

Last updated 4/14/24

Table 1

Observed and predicted β -delayed particle emission from the odd-*Z*, $T_z = +22$ nuclei. Unless otherwise stated, all Q-values are taken from [2021Wa16] or deduced from values therein.

Nuclide	Ex.	J^{π}	$T_{1/2}$	$Q_{\mathcal{E}}$	$Q_{\varepsilon p}$	$Q_{\varepsilon \alpha}$	$\mathrm{BR}_{\mathcal{E}_F}$	Experimental
²¹⁰ Bi		1^{-}	5.013(5) d	-0.064(1)				[1956Ro18]
^{210m} Bi	0.2713(1)	9-	$3.04(6) \times 10^6$ y	0.207(1)	-8.271(6)	4.000(20)		[1976TuZY]
²¹⁴ At		(2^{-})	558(10) ns	1.091(4)	-5.436(6)	8.924(4)		[1982Ew01]
^{214m1} At	0.059(9)		265(30) ns	1.150(10)	-5.377(11)	8.983(10)		[1982Ew01]
^{214m2} At	0.233(6)	(9^{-})	760(15) ns	1.324(7)	-5.203(8)	9.157(7)		[1982Ew01]
²¹⁸ Fr		1-	$1.3^{+0.5}$ ms	1.842(4)	-4 624(6)	9.104(4)		[1982Ew01]
^{218m} Fr	0.088(5)	(8-)	22.0(5) ms	1.930(6)	-4.536(8)	9.192(6)		[1982Ew01]
²²² Ac		1-	4.9(5) s*	2.302(6)	-3.944(7)	8.979(5)		[1958To25, 1952Me13]
222mAc	х		64(2) s**	2.302(6)+x	-3.944(7)+x	8.979(5)+x		[1973Mo07, 1972Es03]
²²⁶ Pa			1.8(2) m	2.836(12)	-2.893(12)	9.288(12)		[1951Me10]
²³⁰ Np			4.6(3) m	3.620(60)	-1.949(55)	9.614(55)		[1968Ha14]
²³⁴ Am			2.32(8) m	4.11(16)#	-0.78(17)#	10.42(16)#	$6.6(18) \times 10^{-3}$	[1990Ha02 , 1972SoXX]
²³⁸ Bk			144(5) s	4.77(26)#	0.36(26)#	11.44(26)#	0.048(2)%	[1994Kr03 , 1994La25]
²⁴² Es			16.9(8) s	5.41(26)#	1.53(31)#	12.93(26)#	1.5(4)%	[2024KhXX, 2010An08, 2000Sh10,
				()				1997ShZZ, 1985HiZU]
²⁴⁶ Md***			0.9(2) s	5.92(26)#	2.51(31)#	14.30(26)#		[2010An08]
^{246m} Md	х		4.4(8) s	5.92(26)#+x	2.51(31)#+x	14.30(26)#+x	> 10%	[2010An08]
			× /	/	. ,			. ,

* Weighted average of 4.2(5) s [1958To25] and 5.5(5) s [1952Me13].

** Weighted average of 62(3) s [1973Mo07] and 66(3) s [1972Es03].

*** May not be the ground state.

Table 2

Particle separation, Q-values, and measured values for direct particle emission of the odd-Z, $T_z = +22$ nuclei. Unless otherwise stated, all S and Q-values are taken from [2021Wa16] or deduced from values therein.

