

Fig. 1: Known experimental values for heavy particle emission of the odd-Z T_z = +23/2 nuclei.

Last updated 4/27/23

Table 1

Observed and predicted β -delayed particle emission from the odd-Z, $T_z = +23/2$ nuclei.	Unless otherwise stated, all Q-values are taken from [2021Wa16] or
deduced from values therein. J^{π} values for ¹⁴⁵ Pm are taken from ENSDF	

Nuclide	Ex	J^{π}	$T_{1/2}$	$Q_{\mathcal{E}}$	$Q_{\varepsilon p}$	$Q_{\varepsilon \alpha}$	Experimental
-			-/ -		*		
¹⁴⁵ Pm		5/2+	17.7(4) y	0.165(3)	-7.806(3)	1.739(3)	[1959Br65]
¹⁴⁹ Eu		5/2+	93.1(4) d	0.695(4)	-6.864(7)	2.566(4)	[1970Ch09]
¹⁵³ Tb		5/2+	56.2(2) h	1.569(4)	-5.714(4)	3.397(4)	[1970Ch09]
¹⁵⁷ Ho		7/2+	12.6(2) m	2.592(24)	-4.031(24)	3.625(23)	[1972To05]
¹⁶¹ Tm		7/2+	30.2(8) m	3.303(29)	-2.805(32)	5.101(28)	[1993Al02]
¹⁶⁵ Lu		1/2+	10.74(10) m	3.850(40)	-1.822(36)	6.334(28)	[1982Ra19]
¹⁶⁹ Ta		$(5/2^+)$	5.0(5) m	4.430(40)	-0.507(47)	7.580(39)	[1969Ar22]
¹⁷³ Re		$(5/2^{-})$	1.98(26) m	5.170(40)	0.487(40)	8.738(40)	[1986Sz05]
¹⁷⁷ Ir		5/2-	26(2) s*	5.909(25)	1.726(34)	10.255(34)	[1990Bo19, 1967Si02]
¹⁸¹ Au		$(3/2^{-})$	14.5(4) s	6.510(24)	2.817(29)	11.660(25)	[1995Bi01]
¹⁸⁵ Tl		$(1/2^+)$	19.5(5) s	6.426(25)	3.272(30)	12.199(25)	[1991BoZV]
^{185m} Tl	0.4548(15)	$(9/2^{-})$	1.7(2) s	6.881(25)	3.727(30)	12.654(25)	[1980ToZZ, 1976To06, 1977Si03]
¹⁸⁹ Bi		$(9/2^{-})$	688(3) ms	7.779(25)	4.983(36)	13.694(25)	[2007DoZW]
^{189m} Bi	0.182(8)	$(1/2^+)$	5.0(1) ms	7.961(26)	5.165(37)	13.876(26)	[2007DoZW]
¹⁹³ At		$(1/2^+)$	28^{+5} ms	8.258(26)	6.178(37)	15.352(26)	[2003Ke08]
^{193m1} At	0.010(5)**	$(7/2^{-})$	21(5) ms	8.268(26)	6.188(37)	15.362(26)	[2003Ke08]
^{193m2} At	0.044(7)**	$(13/2^+)$	27^{+4} ms	8.302(27)	6.222(38)	15.396(27)	[2003Ke08]
¹⁹⁷ Fr		(7/2 ⁻)	$0.6^{+3.0}_{-0.3}$ ms	8.740(60)	6.878(64)	16.154(58)	[2013Ka16]

* Weighted average of 30(2) s [1990Bo19] and 26(2) s [1967Si02].

** Deduced from α energies.

Table 2

Particle separation, Q-values, and measured values for direct particle emission of the odd-Z, $T_z = +23/2$ nuclei. Unless otherwise stated, all S and Q-values are taken from [2021Wa16] or deduced from values therein.

