

Fig. 1: Known experimental values for heavy particle emission of the odd-Z T_z = +24 nuclei.

Last updated 8/14/2024

Table 1	
Observed and predicted β -delayed particle emission from the odd-Z, $T_z = +24$ nuclei. Unless otherwise stated, all Q-values are taken from [2021Wa16] or deduce	d
from values therein	

NT 1' 1	F	īπ	T	0	0	0	DD	DD	
Nuclide	EX.	J"	$I_{1/2}$	Q_{ε}	Q_{β} -	Q _β - α	$BR_{\beta} - \alpha$	$BK_{\varepsilon F}$	Experimental
²¹⁰ Tl*		(5+)	1.30(3) m	-3.95(10)#	5.481(12)	9.274(33)			[1964We06]
²¹⁴ Bi		1^{-}	19.71(2) m	-1.018(11)	3.269(11)	11.102(11)	$3.03 imes10^{-3}\%$		[1991Ma68, 1965Le08,
									1975HaZA, 1933RuXX]
²¹⁸ At		(3 ⁻)	1.27(6) s	-0.256(12)	2.883(12))	6.217(12)			[2019Cu02]
					$Q_{\varepsilon p}$	$Q_{\varepsilon \alpha}$			
²²² Fr*		2^{-}	14.2(3) m	0.0606(8)	-7.694(16)	5.597(8)			[1973AfZV]
²²⁶ Ac		(1^{-})	29.37(12) h	0.642(3)	-6.800(12)	5.512(4)			[1987Mi10]
²³⁰ Pa		2^{-}	17.4(4) d**	1.311(3)	-5.805(12)	6.081(4)			[1948St42, 1949Os01]
²³⁴ Np		(0^{+})	4.4(1) d	1.810(8)	-4.824(8)	6.667(8)			[1955Pr29]
²³⁸ Am		1^{+}	98(3) m	2.260(60)	-3.739(59)	7.852(59)			[1972Ah04]
^{238m} Am	х		60(15) µs	2.260(60)+x	-3.739(59)+x	7.852(59)+x			[1967Bo23]
²⁴² Bk			7.0(13) m	2.95(14)#	-2.47(14)#	9.16(13)#			[1979Wi03]
242m1 Bk	х		9.5(20) ns	2.95(14)#+x	-2.47(14)#+x	9.16(13)#+x			[1972Wo07]
^{242m2} Bk	у		600(100) ns	2.95(14)#+y	-2.47(14)#+y	9.16(13)#+y			[1972Wo07]
²⁴⁶ Es			7.7(5) m	3.730(90)	-1.284(90)	10.590(90)		$\approx 3 \times 10^{-3} \%$	[2001Sh09, 1980Ga07,
									1980GaZZ]
²⁵⁰ Md			52(6) s	4.330(90)	-0.065(96)#	11.884(91)		$\approx 0.02\%$	[1973Es01, 1980Ga07,
									1991FuZZ, 1980GaZZ]
²⁵⁴ Lr		(4^{+})	18.1(13) s***	4.920(90)	1.184(97)#	13.149(92)			[2008An16, 2008Ga25]
²⁵⁸ Db		(0^{-})	2.17(36) s	5.160(90)	1.55(10)#	14.359(92)			[2019Vo03]
^{258m} Db	0.051(14)		4.41(21) s	5.214(91)	1.60(10)#	14.410(93)			[2019Vo03]
²⁶² Bh [@]	у		87(14) ms ^{@@}	5.88(10)+y	2.66(14)#+y	15.483(94)+y			[2009He20, 2006Fo02, 1989Mu09]
262mBh@	X		11(2) ms@@@	5.88(10)+x	2.66(14)#+x	15.483(94)+x			[2009He20, 2006Fo02, 1989Mu09]
²⁶⁶ Mt	у		$0.7^{+0.4}_{-0.2}$ ms	6.53(10)+y	3.99(26)#+y	16.879(99)+y			[1999He11]
²⁶⁶ Mt	X		$1.2^{+1.0}_{-0.4}$ ms	6.53(10)+x	3.99(26)#+x	16.879(99)+x			[1999He11]
			0.4						

* 100% β^- emitter.

* 100% β^{-} emitter. ** Weighted average of 17.0(5) d [1948St42] and 17.7(5) d [1949Os01]. *** Weighted average of 18.4(18) s [2008An16] and 17.8^{+1.9}_{-1.6} s [2008Ga25]. [@] The relative ordering of these states is unclear (i.e. which level is the ground state and which is the excited isomer). [@] Weighted average of 83(14) ms [2009He20], 84⁺²¹₋₁₆ ms [2006Fo02] and 102(26) ms [1989Mu09]. [@] Weighted average of 22(4) ms [2009He20], 9.6^{+3.6}_{-2.4} ms [2006Fo02] and 8.0(21) ms [1989Mu09].

Table 2

Particle separation, Q-values, and measured values for direct particle emission of the odd-Z, $T_z = +24$ nuclei. Unless otherwise stated, all S and Q-values are taken from [2021Wa16] or deduced from values therein.