Nuclide	\mathbf{S}_p	S _{2p}	Qα	BR_{α}	Experimental
²¹⁰ Bi*	4 466(1)	12,620(2)	5.036(1)	$1.32(10) \times 10^{-4}\%$	[1969].a18. 1962Ka27. 1959Wa05 [1969].a18 [1969].a7.Y
21		12:02:0(2)	01000(1)	1.02(10) // 10 //	1960Wa14 1958Go891
^{210m} Bi	4.195(1)	12,349(2)	5.307(1)	100%	[1976TuZY 1975TuZW 1975Sp07 1969La01 1969La18
51		1210 17(2)	0.007(1)	10070	1969LaZY 1968LaZZ 1967Sp07 1962Ko12 1961Ru02
					1960Wa14, 1959Go77, 1954Le60, 1953Hu421
²¹⁴ At	4.015(5)	9.839(4)	8,988(4)	100%	[1982Ew01 , 2009Vi09, 1999Sh03, 1982Bo04, 1981HaZN,
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			1973BoXW, 1968Ha14, 1964Mc21, 1958To25, 1951Me10.
					1949Me541
214m1 At	3.956(10)	9.780(10)	9.047(10)	$\approx 100\%$	[1982Ew01 , 2009Vi09]
$^{214m2}At$	3.782(8)	9.606(7)	9.221(7)	$\approx 100\%$	[1982Ew01, 2009Vi09, 1999Sh03, 1981HaZN]
²¹⁸ Fr	3.888(6)	9.775(5)	8.014(1)	100%	[1999Sh03, 1982Ew01, 2014Bu06, 1982Bo04, 1981HaZN,
		~ /			1973BoXL, 1972Es03, 1968Ha14, 1964Mc21, 1958To25,
					1951Me10, 1949Me54]
^{218m} Fr	3.800(8)	9.687(7)	8.102(5)	100%	[1999Sh03, 1982Ew01, 2014Bu06, 1981HaZN]
²²² Ac	3.631(6)	9.438(6)	7.137(2)	$\approx 100\%$	[1964Mc21, 1988Hu08, 1973BoXL, 1973BoXW, 1972Es03,
					1970GhZY, 1968Ha14, 1958To25, 1952Me13, 1949Me54]
222mAc	3.631(6)-x	9.438(6)-x	7.137(2)+x	>97%	[1972Es03 , 1982Bo04, 1973Mo07]
²²⁶ Pa	3.566(12)	8.778(12)	6.987(10)	74%	[1964Mc21, 1991Ga28, 1968Ha14, 1951Me10, 1949Me54]
²³⁰ Np	3.263(55)	8.265(55)	6.778(54)	$\approx 3\%$	[1968Ha14]
²³⁴ Am	2.88(17)#	7.48(19)#	6.80(15)#	0.039(12)%	[1990Ha02 , 2004Sa05, 1974ArYU]
²³⁸ Bk	2.32(27)#	6.40(28)#	7.33(20)#		
²⁴² Es	1.81(32)#	5.44(30)#	8.160(20)	49(3)%**	[2024KhXX, 2010An08, 2000Sh10, 1996Ni09, 1994HoZW,
	. /	. /			1994La25, 1985HiZU]
²⁴⁶ Md***	1.37(33)#	4.49(32)#	8.889(41)	100%	[2020An08, 1996Ni09, 2003HeZY, 1994HoZW, 1994La25]
^{246m} Md	1.37(33)#-x	4.49(32)#-x	8.889(41)+x	< 23%	[2020An08]

* 100% β^- emitter.

** Weighted average of 41(3)% [2024KhXX] and 57(3)% [2010An08].

*** May not be the ground state.

Table 3 direct α emission from ²¹⁰Bi, J^{π} = 1⁻, T_{1/2} = 5.013(5) d*, BR_{α} =1.32(10) × 10⁻⁴%**.

$E_{\alpha}(c.m.)$	$E_{\alpha}(\text{lab})^{**}$	$I_{\alpha}(\text{rel})^{***}$	$I_{\alpha}(abs)$	$\mathbf{J}_{f}^{\pi@}$	$E_{daughter}(^{206}\mathrm{Tl})^{@}$	coincident γ -rays [@]	R ₀ (fm)	HF
4.750(10) 4.791(10)	4.660(10) 4.700(10)	$\begin{array}{c} 100\% \\ \approx 67\% \end{array}$	$pprox 7.9 imes 10^{-4}\%$ $pprox 5.3 imes 10^{-4}\%$	$1^ 2^-$	0.3049 0.2658	0.3049 0.2658		
* [1956Rc ** [1962K *** [1969 [@] [2008K	018]. Ka27]. La18]. 021].							