Nuclide	S_p	S_{2p}	Qα	BR_{α}	Experimental
¹⁴⁵ Pm	4.808(3)	12.777(3)	2.322(3)	2.8(6)×10 ⁻⁷ %	[1962Nu01]
¹⁴⁹ Eu	4.394(4)	11.977(4)	2.401(5)		
¹⁵³ Tb	3.895(4)	11.238(4)	2.703(5)		
¹⁵⁷ Ho	3.592(23)	10.160(25)	2.056(24)		
¹⁶¹ Tm	3.124(37)	9.147(28)	2.509(36)		
¹⁶⁵ Lu	2.719(31)	8.292(27)	3.032(39)		
¹⁶⁹ Ta	2.219(40)	7.342(47)	3.727(39)		
¹⁷³ Re	1.746(40)	6.412(40)	4.312(40)		
¹⁷⁷ Ir	1.205(23)	5.337(34)	5.082(34)	0.06(1)%	[1990Bo19, 1967Si02, 1986Ke03]
¹⁸¹ Au	0.730(22)	4.367(22)	5.751(3)	2.7(5)%	[1995Bi01, 1993BiZY, 1992BiZZ, 1990SaZU,
					1984BrZR, 1984ScZQ, 1979Ha10, 1970Ha18,
					1968De01, 1968Si01, 1965Si07]
¹⁸⁵ Tl	0.702(23)	4.144(23)	5.688(5)		
^{185m} Tl	0.247(23)	43.689(23)	6.143(5)	obs	[1980ToZZ, 1976To06, 1992BIZW, 1991BoZV,
					1980Sc09, 1977ToZS, 1976BoYC]
¹⁸⁹ Bi	-0.457(23)	2.198(22)	7.268(3)	obs	[1997Wa05, 2007DoZW, 2001An11, 2000Sc46,
					1998Kr23, 1997An09, 1995Ba75, 1995BaZP,
					1993An19, 1985Co06, 1984ScZQ, 1978Va21,
100					1974Le02, 1973Ga08, 1973LiYK]
^{189m} Bi	-0.639(24)	2.016(23)	7.450(9)	83(5)%	[1997Wa05, 2007DoZW, 1983Ke08, 2001An11,
					2000Sc46, 1998Kr23, 1997An09, 1995Ba75,
					1995BaZP, 1993An19, 1985Co06, 1984ScZQ]
¹⁹³ At	-0.710(24)	1.406(23)	7.572(7)	$\approx 100\%$ *	[2003Ke08]
^{193m1} At	-0.720(24)	1.396(23)	7.582(9)	$\approx 100\%*$	[2003Ke08 , 1995Le15]
^{193m2} At	-0.754(25)	1.362(24)	7.616(10)	24(10)%	[2003Ke08]
¹⁹⁷ Fr	-0.990(58)	0.854(57)	7.888(15)**	100%*	[2013Ka16]

* Based on short half-life.

** Deduced from α energy, 7.896(53) in [2021Wa16].

Table 3

direct α emission from	1 ⁴⁵ Pm*, J ^π	$= 5/2^+, T_{1/2}$	$_2 = 17.7(4) \text{ y}^{**}$	*, $BR_{\alpha} = 2.8(6) \times 10^{-7}$	%.
-------------------------------	-------------------------------------	--------------------	-------------------------------	--	----

$E_{\alpha}(\text{c.m.})$	$E_{\alpha}(lab)$	$I_{\alpha}(abs)$	J_f^{π}	$E_{daughter}(^{141}\mathbf{H})$	Pr) coincident	rays R ₀ (fm)	HF	
2.304(40)	2.240(40)	100%	5/2+	0.0		1.5958(78)	$1.3\substack{+0.5 \\ -0.3}$	
* All valu ** [1959] Table 4	ues from [1962Nut Br65].	01], except whe	re noted.					
direct α emiss	sion from ¹⁷⁷ Ir, J ^{π}	$= 5/2^{-}, T_{1/2} = 2$	$26(2)$ s*, BR_{α}	=0.06(1)%**.				
$E_{\alpha}(\text{c.m.})$	$E_{\alpha}(lab)$	$I_{\alpha}(\text{rel})$	$I_{\alpha}(abs)$	${ m J}_f^{\pi}$	E _{daughter} (¹⁸¹ Au)	coincident γ-rays	R_0 (fm)	HF
5.126(10)	5.011(10)	100%	(5/2-)	0.0				

* Weighted average of 30(2) s [1990Bo19] and 26(2) s [1967Si02]. *** [1990Bo19]. *** [1067Si02].

Table 5

direct α emission from ¹⁸¹Au*, J^{π} = (3/2⁻), T_{1/2} =14.5(4) s, BR_{α} =2.7(5)%.

