Duppen, J. L. Wood, Phys. Rev. Lett. 54, 1783 (1985). https://doi.org/10.1103/PhysRevLett.54.1783
- [27] 1991Wa21 J. Wauters, P. Decrock, P. Dendooven, M. Huyse, G. Reusen, P. Van Duppen, Z. Phys. A339, 533 (1991). https://doi.org/10.1007/BF01288438
- [28] 1992BiZZ C. R. Bingham, Y. A. Akovali, H. K. Carter, W. D. Hamilton, M. M. Jarrio, M. B. Kassim, J. Kormicki, J. Schwarzenberg, K. S. Toth, M. Zhang, Contrib. 6th Intern. Conf. on Nuclei Far from Stability + 9th Intern. Conf. on Atomic Masses and Fundamental Constants, Bernkastel-Kues, Germany, PE47 (1992).
- [29] 1992Bo19 U. Bosch, W. -D. Schmidt-Ott, F. Meissner, H. Salewski, R. Michaelsen, Z. Phys. A341, 245 (1992)
- [30] 1993An19 A N Andreyev, D D Bogdanov, V I Chepigin, V A Gorshkov, K V Mikhailov, A P Kabachenko, G S Popeko, S Saro, G M Ter-Akopian, A V Yeremin, Sh S Zeinalov, Nucl Instrum Methods Phys Res A330, 125 (1993). https://doi.org/10.1016/0168-9002(93)91313-C
- [31] 1995Bi01 C. R. Bingham, M. B. Kassim, M. Zhang, Y. A. Akovali, K. S. Toth, W. D. Hamilton, H. K. Carter, J. Kormicki, J. von Schwarzenberg, M. M. Jarrio, Phys. Rev. C51, 125 (1995). https://doi.org/10.1103/PhysRevC.51.125
- [32] 1995Le15 M. Leino, J. Aysto, T. Enqvist, A. Jokinen, M. Nurmia, A. Ostrowski, W. H. Trzaska, J. Uusitalo, K. Eskola, Acta Phys. Pol. B26, 309 (1995).
- [33] 1995NoZW T. Nomura, Proc. Intern. Conf on Exotic Nuclei and Atomic Masses, Arles, France, June 19-23, 1995, p. 363 (1995).
- [34] 1996PuZZ Y. Pu, K. Morita, T. Nomura, Y. Tagaya, T. Uchibori, H. Minemura, K. Lee, T. Motobayashi, M. Hies, T. Ariga, A. Yoshida, K. Sueki, S. Shin, RIKEN-95, p. 43 (1996).
- [35] 1998Kr23 J. Krause, I. Berkes, J. Camps, M. De Jesus, P. De Moor, P. Herzog, M. Massaq, T. Phalet, P. Schuurmans, N. Severijns, A. Van Geert, D. Venos, B. Vereecke, B. Will, D. Zakoucky, and the NICOLE and ISOLDE Collaborations, Phys. Rev. C58, 3181 (1998). https://doi.org/10.1103/PhysRevC.58.3181
- [36] 1999An36 A. N. Andreyev, N. Bijnens, J. F. Cocks, K. Eskola, K. Helariutta, M. Huyse, H. Kettunen, P. Kuusiniemi, M. Leino, W. H. Trzaska, P. Van Duppen, R. Wyss, Acta Phys. Pol. B 30, 1255 (1999)
- [37] 1999Po32 Y. S. Popov, N. Y. Nezgovorov, G. A. Timofeev, Radiochemistry 41, 24 (1999); Radiokhimiya 41, 25 (1999).
- [38] 1999Ta20 Y. Tagaya, S. Hashimoto, K. Morita, Y. H. Pu, T. Ariga, K. Ohta, T. Minemura, I. Hisanaga, T. Motobayashi, T. Nomura, Eur. Phys. J. A 5, 123 (1999). https://doi.org/10.1007/s100500050266
- [39] 1999TaZS Y. Tagaya, S. Hashimoto, K. Morita, A. Yoshida, Y. Pu, T. Ariga, K. Ohta, T. Ishizuka, T. Minemura, I. Hisanaga, T. Motobayashi, T. Nomura, RIKEN-98, p. 57 (1999).