Nuclide	S _p	Qα	BRα	BR _{SF}	Experimental
210 T 1	7 93(15)#	2 52(30)#			
²¹⁴ Bi	5 286(13)	5 621(3)	0.0210(13)%		[1960Wa14, 1948Ch22, 1934Le011992Po07, 1939Du01]
218 At	5.200(13) 5.072(13)	6.876(3)	99.9%		[2019Cu02, 1940Cu22, 1954De0119921007, 1959Da01]
1 II	5.072(15)	0.070(5)	<i>,,,,,</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		1958Wa16 1952Hi60
²²² Fr	5.382(9)	5.853(14)			1950 (1010, 1952)(100)
²²⁶ Ac	4.973(4)	5.506(8)	$6(2) \times 10^{-3}\%$		[1975VaZD , 1987Mi10
²³⁰ Pa	4.701(4)	5.439(1)	$3.2(1) \times 10^{-3}\%$		[1966Ba14 , 1965Br32, 1964Mc21]
²³⁴ Np	4.253(9)	5.356(9)	. ,		
²³⁸ Am	3.959(59)	6.042(58)	$1.0(4) \times 10^{-4}\%$		[1972Ah04 , 1972AhZS]
^{238m} Am	3.959(59)-x	6.042(58)+x		$\approx 100\%$	[1967Bo23]
²⁴² Bk	3.24(14)	6.91(15)	<1%	< 0.03%	[1979Wi03
242m1 Bk	3.24(14)-x	6.91(15)+x		100%	[1972Wo07]
^{242m2} Bk	3.24(14)-y	6.91(15)+y		100%	[1972Wo07 , 1972Ga42]
²⁴⁶ Es	2.855(90)	7.64(10)	9.9(18)%		[1989Ha27, 1967Mi06, 1986HaZM, 1973Es01]
²⁵⁰ Md	2.409(91)	8.155(28)	7(1)%		[2008An16, 1985He22, 1973Es01, 2009Ne02, 2008Ga25]
²⁵⁴ Lr	2.002(92)	8.822(8)	72(2)%		[2019Vo13, 2008An16, 2022Ka45, 2009Ne22, 2008Ga25,
					2006Fo02, 2001Ga20, 1986He28, 1985He22, 1982HeZL]
²⁵⁸ Db	1.648(92)	9.437(10)	$\approx 96\%$		[2019Vo03, 2022Ka45, 2016He15, 2009He20, 2006Fo02,
					1999He11, 1985He22]
^{258m} Db	1.597(93)	9.488(17)	\approx 57%		[2019Vo03, 2016He15, 2009He20, 2008Ga25, 2006Fo02,
					2001Ga20, 1985He22]
²⁶² Bh	1.042(95)-y	10.319(15)+y	100%		[2009He20, 2006Fo02, 1989Mu09, 2008Ne08, 1997Ho14,
					1988Mu15, 1988MuZX, 1986MuZX, 1984Og03, 1983OgZX,
					1981Mu06]
^{262m} Bh	1.042(95)-x	10.319(15)+x	100%		[2009He20, 2006Fo02, 1989Mu09, 2008Ne08, 1997Ho14,
					1988Mu15, 1988MuZX, 1986MuZX, 1984Og03, 1983OgZX,
					1981Mu06]
²⁶⁶ Mt*	0.517(99)-y	10.996(25)+y	100%*	<25%	[2009Ne02, 1999He11, 1997Ho14, 1989Mu16, 1989MuZY,
					1988Mu15, 1984Mu07, 1984Og03, 1982Mu15]
^{266m} Mt*	0.517(99)-x	10.996(25)+x	100%*	<25%	[2009Ne02, 1999He11, 1997Ho14, 1989Mu16, 1989MuZY,
					1988Mu15, 1984Mu07, 1984Og03, 1982Mu15]

* ²⁶⁶Mt has a very complex α -decay scheme with α - α correlations to known ²⁶²Bh and ^{262m}Bh α 's. The observed E_{α} are a broad distribution from 10.5 to 11.7 MeV.

Table 3

direct α emission from ²¹⁴Bi*, $J^{\pi} = 1^{-}$, $T_{1/2} = 19.71(2)$ m**, $BR_{\alpha} = 0.0210(13)\%$.

$E_{\alpha}(c.m.)$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(\text{rel})$	$I_{\alpha}(abs)$	\mathbf{J}_f^{π}	$E_{daughter}(^{210}\text{Tl})$	coincident γ-rays	R ₀ (fm)***	HF
5 020(2)	4.045(2)	0.46(0)%	5 2(11)×10-5%		0.582(4)		1 405(21)	49+32
5.059(5)	4.943(3) 5 027(3)	0.40(9)%	$3.3(11) \times 10^{-5}\%$ $4.41(88) \times 10^{-5}\%$		0.382(4) 0.498(4)		1.495(21)	48_{-20} 180^{+110}
5.287(3)	5.027(3) 5.188(3)	1.13(11)%	$1.28(15) \times 10^{-4}\%$		0.334(4)		1.495(21)	490^{+300}_{-100}
5.372(3)	5.272(3)	10.76(19)%	1.22(8)×10 ⁻³ %		0.249(4)		1.495(21)	$\frac{-190}{150+90}$
5.556(3)	5.452(3)	100%	$1.13(7) \times 10^{-2}\%$		0.065(4)		1.495(21)	140_{-50}^{+80}
5.621(3)	5.516(3)	72.73(69)%	$8.23(51) \times 10^{-3}\%$	(5 ⁺)	0.0		1.495(21)	400^{+230}_{-150}

* All values from [1960Wa14], except where noted. E_{α} (lab) values have been adjusted by +3.8 keV as recommended by [1991Ry01].

** [1991Ma68].

*** Interpolated between 1.449(21) fm (210 Pb) and 1.54117(28) fm (216 Po).

Table 4 β^- -delayed α emission from ²¹⁴Bi*, $J^{\pi} = 1^-$, $T_{1/2} = 19.71(2)$ m**, $BR_{\beta} - \alpha = 3.03 \times 10^{-3}\%$.

1 3	,	7 1/2	/ / p 🗠			
E_{α} (c.m.)	E_{α} (lab.)	$I_{\alpha}(\text{rel})\%^{***}$	$I_{\alpha}(abs)\%$	$E_{emitter}$ (²¹² Po)	$E_{daughter}(^{208}\text{Pb})$	
8.445(6)	8.287(6)	5.5%	$1.20 \times 10^{-4}\%$	0.610	0.0	
8.591(6)	8.430(6)	2.7%	$6.00 \times 10^{-5}\%$	1.536	0.0	
9.120(8)	8.950(8)	0.9%	$2.00 \times 10^{-5}\%$	1.286	0.780	
9.253(6)	9.080(6)	100.0%	2.20×10^{-3}	1.419	0.0	
9.498(6)	9.320(6)	2.3%	$5.10 \times 10^{-5}\%$	1.663	0.0	
9.557(8)	9.378(8)	0.9%	$2.00 \times 10^{-5}\%$	1.722	0.0	
9.681(6)	9.500(6)	4.5%	$1.00 \times 10^{-4}\%$	1.847	0.0	
9.854(8)	9.670(8)	0.5%	$1.00 \times 10^{-5}\%$	2.020	0.0	
9.989(6)	9.802(6)	5.5%	$1.20 \times 10^{-4}\%$	2.154	0.0	
10.096(6)	9.907(6)	3.2%	$7.00 \times 10^{-5}\%$	2.261	0.0	
10.274(6)	10.082(6)	6.4%	$1.40{ imes}10^{-4}\%$	2.440	0.0	
10.343(8)	10.150(8)	1.0%	$2.10 \times 10^{-5}\%$	2.509	0.0	
10.529(6)	10.332(6)	3.6%	$8.00 \times 10^{-5}\%$	2.694	0.0	
10.705(10)	10.505(10)	0.9%	$2.00 \times 10^{-5}\%$	2.871	0.0	

* All values taken from [1965Le08], except where noted.