$E_{\alpha}(c.m.)$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(\text{rel})$	$I_{\alpha}(abs)$	\mathbf{J}_f^{π}	$E_{daughter}(^{177}\mathrm{Ir})$	coincident γ-rays	R_0 (fm)	HF
5.04.0/10)	5 404 (10)	0.0 (1) 2	a 4(1 a) = 10 ⁻³ a		0.405		1 5000 (50)	21+21
5.313(10)	5.196(10)	0.2 (1)%	$2.4(13) \times 10^{-5}\%$		0.435		1.5322(52)	21^{+21}_{-8}
5.360(10)	5.242(10)	$\approx 0.1\%$	$\approx 1.2 \times 10^{-3}\%$		0.390		1.5322(52)	≈ 80
5.421(5)	5.301(5)	0.6(1)%	$7.1(18) \times 10^{-3}\%$		0.332		1.5322(52)	24^{+9}_{-6}
5.485(5)	5.364(5)	9(1)%	0.11(2)%		0.2659	0.0856, 0.1802, 0.2659	1.5322(52)	$3.3^{+1.1}_{-0.7}$
5.529(5)	5.407(5)	6(1)%	0.071(18)%	7/2-	0.2231	0.052, 0.054, 0.0624, 0.0751,	1.5322(52)	$8.0^{+3.0}_{-1.9}$
						0.0856, 0.0968, 0.1178, 0.1480,		
						0.1778, 0.2231		
5.603(5)	5.479(5)	100(1)%	1.2(2)%	3/2-	0.1480	0.052, 0.0624, 0.0.0856, 0.0968,	1.5322(52)	$1.1^{+0.3}_{-0.2}$
						0.148		
5.670(5)	5.545(5)	7(1)%	0.083(19)%	1/2-	0.0856	0.0856	1.5322(52)	30^{+10}_{-7}
5.707(5)	5.581(5)	7(1)%	0.083(19)%		0.0453		1.5322(52)	45^{+16}_{-11}
5.753(5)	5.626(5)	98(1)%	1.2(2)%	$5/2^{+}$	0.0		1.5322(52)	$5.2^{+1.5}_{-1.1}$

* All values from [1995Br01].

Table 6

```
direct \alpha emission from <sup>185m</sup>Tl*, Ex = 454.8(15) keV**, J<sup>\pi</sup> = (9/2<sup>-</sup>), T<sub>1/2</sub> =14.5(4) s, BR<sub>\alpha</sub> =obs.
```

$E_{\alpha}(c.m.)$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(\text{rel})$	$I_{\alpha}(abs)$	${ m J}_f^\pi$	$E_{daughter}(^{177}\mathrm{Ir})$	coincident γ -rays	R_0 (fm)	HF	
6.108(5)	5.976(5)	100(6)%							
6.143(5)	6.010(5)	19(6)%							

* All values from [1976To09, 1980ToZZ], except where noted. ** [1977Si03].

Table 7			
direct α emission from	189 Bi*, J ^{π} = (9/2 ⁻).	$T_{1/2} = 688(5)s^{**},$	$BR_{\alpha} = obs^{***}$

$E_{\alpha}(\text{c.m.})$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(\text{rel})$	$I_{\alpha}(abs)$	$\mathbf{J}_{f}^{\pmb{\pi}}$	$E_{daughter}(^{185}\mathrm{Tl})^{@}$	coincident γ-rays [@]	R ₀ (fm)	HF
6.692(15)	6.55(15)	1.3(9)%	1.2(9)%	(11/2 ⁻)	0.576(8)	1.5000(29)	1.5000(29)	19_{-8}^{+57}
6.816(5)	6.672(5)	100(2)%	95(2)%	(9/2-)	0.4548(15)	0.169, 0.286	1.5000(29)	0.67(6)
6.981(7)	6.833(7)	1.4(6)%	1.3(6)%	$(3/2^+)$	0.286(1)	0.286	1.5000(29)	200^{+170}_{-60}
7.268(6)	7.114(6)	3.3(6)%	3.1(7)%	$(1/2^+)$	0.0		1.5000(29)	760_{-160}^{+240}

* All values from [1997Wa05], except where noted. ** [2007DoZW].