Table 4

direct	α emission	from ^{210m} B	i*, Ex	. = 271.3(1) keV**	$J^{\pi} = 9^{-1}$	$, T_{1/2}$	$_{2} = 3.04(6) \times$	10 ⁶ y	$, BR_{\alpha} =$	100%.
--------	-------------------	------------------------	--------	------------	----------	--------------------	-------------	-------------------------	-------------------	-------------------	-------

$E_{\alpha}(c.m.)$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(\text{rel})$	$I_{\alpha}(abs)$	$\mathbf{J}_f^{\boldsymbol{\pi}}$	$E_{daughter}(^{206}\text{Tl})^{***}$	coincident γ-rays***	R_0 (fm)	HF
- 1100	- 4 100	2.6×10^{-3}	2×10^{-3}	(1-)	1 120/2)	0.2659, 0.9514, 1.120		
≈4.180	\approx 4.100	3.0×10^{-3}	2×10^{-5}	(1)	1.120(2)	0.2058, 0.8514, 1.120		
≈4.312	≈ 4.230	1.5×10^{-3}	$8 imes 10^{-4}$	(2^{-})	0.9982	0.2658, 0.7323		
4.351(10)	4.268(10)	0.011%	$6 imes 10^{-3}\%$	(4^{-})	0.9522	0.2658, 0.6863		
4.506(10)	4.420(10)	0.38%	0.21%	(3 ⁻)	0.8014	0.2658, 0.5355		
4.657(20)	4.568(20)	7.1%	3.9%	(1^{-})	0.6494(1)	0.2658, 0.3049, 0.3445, 0.3840, 0.6494		
4.671(20)	4.582(20)	2.5%	1.4%	(2^{-})	0.6350(1)	0.2658, 0.3049, 0.3301, 0.3692, 0.6343		
5.004(10)	4.909(10)	71.8%	39.5%	(1^{-})	0.3049	0.3049		
5.042(10)	4.946(10)	100%	55.0%	(2 ⁻)	0.2658	0.2658		
5.308(10)	5.207(10)	${<}2 imes10^{-4}\%$	${<}1 imes10^{-4}\%$	(0^{-})	0.0			

* All values from [1976TuZY], except where noted.

** [2014Ba14].

*** [2008Ko21].

Table 5

direct α emission from ²¹⁴At*, J^{π} = (1⁻), T_{1/2} = 558(10) ns, BR_{α} = 100%.

$E_{\alpha}(c.m.)$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(\text{rel})$	$I_{\alpha}(abs)$	\mathbf{J}_f^{π}	E _{daughter} (²¹⁰ Bi)**	coincident γ-rays**	R ₀ (fm)***	HF
8.428(5)	8.270(5)	0.32(3)%	0.32(3)%		0.5632(1)	0.0465, 0.5166, 0.5632	1.5438(59)	$21.4^{+3.4}_{-2.2}$
8.642(6)	8.480(6)	0.59(4)%	0.58(4)%	3-	0.3480	0.3480	1.5438(59)	42(6) -5.2
8.669(7)	8.507(7)	0.15(4)%	0.15(4)%	2^{-}	0.3197	0.3197	1.5438(59)	190^{+80}_{-50}
8.987(4)	8.819(4)	100%	98.95(6)%	1^{-}	0.0		1.5438(59)	$1.8(2)^{-50}$

 \ast All values from [1982Ew01], except where noted.

** [2014Ba41].

*** Interpolated between 1.52177(18) (²¹²Po) and 1.5658(59) fm (²¹⁶Rn).

Table 6

direct α emission from ^{214m1} At*, Ex. = 59(9) keV, T _{1/2}	$_{2} = 265(30)$ ns, $BR_{\alpha} = \approx 100\%$
---	--

$E_{\alpha}(\text{c.m.})$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(abs)$	\mathbf{J}_f^{π}	$E_{daughter}(^{210}\mathrm{Bi})$	coincident γ -rays	R ₀ (fm)**	HF
9.046(8)	8.877(8)	$\approx 100\%$	1-	0.0		1.5438(59)	1.14(19)

* All values from [1982Ew01], except where noted. ** Interpolated between 1.52177(18) (²¹²Po) and 1.5658(59) fm (²¹⁶Rn).