** [1991Ma68].

Table 5

direct α emission from ²¹⁸At*, $J^{\pi} = (3^{-})$, $T_{1/2} = 1.27(6)$ s**, $BR_{\alpha} = 99.9\%$ ***.

$E_{\alpha}(c.m.)$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(\text{rel})$	$I_{\alpha}(abs)$	\mathbf{J}_f^{π}	$E_{daughter}(^{214}\mathrm{Bi})$	coincident γ-rays	$R_0 (fm)^{@@}$	HF
6.779(7)	6.655(7)	7.5%	6.9(1)%	(4 ⁻)	0.102(9)	0.010, 0.0522	1.54833(30)	21.2(11)
6.819(5) 6.882(5)	6.694(5) 6.756(5) [@]	100% 1.0%	92.2% ≤0.9%	(3) 1^{-}	0.063	0.010, 0.0533	1.54833(30) 1.54833(30)	$2.2(2) \ge 390$

* All values from [1960Wa14], except where noted.

** [2019Cu02].

*** [1949Wa05].

^(a) Va;ue from [1964Hy02], adjusted by -1.2 keV as recommended in [1991Ry01]. ^(a) ^(a) Interpolated between 1.54117(28) fm (²¹⁶Po) and 1.55548(10) fm (²²⁰Rn).

Table 6

direct α emission from ²²⁶Ac*, $J^{\pi} = (1^{-})$, $T_{1/2} = 29.37(12)$ h**, $BR_{\alpha} = 6(2) \times 10^{-3} \%$.

$E_{\alpha}(\text{c.m.})$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(abs)$	\mathbf{J}_f^{π}	$E_{daughter}(^{222}\mathrm{Fr})$	coincident γ -rays	R ₀ (fm)***	HF
5.496(5)	5.399(5)	$6(2) \times 10^{-3}\%$	2-	0.0		1.53803(33)	51^{+26}_{-13}

* All values from [1975VaZD], except where noted.

** [1987Mi10].

*** Interpolated between 1.542177(86) fm (²²⁴Ra) and 1.53389(32) fm (²²⁸Th).

Table 7				
direct α emission from	230 Pa*, $J^{\pi} = 2^{-1}$	$T_{1/2} = 17.4(4) d^*$	*, $BR_{\alpha} = 3.2(1) \times 10^{-3}$	3%

					226			
$E_{\alpha}(c.m.)$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(\text{rel})$	$I_{\alpha}(abs)$	\mathbf{J}_{f}^{π}	$E_{daughter}(^{220}\mathrm{Ac})$	coincident γ -rays	$R_0 (fm)^{***}$	HF
4 850(2)	1766(2)	0.0(5)%	$2.8(14) \times 10^{-5}$		0.580(2)		1 53137(43)	7+8
4.833(5)	4.700(2) 4.798(5) [@]	0.09-0.22%	$2.8(14) \times 10^{-6}$ 2.8-7.0×10 ⁻⁶		0.565(2)		1.53137(43) 1 53137(43)	$\frac{7-3}{47-118}$
5.021(3)	4.934(3)	1.7(9)%	$5.6(29) \times 10^{-5}$		0.418(3)		1.53137(43)	$50^{+0.5}$
5.061(2)	4.973(2)	3.0(10)%	$9.7(31) \times 10^{-5}$		0.378(2)		1.53137(43)	49^{+22}_{-12}
5.150(3)	5.060(3)	1.7(9)%	$5.6(29) \times 10^{-5}$		0.290(3)		1.53137(43)	310^{+320}_{-110}
5.174(2)	5.084(2)	3.04%0.96%	$9.7(31) \times 10^{-5}$		0.265(2)		1.53137(43)	250^{+110}_{-60}
5.210(3)	5.119(3)	2.6(9)%	$8.3(30) \times 10^{-5}$		0.230(3)		1.53137(43)	480^{+260}_{-130}
5.244(2)	5.153(2)	1.7(5)%	$5.6(16) \times 10^{-5}$		0.195(2)		1.53137(43)	$1.2(4) \times 10^3$
5.275(3)	5.183(3)	2.2(9)%	$7.0(3) \times 10^{-5}$		0.165(3)		1.53137(43)	$1.4^{+1.0}_{-0.4} \times 10^3$
5.3089(15)	5.2166(15)	2.17%0.52%	$7.0(2) \times 10^{-5}$		0.1304(17)		1.53137(43)	$2.3^{+0.7}_{-0.4} \times 10^3$
5.3616(7)	5.2684(7)	15.2(29)%	$4.9(9) \times 10^{-4}$		0.0777(10)		1.53137(43)	660^{+110}_{-100}
5.3690(7)	5.2756(7)	13.0(28)%	$41.2(9) \times 10^{-4}$		0.0703(10)		1.53137(43)	850^{+200}_{-140}
5.3810(15)	5.2874(15)	13.0(39)%	$4.2(12) \times 10^{-4}$		0.058317		1.53137(43)	$1.0^{+0.4}_{-0.3} \times 10^3$
5.3943(7)	5.3005(7)	74(16)%	$2.4(5) \times 10^{-3}$		0.0450(10)		1.53137(43)	210_{-40}^{+50}
5.4060(7)	5.3120(7)	57(15)%	$1.8(5) \times 10^{-3}$		0.0333(10)		1.53137(43)	320^{+110}_{-70}
5.4205(7)	5.3262(7)	78(17)%	$2.5(5) \times 10^{-3}$		0.0188(10)		1.53137(43)	280_{-50}^{+70}
5.4342(10)	5.3397(10)	65(23)%	$2.1(7) \times 10^{-3}$		0.005112		1.53137(43)	410_{-110}^{+220}
5.4393(7)	5.3447(7)	100(13)%	0.0032(4)		0.0		1.53137(43)	280_{-40}^{+50}

* All values from [1966Ba14], except where noted. ** Weighted average of 17.0(5) d [1948St42] and 17.7(5) d [1949Os01]. *** Interpolated between 1.53389(32) fm (²²⁸Th) and 1.52885(29) fm (²³²U).