*** Assumed to be 100% in [1997Wa05]. This value is used in this table for I_{α} (abs) and HF. @ [2005Wu07].

Table	8
-------	---

direct (α emission fro	m ^{189m} Bi*,	Ex = 1	182(8) k	eV, J^{π}	$=(1/2^+)$, T _{1/}	$r_2 = 5.0(1) \text{ms}^*$	*, BR_{α}	=obs***	
----------	----------------	------------------------	--------	----------	---------------	------------	-------------------	----------------------------	------------------	---------	--

$E_{\alpha}(\text{c.m.})$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(\text{rel})$	$I_{\alpha}(abs)$	J_f^{π}	$E_{daughter}(^{185}\mathrm{Tl})$	coincident γ-rays	R ₀ (fm)	HF
7.268(7) 7.450(6)	7.114(7) 7.292(6)	14(6)% 100(3)%	10(3)% 73(5)%	(1/2 ⁺)	0.182(7) 0.0		1.5000(29) 1.5000(29)	$\begin{array}{c} 1.7^{+0.7}_{-0.4} \\ 0.90(9) \end{array}$

* All values from [1997Wa05], except where noted. ** [2007DoZW].

Table 9

direct α emission from	193 At*, J $^{\pi}$ =	$(1/2^+), T_{1/2}$	$=28^{+5}_{-4}$ n	ns, $BR_{\alpha} =$	100%
-------------------------------	----------------------------	--------------------	-------------------	---------------------	------

$E_{\alpha}(c.m.)$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(abs)$	\mathbf{J}_f^{π}	$E_{daughter}(^{189}\mathrm{Bi})$	coincident γ-rays	R_0 (fm)	HF	
7.388(5)	7.235(5)	100%	(1/2 ⁺)		0.182(8)		1.5519(62)	1.29(31)

* All values from [2003Ke08].

Table 10

direct α emission from ^{193*m*1}At*, Ex = 10(5) keV, J^{π} = (7/2⁻), T_{1/2} =21(5) ms, *BR*_{α} =100%.

$E_{\alpha}(\text{c.m.})$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(\text{rel})$	$I_{\alpha}(abs)$	J_f^π	Edaughter(¹⁸⁹ Bi)	coincident γ -rays	R ₀ (fm)	HF
7.480(5)	7.325(5)	2(2)%	2(2)%	(7/2 ⁻)	0.0946(5)		1.5519(62)	≈100
7.580(5)	7.423(5)	100%	98(2)%	(9/2 ⁻)	0.0		1.5519(62)	4.1(11)

* All values from [2003Ke08].

Table 11

direct α emission from ^{193m2} At*, Ex = 44(7) keV, J	$\pi = (13/2^+), T_{1/2}$	$=27^{+4}_{-3}$ ms, BR_{α}	=24(10)%
---	---------------------------	-----------------------------------	----------