Table 7			
direct α emission from ^{214m2} At*, Ex. = 2.	$33(16)$ keV, $J^{\pi} = (9)$	P^{-}), $T_{1/2} = 760(15)$ ns,	$BR_{\alpha} = \approx 100\%$

$E_{\alpha}(\text{c.m.})$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(\text{rel})$	$I_{\alpha}(abs)$	J_f^{π}	$E_{daughter}(^{210}\mathrm{Bi})$	coincident γ -rays	R ₀ (fm)***	HF
8.550(6) 8.784(5)	8.390(6) 8.620(5)	0.18(3)% 0.65(5)%	0.18(3)% 0.64(5)%	10-	0.669(5)** 0.436(4)	0.3977(5)**	1.5438(59) 1.5438(59)	$111^{+29}_{-22} \\ 120^{+19}_{-17} \\ 25$
8.949(5)	8.782(5)	100%	99.18(6)%	9-	0.2713(1)		1.5438(59)	$1.94^{+0.25}_{-0.23}$

* All values from [1982Ew01], except where noted.

*** [2014Ba41]. *** Interpolated between 1.52177(18) (²¹²Po) and 1.5658(59) fm (²¹⁶Rn).

Table 8

direct α emission from ²¹⁸Fr*, J^{π} = 1⁻, T_{1/2} = 1.3^{+0.5}_{-0.4} ms**, BR_{α} = 100%.

$E_{\alpha}(\text{c.m.})$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(\text{rel})$	$I_{\alpha}(abs)$	J_f^π	$E_{daughter}(^{214}\text{At})$	coincident γ -rays	R ₀ (fm)***	HF
7.519(6)	7.381(6)	1.1(5)%	1.0(0.5)%		0.494(6)		1.5599(82)	11^{+19}_{-7}
7.672(8)	7.531(8)	0.5(2)%	0.5(2)%	(2^{-})	0.334(8)	0.147, 0.187	1.5599(82)	70_{-40}^{+90}
7.710(5)	7.569(5)	5.4(11)%	5(1)%	1(-)	0.303(5)	0.117, 0.187	1.5599(82)	9^{+7}_{-5}
7.870(7)	7.726(7)	1.6(5)%	1.5(5)%	$(2)^{-}$	0.143(7)	0.145	1.5599(82)	90^{+100}_{-5}
8.013(2)	7.866(2)	100%	92(2)%	0.0		1.5599(82)	3.9(16)	5

* All values from [1999Sh03], except where noted.

** [1982Ew01].

*** Interpolated between 1.5658(59) fm (216 Rn) and 1.5539(57) fm (220 Ra).

Table 9

direct α emission from ^{218m}Fr*, Ex.= 88(5) keV, J^{π} = (8⁻), T_{1/2} = 22.0(5) ms, BR_{α} = 100%.