[@] Tentative assignment.

Table 8

direct α emission from ²³⁸Am*, $J^{\pi} = 1^+$, $T_{1/2} = 98(3)$ m, $BR_{\alpha} = 1.0(4) \times 10^{-4}$ %.

$E_{\alpha}(c.m.)$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(abs)$	${ m J}_f^{\pi}$	<i>E</i> _{daughter} (²³⁴ Np)	coincident γ-rays	R ₀ (fm)***	HF					
≈6.04	≈5.94	$1.0(4) \times 10^{-4}\%$	(0+)			1.5024(17)	110_{-30}^{+80}					
* All val ** Interp Table 9 direct α emis	* All values from [1972Ah04], ** Interpolated between 1.51022(22) fm (²³⁶ Pu) and 1.4947(17) fm (²⁴⁰ Cm). Table 9 direct α emission from ²⁴⁶ Es*, T _{1/2} = 7.7(5) m, BR_{α} = 9.9(18)%.											
$E_{\alpha}(\text{c.m.})$	$E_{\alpha}(lab)$	$I_{\alpha}(abs)$	J_f^π	<i>E</i> _{daughter} (²⁴² Bk)	coincident γ -rays	R ₀ (fm)***	HF					
7.492(4)	7.370(4)**	9.9(18)%				1.496(60)	4^{+12}_{-3}					

* All values from [1967Mi08], except where noted.

** [1989Ha27].

*** Interpolated between 1.498(60) fm (244 Cf) and 1.4945(65) fm (248 Fm).

Table 10

direct α emission from ²⁵⁰Md, T_{1/2} = 52(6) s*, *BR*_{α} = 7(1)%**.

$E_{\alpha}(\text{c.m.})$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(\text{rel})$	$I_{\alpha}(abs)$	J_f^π	$E_{daughter}(^{246}\mathrm{Es})$	coincident γ-rays	$R_0 \ (fm)^@$	HF
7.877(20) 7.964(20)	7.751(20)*** 7.837(20)***	$100\%^{@} \approx 33\%^{@}$	≈5.3% ≈1.8%			0.1523**	1.4866(99) 1.4866(99)	≈3.1 ≈19

* [1973Es01].

** [2008An16].

*** [1985He22].

⁽¹⁾ Average of 7.751(20) MeV \approx 80%, 7.837(20) MeV \approx 20% [1985He22] and 7.751(20) MeV \approx 70%, 7.837(20) MeV \approx 30% [1973Es01]. Interpolated between 1.4945(65) fm (²⁴⁸Fm) and 1.4787(75) fm (²⁵²No).

Table 11

$E_{\alpha}(\text{c.m.})$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(\text{rel})$	$I_{\alpha}(abs)$	$\mathrm{J}_f^{\pmb{\pi}}$	$E_{daughter}(^{250}\mathrm{Md})$	coincident γ -rays	$R_0 (fm)^@$	HF
8.520(10)	8.386(10)	100(29)%	24(7)%		0.307	0.0963, 0.2091, 0.3068	1.472(27)	$1.8^{+1.9}_{-1.0}$
8.539(15)	8.405(15)	38(12)%	9(1)%		0.284	0.0753, 0.2091	1.472(27)	5^{+5}_{-3}
8.572(15)	8.437(15)	88(49)%	21(10)%		0.252	0.0428, 0.2091	1.472(27)	3^{+4}_{-2}
8.616(15)	8.480(15)	42(28)%	10(6)%		0.209	0.2091	1.472(27)	$9^{+\overline{16}}_{-6}$
8.641(10)	8.505(10)	33(23)%	8(5)%		0.184	0.1633	1.472(27)	13_{-9}^{+29}

direct α emission from ²⁵⁴Lr*, T_{1/2} = 18.1(13) s**, BR_{α} = 72(2)%***.

* All values from [2019Vo03], except where noted.

** Weighted average of 18.4(18) s [2008An16] and $17.8^{+1.9}_{-1.6}$ s [2008Ga25].

*** [2008An16].

[@] Interpolated between 1.4787(75) fm (252 No) and 1.466(26) fm (256 Rf).

Table 12

direct α emission from ²⁵⁸Db*, T_{1/2} = 2.17(36) s, BR_{α} = \approx 96%.

$E_{\alpha}(c.m.)$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(\text{rel})$	$I_{\alpha}(abs)$	$\mathbf{J}_f^{\boldsymbol{\pi}}$	$E_{daughter}(^{254}\mathrm{Lr})$	coincident γ -rays	R ₀ (fm)**	HF
								1.0
9.203(15)	9.060(15)	$\approx 10\%$	\approx 7.4%		0.235		1.461(27)	≈ 40
9.217(10)	9.074(10)	$\approx 11\%$	$\approx 8\%$		0.221	0.221	1.461(27)	≈ 40
9.236(10)	9.093(10)	$\approx 11\%$	$\approx 8\%$		0.199	0.043, 0.156, 0.199	1.461(27)	≈ 50
9.330(15)	9.185(15)	$\approx 100\%$	\approx 73%		0.108		1.461(27)	≈ 10

* All values from [2019Vo03], except where noted.