$E_{\alpha}(\text{lab})$	$I_{\alpha}(abs)$	J_f^π	$E_{daughter}(^{189}\mathrm{Bi})$	coincident γ -rays	R_0 (fm)	HF	
7.106(5)	24(10)%	(13/2 ⁺)	0.357.6(5)		1.5519(62)	$2.0^{+1.9}_{-0.8}$	
ues from [2003K	e08].						
sion from ¹⁹⁷ Fr*	$J^{\pi} = (7/2^{-}), T_{1}$	$_{/2} = 0.6^{+30}_{-3} \text{ ms},$	$BR_{\alpha} = 100\%.$				
$E_{\alpha}(\text{lab})$	$I_{\alpha}(abs)$	\mathbf{J}_f^{π}	$E_{daughter}(^{193}\mathrm{At})$	coincident γ -rays	R ₀ (fm)	HF	
7.728(15)	100%	(7/2-)	0.010(5)		1.603(20)	0.53(27)	
	$\frac{E_{\alpha}(\text{lab})}{7.106(5)}$ uses from [2003K sion from ¹⁹⁷ Fr*, <u>E_{\alpha}(\text{lab})</u> 7.728(15)	$E_{\alpha}(lab)$ $I_{\alpha}(abs)$ 7.106(5) 24(10)% ues from [2003Ke08]. sion from ¹⁹⁷ Fr*, $J^{\pi} = (7/2^{-}), T_{1/2}$ $E_{\alpha}(lab)$ $I_{\alpha}(abs)$ 7.728(15) 100%	$E_{\alpha}(lab)$ $I_{\alpha}(abs)$ J_{f}^{π} 7.106(5) 24(10)% (13/2 ⁺) ues from [2003Ke08]. sion from ¹⁹⁷ Fr*, $J^{\pi} = (7/2^{-}), T_{1/2} = 0.6^{+30}_{-3}$ ms, $E_{\alpha}(lab)$ $I_{\alpha}(abs)$ J_{f}^{π} 7.728(15) 100% (7/2 ⁻)	$E_{\alpha}(\text{lab})$ $I_{\alpha}(\text{abs})$ J_{f}^{π} $E_{daughter}(^{189}\text{Bi})$ 7.106(5) 24(10)% (13/2 ⁺) 0.357.6(5) ues from [2003Ke08]. . sion from ¹⁹⁷ Fr*, $J^{\pi} = (7/2^{-}), T_{1/2} = 0.6^{+30}_{-3}$ ms, $BR_{\alpha} = 100\%$. $E_{\alpha}(\text{lab})$ $I_{\alpha}(\text{abs})$ J_{f}^{π} $E_{daughter}(^{193}\text{At})$ 7.728(15) 100% (7/2^{-}) 0.010(5)	$E_{\alpha}(lab)$ $I_{\alpha}(abs)$ J_{f}^{π} $E_{daughter}(^{189}Bi)$ coincident γ -rays 7.106(5) 24(10)% (13/2 ⁺) 0.357.6(5) ues from [2003Ke08]. sion from ¹⁹⁷ Fr*, $J^{\pi} = (7/2^{-})$, $T_{1/2} = 0.6^{+30}_{-3}$ ms, $BR_{\alpha} = 100\%$. $E_{\alpha}(lab)$ $I_{\alpha}(abs)$ J_{f}^{π} $E_{daughter}(^{193}At)$ coincident γ -rays 7.728(15) 100% (7/2 ⁻) 0.010(5)	$E_{\alpha}(lab)$ $I_{\alpha}(abs)$ J_{f}^{π} $E_{daughter}(^{189}Bi)$ coincident γ -rays R_{0} (fm) 7.106(5) 24(10)% (13/2 ⁺) 0.357.6(5) 1.5519(62) aus from [2003Ke08]. sion from ¹⁹⁷ Fr*, $J^{\pi} = (7/2^{-})$, $T_{1/2} = 0.6^{+30}_{-3}$ ms, $BR_{\alpha} = 100\%$. $E_{\alpha}(lab)$ $I_{\alpha}(abs)$ J_{f}^{π} $E_{daughter}(^{193}At)$ coincident γ -rays R_{0} (fm) 7.728(15) 100% (7/2 ⁻) 0.010(5) 1.603(20)	$E_{\alpha}(lab)$ $I_{\alpha}(abs)$ J_{f}^{π} $E_{daughter}(^{189}Bi)$ coincident γ -rays R_{0} (fm) HF 7.106(5) 24(10)% (13/2 ⁺) 0.357.6(5) 1.5519(62) $2.0_{-0.8}^{+1.9}$ ues from [2003Ke08]. sion from ¹⁹⁷ Fr*, $J^{\pi} = (7/2^{-})$, $T_{1/2} = 0.6_{-3}^{+30}$ ms, $BR_{\alpha} = 100\%$. $E_{\alpha}(lab)$ $I_{\alpha}(abs)$ J_{f}^{π} $E_{daughter}(^{193}At)$ coincident γ -rays R_{0} (fm) HF 7.728(15) 100% (7/2 ⁻) 0.010(5) 1.603(20) 0.53(27)

* All values from [2013Ka16].