- [40] 2000Sc46 P. Schuurmans, I. Berkes, P. Herzog, N. Severijns, and the NICOLE and the ISOLDE Collaboration, Hyperfine Interactions 129, 163 (2000). https://doi.org/10.1023/A:1012657715807
- [41] 2003Ke04 H. Kettunen, T. Enqvist, M. Leino, K. Eskola, P. T. Greenlees, K. Helariutta, P. Jones, R. Julin, S. Juutinen, H. Kankaanpaa, H. Koivisto, P. Kuusiniemi, M. Muikku, P. Nieminen, P. Rahkila, J. Uusitalo, Eur. Phys. J. A 16, 457 (2003). https://doi.org/10.1140/epja/i2002-10130-9
- [42] 2012Pa16 H. Pai, G. Mukherjee, S. Bhattacharyya, M. R. Gohil, T. Bhattacharjee, C. Bhattacharya, R. Palit, S. Saha, J. Sethi, T. Trivedi, S. Thakur, B. S. Naidu, S. K. Jadav, R. Donthi, A. Goswami, S. Chanda, Phys. Rev. C 85, 064313 (2012). https://doi.org/10.1103/PhysRevC.85.064313
- [43] 2013Ka16 Z. Kalaninova, A. N. Andreyev, S. Antalic, F. P. Hessberger, D. Ackermann, B. Andel, M. C. Drummond, S. Hofmann, M. Huyse, B. Kindler, J. F. W. Lane, V. Liberati, B. Lommel, R. D. Page, E. Rapisarda, K. Sandhu, S. Saro, A. Thornthwaite, P. Van Duppen, Phys. Rev. C 87, 044335 (2013). https://doi.org/10.1103/PhysRevC. 87. 044335
- [44] 2013Ny01 M. Nyman, S. Juutinen, I. Darby, S. Eeckhaudt, T. Grahn, P. T. Greenlees, U. Jakobsson, P. Jones, R. Julin, S. Ketelhut, H. Kettunen, M. Leino, P. Nieminen, P. Peura, P. Rahkila, J. Saren, C. Scholey, J. Sorri, J. Uusitalo, T. Enqvist, Phys. Rev. C 88, 054320 (2013). https://doi.org/10.1103/PhysRevC. 88. 054320
- [45] 2013Uu01 J. Uusitalo, J. Saren, S. Juutinen, M. Leino, S. Eeckhaudt, T. Grahn, P. T. Greenlees, U. Jakobsson, P. Jones, R. Julin, S. Ketelhut, A. -P. Leppanen, M. Nyman, J. Pakarinen, P. Rahkila, C. Scholey, A. Semchenkov, J. Sorri, A. Steer, M. Venhart, Phys. Rev. C 87, 064304 (2013). https://doi.org/10.1103/PhysRevC.87.064304
- [46] 2014Ca03 R. J. Carroll, R. D. Page, D. T. Joss, J. Uusitalo, I. G. Darby, K. Andgren, B. Cederwall, S. Eeckhaudt, T. Grahn, C. Gray-Jones, P. T. Greenlees, B. Hadinia, P. M. Jones, R. Julin, S. Juutinen, M. Leino, A. -P. Leppanen, M. Nyman, D. O'Donnell, J. Pakarinen, P. Rahkila, M. Sandzelius, J. Saren, C. Scholey, D. Seweryniak, J. Simpson, Phys. Rev. Lett. 112, 092501 (2014).

https://doi.org/10.1103/PhysRevLett.112.092501

- [47] 2021Wa16 M. Wang, W. J. Huang, F. G. Kondev, G. Audi, S. Naimi, Chin. Phys. C 45, 030003 (2021). https://doi.org/10.1088/1674-1137/abddaf
- [48] 2024WaXX J. G. Wang, Z. G. Gan, Z. Y. Zhang, M. H. Huang, L. Ma, M. M. Zhang, H. B. Yang, C. L. Yang, Y. H. Qiang, X. Y. Huang, Z. Zhao, S. Y. Xu, Z. C. Li, L. X. Chen, L. C. Sun, H. Zhou, X. Zhang, X. L. Wu, Y. L. Tian, Y. S. Wang, J. Y. Wang, W. X. Huang, M. L. Liu, Z. W. Lu, Y. He, Z. Z. Ren, S.G. Zhou, X. H. Zhou, H. S. Xu, V. K. Utyonkov, A.A. Voinov, YuS. Tsyganov, A.N. Polyakov, Phys. Lett. B 850 138503 (2024).