** Interpolated between 1.466(26) fm (²⁵⁶Rf) and 1.4562(75) fm (²⁶⁰Sg).

Table 13

Table	15					
direct	α emission from	^{258m} Db*, Ex	= 51(14) keV	$T_{1/2} = 4.41$	(21) s, <i>BR</i> _o	, = ≈57%

$E_{\alpha}(c.m.)$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(\text{rel})$	$I_{\alpha}(abs)$	$\mathbf{J}_f^{\boldsymbol{\pi}}$	$E_{daughter}(^{254}\mathrm{Lr})$	coincident γ -rays	$R_0 (fm)^{**}$	HF
9.149(15)	9.007(15)	$\approx 38\%$	$\approx 6\%$		0.338		1.461(27)	≈ 120
9.182(15)	9.040(15)	$\approx 44\%$	$\approx 7\%$		0.304		1.461(27)	≈ 130
9.213(10)	9.070(10)	$\approx 75\%$	$\approx 12\%$		0.274	0.043, 0.096, 0.134	1.461(27)	≈ 90
9.265(15)	9.121(15)	$\approx 56\%$	$\approx 9\%$		0.221	0.221	1.461(27)	≈ 180
9.288(10)	9.144(10)	$\approx 100\%$	$\approx 16\%$		0.199	0.043, 0.156, 0.199	1.461(27)	≈ 110
9.309(15)	9.165(15)	$\approx 42\%$	$\approx 6.7\%$		0.178	0.043, 0.134	1.461(27)	≈310

* All values from [2019Vo03], except where noted.

** Interpolated between 1.466(26) fm (²⁵⁶Rf) and 1.4562(75) fm (²⁶⁰Sg).

Table 14

Table 14				
direct α emission from	²⁶² Bh*, Ex. =	y, $T_{1/2} = 87(14)$	ms**, $BR_{\alpha} =$	100%.

$E_{\alpha}(c.m.)$	$E_{\alpha}(\text{lab})^{***}$	$I_{\alpha}(\mathrm{rel})^{@}$	$I_{\alpha}(abs)$	\mathbf{J}_f^{π}	$E_{daughter}(^{258}\text{Db})$	coincident γ -rays	$R_0 (fm)^{@@}$	HF
9.843(15)	9.693(15)	$\approx 82\%$	≈31%		v+0.345		1.471(25)	≈7
9.878(25)	9.727(25)@@@	≈14%	≈5%		y+0.311		1.471(25)	≈ 50
9.961(25)	9.809(25)@@@	$\approx 5\%$	$\approx 2\%$		y+0.227		1.471(25)	≈ 220
10.089(15)	9.935(15)	$\approx 64\%$	$\approx 24\%$		y+0.100		1.471(25)	≈ 40
10.189(15)	10.033(15)	$\approx 100\%$	$\approx 38\%$		y+0.0		1.471(25)	≈ 40

* Which level is the ground state and which is the excited isomer is unknown.

** Weighted average of 83(14) ms [2009He20], 84^{+21}_{-16} ms [2006Fo02] and 102(26) ms [1989Mu09].

*** Weighted average of values from [1989Mu09] (9.740(25) MeV; 4 counts, 9.910(25) MeV; 4 counts, 10.060(25) MeV; 7 counts), [2006Fo02] (9.657(25) MeV; 2 counts, 9.727(25) MeV; 1 count, 9.809(25) MeV; 3 counts, 9.936(25) MeV; 4 counts, 10.075(25) MeV; 5 counts) and [2009He20] (9.689(15) MeV; 12 counts, 9.943(15) MeV; 6 counts, 10.008(15) MeV; 10 counts).

[@] Counts from [2009He20, 2006Fo02, 1989Mu09] summed to determine relative intensities.

[@] [@] Interpolated between 1.4562(75) fm (260 Sg) and 1.485(24) fm (264 Hs).

@@@ Only observed in [2006Fo02].

Table 15 direct α emission from ^{262m}Bh*, Ex. = x, T_{1/2} = 11(2) ms, BR_{α} = 100%.

$E_{\alpha}(c.m.)$	$E_{\alpha}(\text{lab})^{@}$	$I_{\alpha}(\text{rel})$	$I_{\alpha}(abs)$	J_f^π	$E_{daughter}(^{258}\text{Db})$	coincident γ-rays	$R_0 (fm)^{@@}$	HF
9.978(15) 10.371(15) 10.528(15)	9.826(15) ^{@@@} 10.213(15) 10.367(15)	$\begin{array}{l} \approx 24\% \\ \approx 60\% \\ \approx 100\% \end{array}$	≈13% ≈33% ≈54%		x+0.549 x+0.156 x+0.0		1.471(25) 1.471(25) 1.471(25)	≈ 5 ≈ 18 ≈ 27

* Which level is the ground state and which is the excited isomer is unknown.

** Weighted average of 22(4) ms [2009He20], $9.6^{+3.6}_{-2.4}$ ms [2006Fo02] and 8.0(21) ms [1989Mu09].

*** Weighted average of values from [1989Mu09] 10.240(25) MeV; 6 counts, 10.370(25) MeV; 8 counts), [2006Fo02] (10.231(25) MeV; 1 count, 10.348(25) MeV; 7 counts) and [2009He20] (9.86215) MeV; 6 counts, 10.197(15) MeV; 8 counts, 10.373(15) MeV; 10 counts).

[@] Counts from [2009He20, 2006Fo02, 1989Mu09] summed to determine relative intensities.

[@] Interpolated between 1.4562(75) fm (²⁶⁰Sg) and 1.485(24) fm (²⁶⁴Hs).

@@@ Only observed in [2009He20].