References used in the Tables

- [1] 1959Br65 A. R. Brosi, B. H. Ketelle, H. C. Thomas, R. J. Kerr, Phys. Rev. 113, 239 (1959). https://doi.org/10.1103/PhysRev.113.239
- [2] 1962Nu01 M. Nurmia, P. Kauranen, A. Siivola, Phys. Rev. 127, 943 (1962). https://doi.org/10.1103/PhysRev.127.943
- [3] 1965Si07 A. Siivola, UCRL-11828, p. 25 (1965).
- [4] 1967Si02 A Siivola, Nucl Phys A92, 475 (1967). https://doi.org/10.1016/0375-9474(67)90230-8
- [5] 1968De01 A G Demin, T Fenyes, I Mahunka, V G Subbotin, L Tron, Nucl Phys A106, 337 (1968). https://doi.org/10.1016/0375-9474(67)90878-0
- [6] 1968Si01 A Siivola, Nucl Phys A109, 231 (1968). https://doi.org/10.1016/0375-9474(68)90571-X
- [7] 1969Ar22 R. Arlt, Z. Malek, G. Muziol, H. Strusny, Izv. Akad. Nauk SSSR, Ser. Fiz. 33, 1232 (1969); Bull. Acad. Sci. USSR, Phys. Ser. 33, 1144 (1970).
- [8] 1970Ch09 Y Y Chu, E M Franz, G Friedlander, Phys Rev C1, 1826 (1970). https://doi.org/10.1103/PhysRevC.1.1826
- [9] 1970Ha18 P. G. Hansen, H. L. Nielsen, K. Wilsky, M. Alpsten, M. Finger, A. Lindahl, R. A. Naumann, O. B. Nielsen, Nucl. Phys. A148, 249 (1970). oi: 10.1016/0375-9474(70)90622-6. https://doi.org/10.1016/0375-9474(70)90622-6
- [10] 1972T005 J. P. Torres, P. Paris, P. Kilcher, Nucl. Phys. A185, 574 (1972). https://doi.org/10.1016/0375-9474(72)90033-4
- [11] 1973Ga08 H Gauvin, R L Hahn, Y Le Beyec, M Lefort, J Livet, Nucl Phys A208, 360 (1973). https://doi.org/10.1016/0375-9474(73)90381-3
- [12] 1973LiYK J. Livet, (thesis), REPT FRNC-TH-412, mf.
- [13] 1974Le02 Y Le Beyec, M Lefort, J Livet, N T Porile, A Siivola, Phys Rev C 9, 1091 (1974). https://doi.org/10.1103/PhysRevC.9.1091
- [14] 1976BoYC C. Bourgeois, M. Bouet, A. Caruette, A. Ferro, R. Foucher, J. Fournet, A. Hoglund, L. Kotfila, G. Landois, C. F. Liang, B. Merlant, J. Obert, A. Peghaire, J. C. Putaux, J. L. Sarrouy, W. Watzig, A. Wojtasiewicz, V. Berg, and the ISOCELE Collaboration, Univ. Paris, Ann. Rept., p. N19 (1976).
- [15] 1976To06 K S Toth, M A Ijaz, J Lin, E L Robinson, B O Hannah, E H Spejewski, J D Cole, J H Hamilton, A V Ramayya, Phys Lett 63B, 150 (1976). https://doi.org/10.1016/0370-2693(76)90636-5
- [16] **1977Si03** R. R. Silbar, Phys. Rev. C15, 1158 (1977). https://doi.org/10.1103/PhysRevC.15.1158
- [17] 1977ToZS K. S. Toth, J. Lin, M. A. Ijaz, E. L. Robinson, C. R. Bingham, H. K. Carter, ORNL-5306, p. 83 (1977).
- [18] 1978Va21 V. M. Vakhtel, S. G. Kadmenskii, A. A. Martynov, V. I. Furman, Yad. Fiz. 28, 1241 (1978); Sov. J. Nucl. Phys. 28, 639 (1978).
- [19] 1979Ha10 E Hagberg, P G Hansen, P Hornshoj, B Jonson, S Mattsson, P Tidemand-Petersson, Nucl Phys A318, 29 (1979). https://doi.org/10.1016/0375-9474(79)90467-6
- [20] 1980Sc09 U J Schrewe, P Tidemand-Petersson, G M Gowdy, R Kirchner, O Klepper, A Plochocki, W Reisdorf, E Roeckl, J L Wood, J Zylicz, R Fass, D Schardt, Phys Lett 91B, 46 (1980). https://doi.org/10.1016/0370-2693(80)90659-0
- [21] 1980ToZZ K. S. Toth, unpublished. (November 1980).
- [22] 1982Ra19 S. Rastikerdar, C. Garrett, W. Gelletly, J. Phys. (London) G8, 1301 (1982). https://doi.org/10.1088/0305-4616/8/9/013
- [23] 1983Ke08 B. D. Kern, K. S. Toth, D. M. Moltz, J. Lin, F. T. Avignone III, H. Noma, G. A. Leander, Phys. Rev. C28, 2168 (1983). https://doi.org/10.1103/PhysRevC.28.2168
- [24] 1984BrZR C. Bourgeois, P. Kilcheb, M. G. Porouet, B. Roussiere, J. Sauvage for the ISOCELE Collaboration, Univ. Paris, Inst. Phys. Nucl., Ann. Rept., p. E13 (1984)
- [25] 1984ScZQ J. Schneider GSI-84-3 (thesis) (1984).
- [26] 1985Co06 E. Coenen, K. Deneffe, M. Huyse, P. Van Duppen, J. L. Wood, Phys. Rev. Lett. 54, 1783 (1985). https://doi.org/10.1103/PhysRevLett.54.1783
- [27] 1986Ke03 J G Keller, K -H Schmidt, F P Hessberger, G Munzenberg, W Reisdorf, H -G Clerc, C -C Sahm, Nucl Phys A452, 173 (1986). https://doi.org/10.1016/0375-9474(86)90514-2
- [28] 1986Sz05 A. Szymanski, G. W. A. Newton, V. J. Robinson, H. E. Sims, Radiochim. Acta 40, 61 (1986).

- [29] 1990Bo19 U. Bosch, P. Koschel, W. -D. Schmidt-Ott, V. Freystein, T. Hild, F. Meissner, H. Salewski, U. Ellmers, R. Michaelsen, Z. Phys. A336, 359 (1990).
- [30] 1990SaZU J. Sauvage, C. Bourgeois, P. Kilcher, F. Le Blanc, B. Roussiere, M. I. Macias-Marques, F. Braganca Gil, M. G. Porquet, H. Dautet, and the ISOCELE Collaboration, IPNO-DRE 90-11 (1990).
- [31] 1991BoZV V. A. Bolshakov, G. V. Veselov, A. G. Dernyatin, K. A. Mezilev, Yu. N. Novikov, A. G. Polyakov, A. V. Popov, V. A. Sergienko, Yu. Ya. Sergeev, V. I. Tikhonov, Program and Thesis, Proc. 41st Ann. Conf. Nucl. Spectrosc. Struct. At. Nuclei, Minsk, p. 116 (1991).
- [32] 1992BIZW Yu. S. Blinnikov, V. A. Bolshakov, A. G. Dernyatin, K. A. Mezilev, Yu. N. Novikov, A. G. Polyakov, A. V. Popov, Yu. Ya. Sergeev, V. A. Sergienko, V. I. Tikhonov, G. V. Veselov, V. M. Zeleznyakov, Leningrad Nucl. Phys. Inst., 1990-1991 Ann. Rept., p. 63 (1992).
- [33] 1992BiZZ C. R. Bingham, Y. A. Akovali, H. K. Carter, W. D. Hamilton, M. M. Jarrio, M. B. Kassim, J. Kormicki, J. Schwarzenberg, K. S. Toth, M. Zhang, Contrib. 6th Intern. Conf. on Nuclei Far from Stability + 9th Intern. Conf. on Atomic Masses and Fundamental Constants, Bernkastel-Kues, Germany, PE47 (1992).
- [34] 1993Al02 H. Alloul, A. Mahajan, H. Casalta, O. Klein Phys. Rev. Lett. 70, 1171 (1993). https://doi.org/10.1103/PhysRevLett.70.1171
- [35] 1993An19 A N Andreyev, D D Bogdanov, V I Chepigin, V A Gorshkov, K V Mikhailov, A P Kabachenko, G S Popeko, S Saro, G M Ter-Akopian, A V Yeremin, Sh S Zeinalov, Nucl Instrum Methods Phys Res A330, 125 (1993). https://doi.org/10.1016/0168-9002(93)91313-C
- [36] 1993BiZY C. R. Bingham, Y. A. Akovali, H. K. Carter, W. D. Hamilton, M. M. Jarrio, M. B. Kassim, J. Kormicki, J. Schwarzenberg, K. S. Toth, M. Zhang, Proc. 6th Intern. Conf. on Nuclei Far from Stability + 9th Intern. Conf. on Atomic Masses and Fundamental Constants, Bernkastel-Kues, Germany, 19-24 July, 1992, R. Neugart, A. Wohr, Eds., p. 735 (1993).
- [37] 1995Ba75 J. C. Batchelder, K. S. Toth, D. M. Moltz, T. J. Ognibene, M. W. Rowe, C. R. Bingham, E. F. Zganjar, B. E. Zimmerman, Phys. Rev. C52, 1807 (1995). https://doi.org/10.1103/PhysRevC.52.1807
- [38] 1995BaZP J. C. Batchelder, K. S. Toth, D. M. Moltz, T. J. Ognibene, M. W. Rowe, C. R. Bingham, E. F. Zganjar, B. E. Zimmerman, Proc. Intern. Conf on Exotic Nuclei and Atomic Masses, Arles, France, June 19-23, 1995, p. 541 (1995).
- [39] 1995Bi01 C. R. Bingham, M. B. Kassim, M. Zhang, Y. A. Akovali, K. S. Toth, W. D. Hamilton, H. K. Carter, J. Kormicki, J. von Schwarzenberg, M. M. Jarrio, Phys. Rev. C51, 125 (1995). https://doi.org/10.1103/PhysRevC.51.125
- [40] 1995Le15 M. Leino, J. Aysto, T. Enqvist, A. Jokinen, M. Nurmia, A. Ostrowski, W. H. Trzaska, J. Uusitalo, K. Eskola, Acta Phys. Pol. B26, 309 (1995).