References used in the Tables

- [1] 1933RuXX L. Rutherford, W. B. Lewis, B. V. Bowden, Proc. Roy. Soc., A142, 3 (1933).
- [2] 1934Le01 W. B. Lewis, B. V. Bowden, Proc. Roy. Soc. (London) A145, 235 (1934). https://doi.org/10.1098/rspa.1934.0092
- [3] 1939Du01 J. V. Dunworth, Nature(London) 144, 152 (1939). https://doi.org/10.1038/144152b0
- [4] **1948Ch22** W. Y. Chang, Phys. Rev. **74**, 1195 (1948). https://doi.org/10.1103/PhysRev.74.1195
- [5] 1948St42 M. H. Studier, E. K. Hyde, Phys. Rev. 74, 591 (1948). https://doi.org/10.1103/PhysRev.74.591
- [6] 1949Wa05 R. J. Walen, J. Phys. Radium 10, 95 (1949). https://doi.org/10.1051/jphysrad:0194900100309500
- [7] 1949Os01 D. W. Osborne, R. C. Thompson, Q. Van Winkle, The Transuranium Elements: Research Papers, Book 2, Vol. 14B, paper 19. 11, G. T. Seaborg ed., p. 1397 (1949).
- [8] 1952Hi60 F. Hiessberger, B. Karlik, Sitzber. Akad. Wiss. Wien, Math. -Naturw. Kl. Abt. IIa, 161, 51 (1952).
- [9] 1955Pr29 R. J. Prestwood, H. L. Smith, C. I. Browne, D. C. Hoffman, Phys. Rev. 98, 1324 (1955). https://doi.org/10.1103/PhysRev.98.1324
- [10] 1958Wa16 R. J. Walen, G. Bastin, Compt. Rend. Congr. Intern. Phys. Nucl., Paris (1958), P. Gugenberger, Ed., Dunod, Paris, p. 910 (1959).
- [11] 1959WaXX R J. Walen, G. Bastin-Scoffier, Comptes rendus Congr. Int. Phys. Nucl., p. 910, Paris (1958).
- [12] 1960Wa14 R. J. Walen, G. Bastin-Scoffier, Nuclear Phys. 16, 246 (1960). https://doi.org/10.1016/S0029-5582(60).81035-8
- [13] **1964Hy02** E. K. Hyde, I. Perlman, G. T. Seaborg, The Nuclear Properties of the Heavy Elements, Vol. II, Prentice-Hall, Inc. , Englewood Cliffs, N. J. (1964).
- [14] **1964Mc21** J. D. McCoy, Soc. Sci. Fennica, Commentationes Phy. Math. **30**, No. 4 (1964).
- [15] 1965Br32 J. -P. Briand, P. Chevallier, Compt. Rend. 261, 2629 (1965).
- [16] 1965Le08 C. -F. Leang, Compt. Rend. 260, 3037 (1965).
- [17] 1966Ba14 G. Bastin, C. F. Leang, R. J. Walen, Compt. Rend. 262B, 89 (1966).
- [18] 1967Bo23 J. Borggreen, Y. P. Gangrsky, G. Sletten, S. Bjornholm, Phys. Letters 25B, 402 (1967). https://doi.org/10.1016/0370-2693(67)90158-X
- [19] 1967Mi06 V. L. Mikheev, V. I. Ilyushchenko, M. B. Miller, Yadern. Fiz. 5, 49 (1967).; Soviet J. Nucl. Phys. 5, 35 (1967).
- [20] 1972Ah04 I. Ahmad, R. K. Sjoblom, R. F. Barnes, F. Wagner, Jr., P. R. Fields, Nucl. Phys. A186, 620 (1972). https://doi.org/10.1016/0375-9474(72)90987-6
- [21] 1972AhZS P. R. Fields, H. Diamons, I. Ahmad, R. F. Barnes, R. Sjoblom, F. Wagner, W. McHarris, -REPT ANL-7930, P2, I Ahmad, 11/2/72, CRL
- [22] 1972Ga42Y. P. Gangrskii, Nguen Kong Khan, D. D. Pulatov, At. Energ. 33, 829 (1972).; Sov. At. Energy 33, 948 (1973).
- [23] 1972Wo07 K. L. Wolf, J. P. Unik, Phys. Lett. 38B, 405 (1972). https://doi.org/10.1016/0370-2693(72)90167-0
- [24] 1973AfZV V. P. Afanasev, Ts. Vylov, N. A. Golovkov, I. I. Gromova, B. S. Dzhelepov, R. B. Ivanov, A. Kolachkovski, M. A. Mikhailov, Yu. V. Norseev, V. G. Chumin, Symp. Nucl. Spectrosc. Nucl. Theory, 13th, Dubna, p. 161 (1973); JINR-D6-7094 (1973).

- [25] 1973Es01 P. Eskola, Phys. Rev. C7, 280 (1973). https://doi.org/10.1103/PhysRevC.7.280
- [26] 1975HaZA A. Hachem, Thesis, Univ. Nice (1975).
- [27] 1975VaZD V. M. Vakhtel, N. A. Galovkov, B. S. Dzhelepov, R. B. Ivanov, A. Lyatushinski, M. A. Mikhailova, Program and Theses, Proc. 23rd Ann. Conf. Nucl. Spectrosc. Struct. At. Nuclei, Leningrad, p. 156 (1975).
- [28] 1979Wi03 K. E. Williams, G. T. Seaborg, Phys. Rev. C19, 1794 (1979). https://doi.org/10.1103/PhysRevC.19.1794
- [29] 1980Ga07 Yu. P. Gangrsky, M. B. Miller, L. V. Mikhailov, I. F. Kharisov, Yad. Fiz. 31, 306 (1980); Sov. J. Nucl. Phys. 31, 162 (1980)
- [30] 1980GaZZ Yu. P. Gangrsky, M. B. Miller, L. V. Mikhailov, I. F. Kharisov, Preprint of the Joint Institute for Nuclear Research. Dubna 1979, P7 - 12584.
- [31] 1981Mu06 G. Munzenberg, S. Hofmann, F. P. Hessberger, W. Reisdorf, K. H. Schmidt, J. H. R. Schneider, P. Armbruster, C. C. Sahm, B. Thuma, Z. Phys. A300, 107 (1981).
- [32] 1982HeZL F. P. Hessberger, G. Munzenberg, S. Hofmann, W. Reisdorf, J. R. H. Schneider, K. -H. Schmidt, H. J. Schott, P. Armbruster, C. -C. Sahm, D. Vermeulen, B. Thuma, GSI-82-1, p. 66 (1982).
- [33] 1982Mu15 G. Munzenberg, P. Armbruster, F. P. Hessberger, S. Hofmann, K. Poppensieker, W. Reisdorf, J. H. R. Schneider, W. F. W. Schneider, K. -H. Schmidt, C. -C. Sahm, D. Vermeulen, Z. Phys. A309, 89 (1982).
- [34] 1983OgZXYu. Ts. Oganesyan, JINR-D7-83-644 (1983).
- [35] 1984Mu07 G. Munzenberg, W. Reisdorf, S. Hofmann, Y. K. Agarwal, F. P. Hessberger, K. Poppensieker, J. R. H. Schneider, W. F. W. Schneider, K. -H. Schmidt, H. -J. Schott, P. Armbruster, C. -C. Sahm, D. Vermeulen, Z. Phys. A315, 145 (1984).
- [36] 1984Og03 Yu. Ts. Oganessian, M. Hussonnois, A. G. Demin, Yu. P. Kharitonov, H. Bruchertseifer, O. Constantinescu, Yu. S. Korotkin, S. P. Tretyakova, V. K. Utyonkov, I. V. Shirokovsky, J. Estevez, Radiochim. Acta 37, 113 (1984).
- [37] 1985He22 F. P. Hessberger, G. Munzenberg, S. Hofmann, Y. K. Agarwal, K. Poppensieker, W. Reisdorf, K. -H. Schmidt, J. R. H. Schneider, W. F. W. Schneider, H. J. Schott, P. Armbruster, B. Thuma, C. -C. Sahm, D. Vermeulen, Z. Phys. A322, 557 (1985).
- [38] 1986HaZM Y. Hatsukawa, M. Magara, T. Otsuki, M. Nakata, K. Sueki, H. Nakahara, I. Kohno, RIKEN-85, p. 44 (1986).
- [39] 1986He28 F. P. Hessberger, G. Munzenberg, S. Hofmann, P. Armbruster, Y. K. Agarwal, W. Reisdorf, K. Poppensieker, K. -H. Schmidt, J. R. H. Schneider, W. F. W. Schneider, H. J. Schott, C. -C. Sahm, D. Vermeulen, B. Thuma, J. Less-Common Met. 122, 445 (1986). https://doi.org/10.1016/0022-5088(86).90440-6
- [40] 1986MuZX G. Munzenberg, S. Hofmann, F. P. Hessberger, K. -H. Schmidt, G. Berthes, H. Folger, H. Geissel, J. G. Keller, P. Lemmertz, M. Montoya, K. Poppensieker, B. Quint, H. -J. Schott, I. Zychor, P. Armbruster, M. E. Leino, U. Gollerthan, GSI-86-1, p. 31 (1986).
- [41] 1987Mi10 G. J. Miller, J. C. McGeorge, I. Anthony, R. O. Owens, Phys. Rev. C36, 420 (1987). https://doi.org/10.1103/PhysRevC.36.420
- [42] 1988Mu15 G. Munzenberg, S. Hofmann, F. P. Hessberger, H. Folger, V. Ninov, K. Poppensieker, A. B. Quint, W. Reisdorf, H. -J. Schott, K. Summerer, P. Armbruster, M. E. Leino, D. Ackermann, U. Gollerthan, E. Hanelt, W. Morawek, Y. Fujita, T. Schwab, A. Turler, Z. Phys. A330, 435 (1988).
- [43] 1988MuZX G. Munzenberg, S. Hofmann, F. P. Hessberger, D. Ackermann, H. Folger, V. Ninov, K. Poppensieker, A. B. Quint, W. Reisdorf, K. -H. Schmidt, H. -J. Schott, K. Summerer, P. Armbruster, U. Gollerthan, E. Hanelt, W. Morawek, Y. Fujita, T. Schwab, M. E. Leino, GSI-88-1, p. 13 (1988).
- [44] 1989Bu09 D. G. Burke, H. Folger, H. Gabelmann, E. Hagebo, P. Hill, P. Hoff, O. Jonsson, N. Kaffrell, W. Kurcewicz, G. Lovhoiden, K. Nybo, G. Nyman, H. Ravn, K. Riisager, J. Rogowski, K. Steffensen, T. F. Thorsteinsen, and the ISOLDE Collaboration, Z. Phys. A333, 131 (1989).
- [45] 1989Ha27 Y. Hatsukawa, T. Ohtsuki, K. Sueki, H. Nakahara, I. Kohno, M. Magara, N. Shinohara, H. L. Hall, R. A. Henderson, C. M. Gannett, J. A. Leyba, R. B. Chadwick, K. E. Gregorich, D. Lee, M. J. Nurmia, D. C. Hoffman, Nucl. Phys. A500, 90 (1989). https://doi.org/10.1016/0375-9474(89)90131-0
- [46] 1989Mu09 G. Munzenberg, P. Armbruster, S. Hofmann, F. P. Hessberger, H. Folger, J. G. Keller, V. Ninov, K. Poppensieker, A. B. Quint, W. Reisdorf, K. -H. Schmidt, J. R. H. Schneider, H. -J. Schott, K. Summerer, I. Zychor, M. E. Leino, D. Ackermann, U. Gollerthan, E. Hanelt, W. Morawek, D. Vermeulen, Y. Fujita, T. Schwab, Z. Phys. A333, 163 (1989).
- [47] 1989Mu16 G. Munzenberg, Nucl. Phys. A502, 571c (1989). https://doi.org/10.1016/0375-9474(89)90690-8
- [48] 1989MuZY G. Munzenberg, S. Hofmann, F. P. Hessberger, H. Folger, V. Ninov, K. Poppensieker, A. B. Quint, W. Reisdorf,

H. -J. Schott, K. Summerer, P. Armbruster, M. E. Leino, D. Ackermann, U. Gollerthan, E. Hanelt, W. Morawek, J. Fujita, T. Schwab, A. Turler, GSI-89-1, p. 13 (1989).