- [41] 1997An09 A N Andreyev, N Bijnens, T Enqvist, M Huyse, P Kuusiniemi, M Leino, W H Trzaska, J Uusitalo, P Van Duppen, Z Phys A358, 63 (1997). https://doi.org/10.1007/s002180050276
- [42] 1997Wa05 J Wauters, J C Batchelder, C R Bingham, D J Blumenthal, L T Brown, L F Conticchio, C N Davids, T Davinson, R J Irvine, D Seweryniak, K S Toth, W B Walters, P J Woods, E F Zganjar, Phys Rev C55, 1192 (1997). https://doi.org/10.1103/PhysRevC.55.1192
- [43] 1998Kr23 J. Krause, I. Berkes, J. Camps, M. De Jesus, P. De Moor, P. Herzog, M. Massaq, T. Phalet, P. Schuurmans, N. Severijns, A. Van Geert, D. Venos, B. Vereecke, B. Will, D. Zakoucky, and the NICOLE and ISOLDE Collaborations, Phys. Rev. C58, 3181 (1998). https://doi.org/10.1103/PhysRevC.58.3181
- [44] 2000Sc46 P. Schuurmans, I. Berkes, P. Herzog, N. Severijns, and the NICOLE and the ISOLDE Collaboration, Hyperfine Interactions 129, 163 (2000). https://doi.org/10.1023/A:1012657715807
- [45] 2001An11 A. N. Andreyev, D. Ackermann, P. Cagarda, J. Gerl, F. P. Hessberger, S. Hofmann, M. Huyse, A. Keenan, H. Kettunen, A. Kleinbohl, A. Lavrentiev, M. Leino, B. Lommel, M. Matos, G. Munzenberg, C. J. Moore, C. D. O'Leary, R. D. Page, S. Reshitko, S. Saro, C. Schlegel, H. Schaffner, M. J. Taylor, P. Van Duppen, L. Weissman, R. Wyss, Eur. Phys. J. A 10, 129 (2001). https://doi.org/10.1007/s100500170123
- [46] 2003Ke08 H Kettunen, T Enqvist, T Grahn, P T Greenlees, P Jones, R Julin, S Juutinen, A Keenan, P Kuusiniemi, M Leino, A -P Leppanen, P Nieminen, J Pakarinen, P Rahkila, J Uusitalo, Eur Phys J A 17, 537 (2003). https://doi.org/10.1140/epja/i2002-10162-1
- [47] 2005Wu07 S. -C. Wu, Nucl.Data Sheets 106, 619 (2005). https://doi.org/10.1016/j.nds.2005.11.002
- [48] 2007DoZW C. Dossat, Ch. Theisen, A. Burger, E. Clement, A. Gorgen, W. Korten, S. Eeckhaudt, P. Jones, T. Grahn, P. T. Greenlees, R. Julin, S. Juutinen, M. Leino, A. -P. Leppanen, M. Nyman, J. Pakarinen, P. Rahkila, J. Saren, C. Scholey, J. Sorri, J. Uusitalo, M. Venhart, Proc. Inter. Conf. Proton Emitting Nuclei and Related Topics (PROCON 2007), Lisbon, Portugal, 17-23

June 2007, L. S. Ferreira Ed. p. 196 (2007); AIP Conf. Proc. 961 (2007). https://doi.org/10.1063/1.2827256

- [49] 2013Ka16 Z. Kalaninova, A. N. Andreyev, S. Antalic, F. P. Hessberger, D. Ackermann, B. Andel, M. C. Drummond, S. Hofmann, M. Huyse, B. Kindler, J. F. W. Lane, V. Liberati, B. Lommel, R. D. Page, E. Rapisarda, K. Sandhu, S. Saro, A. Thornthwaite, P. Van Duppen, Phys. Rev. C 87, 044335 (2013). https://doi.org/10.1103/PhysRevC. 87. 044335
- [50] **2021Wa16** M Wang, W J Huang, F G Kondev, G Audi, S Naimi, Chin Phys C **45**, 030003 (2021). https://doi.org/10.1088/1674-1137/abddaf