- [49] 1990Mo08 G. Mouze, O. Diallo, P. Bechlitch, J. F. Comanducci, C. Ythier, Radiochim. Acta 49, 13 (1990).
- [50] 1991FuZZ I. Fujiwara, S. Shibata, H. Kudo, K. Tsukada, T. Ohtsuki, Y. Hatsukawa, N. Shinohara, S. -I. Ichikawa, M. Magara, Japan Atomic Energy Res. Inst. Tandem Linac VDG, Ann. Rept., 1990, p. 87 (1991).
- [51] 1991Ma68 D. E. Martz, G. H. Langner, Jr., P. R. Johnson, Health Phys. 61, 511 (1991). https://doi.org/10.1097/00004032-199110000-00006
- [52] **1992Po07** Yu. N. Pokotilovsky, G. G. Takhtamyshev, Yad. Fiz. **55**, 2305 (1992); Sov. J. Nucl. Phys. 55, 1277 (1992).
- [53] 1997Ho14 S. Hofmann, F. P. Hessberger, V. Ninov, P. Armbruster, G. Munzenberg, C. Stodel, A. G. Popeko, A. V. Yeremin, M. Leino, Z. Phys. A358, 377 (1997). https://doi.org/10.1007/s002180050343
- [54] 1999He11 F. P. Hessberger, J. Phys. (London) G25, 877 (1999). https://doi.org/10.1088/0954-3899/25/4/059
- [55] 2001Ga20 Z. G. Gan, Z. Qin, H. M. Fan, X. G. Lei, Y. B. Xu, J. J. He, H. Y. Liu, X. L. Wu, J. S. Guo, X. H. Zhou, S. G. Yuan, G. M. Jin, Eur. Phys. J. A 10, 21 (2001). https://doi.org/10.1007/s100500170140
- [56] 2001Sh09 D. A. Shaughnessy, K. E. Gregorich, M. R. Lane, C. A. Laue, D. M. Lee, C. A. McGrath, D. A. Strellis, E. R. Sylwester, P. A. Wilk, D. C. Hoffman, Phys. Rev. C 63, 037603 (2001). https://doi.org/10.1103/PhysRevC.63.037603
- [57] 2006Fo02 C. M. Folden III, S. L. Nelson, Ch. E. Dullmann, J. M. Schwantes, R. Sudowe, P. M. Zielinski, K. E. Gregorich, H. Nitsche, D. C. Hoffman, Phys. Rev. C 73, 014611 (2006). https://doi.org/10.1103/PhysRevC.73.014611
- [58] 008An16 S. Antalic, F. P. Hessberger, S. Hofmann, D. Ackermann, S. Heinz, B. Kindler, I. Kojouharov, P. Kuusiniemi, M. Leino, B. Lommel, R. Mann, K. Nishio, S. Saro, B. Streicher, B. Sulignano, M. Venhart, Eur. Phys. J. A 38, 219 (2008). https://doi.org/10.1140/epja/i2008-10665-7
- [59] 2008Ga25 J. M. Gates, S. L. Nelson, K. E. Gregorich, I. Dragojevic, Ch. E. Dullmann, P. A. Ellison, C. M. Folden III, M. A. Garcia, L. Stavsetra, R. Sudowe, D. C. Hoffman, H. Nitsche, Phys. Rev. C 78, 034604 (2008). https://doi.org/10.1103/PhysRevC.78.034604
- [60] 2008Ne08 S. L. Nelson, C. M. Folden III, K. E. Gregorich, I. Dragojevic, Ch. E. Dullmann, R. Eichler, M. A. Garcia, J. M. Gates, R. Sudowe, H. Nitsche, Phys. Rev. C 78, 024606 (2008). https://doi.org/10.1103/PhysRevC.78.024606
- [61] 2009He20 F. P. Hessberger, S. Hofmann, B. Streicher, B. Sulignano, S. Antalic, D. Ackermann, S. Heinz, B. Kindler, I. Kojouharov, P. Kuusiniemi, M. Leino, B. Lommel, R. Mann, A. G. Popeko, S. Saro, J. Uusitalo, A. V. Yeremin, Eur. Phys. J. A 41, 145 (2009). https://doi.org/10.1140/epja/i2009-10826-2
- [62] 2009Ne02 S. L. Nelson, K. E. Gregorich, I. Dragojevic, J. Dvorak, P. A. Ellison, M. A. Garcia, J. M. Gates, L. Stavsetra, M. N. Ali, H. Nitsche, Phys. Rev. C 79, 027605 (2009). https://doi.org/10.1103/PhysRevC.79.027605
- [63] 2016He15 F. P. Hessberger, S. Antalic, D. Ackermann, B. Andel, M. Block, Z. Kalaninova, B. Kindler, I. Kojouharov, M. Laatiaoui, B. Lommel, A. K. Mistry, J. Piot, M. Vostinar, Eur. Phys. J. A 52, 328 (2016). https://doi.org/10.1140/epja/i2016-16328-2
- [64] 2019Cu02 J. G. Cubiss, A. N. Andreyev, A. E. Barzakh, B. Andel, S. Antalic, T. E. Cocolios, T. Day Goodacre, D. V. Fedorov, V. N. Fedosseev, R. Ferrer, D. A. Fink, L. P. Gaffney, L. Ghys, M. Huyse, Z. Kalaninova, U. Koster, B. A. Marsh, P. L. Molkanov, R. E. Rossel, S. Rothe, M. D. Seliverstov, S. Sels, A. M. Sjodin, M. Stryjczyk, V. L. Truesdale, C. Van Beveren, P. Van Duppen, G. L. Wilson, Phys. Rev. C 99, 064317 (2019). https://doi.org/10.1103/PhysRevC.99.064317
- [65] 2019Vo03 M. Vostinar, F. P. Hessberger, D. Ackermann, B. Andel, S. Antalic, M. Block, Ch. Droese, J. Even, S. Heinz, Z. Kalaninova, I. Kojouharov, M. Laatiaoui, A. K. Mistry, J. Piot, H. Savajols, Eur. Phys. J. A 55, 17 (2019). https://doi.org/10.1140/epja/i2019-12701-y
- [66] 2021Wa16 M. Wang, W. J. Huang, F. G. Kondev, G. Audi, S. Naimi, Chin. Phys. C 45, 030003 (2021). https://doi.org/10.1088/1674-1137/abddaf
- [67] 2022Ka45 O. Kaleja, B. Andjelic, O. Bezrodnova, K. Blaum, M. Block, S. Chenmarev, P. Chhetri, C. Droese, Ch. E. Dullmann, M. Eibach, S. Eliseev, J. Even, P. Filianin, F. Giacoppo, S. Gotz, Yu. Gusev, M. J. Gutierrez, F. P. Hessberger, N. Kalantar-Nayestanaki, J. J. W. van de Laar, M. Laatiaoui, S. Lohse, N. Martynova, E. Minaya Ramirez, A. K. Mistry, T. Murbock, Yu. Novikov, S. Raeder, D. Rodriguez, F. Schneider, L. Schweikhard, P. G. Thirolf, A. Yakushev, Phys. Rev. C 106, 054325 (2022). https://doi.org/10.1103/PhysRevC.106.054325