$E_{\alpha}(c.m.)$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(\text{rel})$	$I_{\alpha}(abs)$	$\mathbf{J}_{f}^{\pi**}$	$E_{daughter}(^{214}\text{At})$	coincident γ-rays**	R ₀ (fm)***	HF
6.965(7)	6.837(7)	0.10(2)%	0.04(1)%		1.136(7)		1.5599(82)	55^{+23}_{-16}
7.085(5)	6.955(5)	1.24(8)%	0.51(3)%		1.016(5)		1.5599(82)	$11.8^{+2.5}_{-2.1}$
7.128(8)	6.997(8)	0.09(4)%	0.040(15)%		0.972(8)		1.5599(82)	$220_{-70}^{-2.1}$
7.219(15)	7.087(15)	0.80(56)%	0.33(23)%		0.881(15)		1.5599(82)	50_{-30}^{+130}
7.239(5)	7.106(5)	3.92(55)%	1.61(22)%		0.862(4)		1.5599(82)	$12.9^{+3.5}_{-2.8}$
7.312(6)	7.178(6)	2.17(32)%	0.89(13)%		0.788(5)		1.5599(82)	42_{-9}^{+12}
7.375(5)	7.240(5)	23.4(12)%	9.6(4)%	(8-)	0.725(4)	0.046, 0.451, 0.496	1.5599(82)	$6.3^{+1.3}_{-1.1}$
7.469(15)	7.332(15)	1.6(5)%	0.65(20)%		0.631(15)		1.5599(82)	190_{-60}^{+100}
7.536(5)	7.398(5)	8.3(6)%	3.4(2)%		0.564(4)	0.083, 0.145, 0.337	1.5599(82)	61(12)
7.597(5)	7.458(5)	3.2(3)%	1.3(1)%		0.503(4)	0.083, 0.145, 0.276	1.5599(82)	250(50)
7.646(6)	7.506(6)	2.3(3)%	0.93(10)%		0.454(5)		1.5599(82)	500^{+120}_{-100}
7.690(5)	7.549(5)	1.8(2)%	0.76(9)%		0.411(4)		1.5599(82)	830^{+210}_{-170}
7.758(5)	7.616(5)	100.0%	41.1(13)%	(8-)	0.342(4)	0.111	1.5599(82)	25(5)
7.800(7)	7.657(7)	29.0(52)%	11.9(21)%	(6 ⁻)	0.300(6)	0.074, 0.083, 0.145	1.5599(82)	120^{+40}_{-30}
7.825(7)	7.681(7)	39.2(53)%	16.1(21)%	(7^{-})	0.276(6)	0.046	1.5599(82)	102_{-22}^{+27}
7.869(6)	7.725(6)	10.9(17)%	4.5(7)%	(9-)	0.233(6)		1.5599(82)	490^{+140}_{-110}
7.915(5)	7.770(5)	2.8(3)%	1.14(11)%	(3-)	0.185(4)	0.187	1.5599(82)	$2.7(6) \times 10^3$
7.956(5)	7.810(5)	3.9(3)%	1.6(1)%	$(2)^{-}$	0.145(4)	0.145	1.5599(82)	$2.6(5) \times 10^3$
8.022(5)	7.875(5)	3.4(5)%	1.4(2)%	0^{-}	0.078(4)	0.078	1.5599(82)	$4.6^{+1.3}_{-1.0} imes 10^3$
8.101(5)	7.952(5)	5.8(3)%	2.4(1)%	1^{-}	0.0		1.5599(82)	$4.5^{+0.9}_{-0.8} imes 10^3$

* All values from [1982Ew01], except where noted.

** [1999Sh03]. *** Interpolated between 1.5658(59) fm (216 Ra) and 1.5539(57) fm (220 Th).

Table 10

$E_{\alpha}(\text{c.m.})$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(\text{rel})$	$I_{\alpha}(abs)$	J_f^π	$E_{daughter}(^{218}\mathrm{Fr})$	coincident γ-rays	$R_0 \left(fm \right)^@$	HF
7.082(10) 7.128(10)	6.954(10)*** 7.000(10)***	6(1)% 100%	6(1)% 100%	1-	0.047(14) 0.0	_	1.5462(63) 1.5462(63)	28^{+11}_{-9} 2.7(5)

* All values from [1964Mc21], except where noted.

** Weighted average of 4.2(5) s [1958To25] and 5.5(5) s [1952Me13].

*** Value recommended by [1991Ry01]. Original values were 6.952(10) MeV and 6.998(10) MeV respectively. ^(a) Interpolated between 1.5539(57) fm (²²⁰Ra) and 1.5385(27) fm (²²⁴Th).

Table 11

direct α emission from ^{222m}Ac*, Ex.= unk., T_{1/2} = 64(2) s**, BR_{α} = >97%.

$E_{\alpha}(\text{c.m.})$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(\text{rel})$	$I_{\alpha}(abs)$	\mathbf{J}_f^{π}	$E_{daughter}(^{218}\mathrm{Fr})$	coincident γ -rays	R ₀ (fm)***	HF
6.579(20)	6 460(20)	7(5)%	2(1)%		0.550(28) + x		1.5462(63)	< 13 ⁺¹⁵
6.833(20)	6.710(20)	30(18)%	8(4)%		0.295(28)+x		1.5462(63)	$< 30^{+40}_{-20}$
6.874(20)	6.750(20)	56(28)%	15(5)%		0.255(28)+x		1.5462(63)	$<25^{+17}_{-10}$
6.935(20)	6.810(20)	100(37)%	27(10)%		0.193(28)+x		1.5462(63)	$< 24^{+18}_{-10}$
6.966(20)	6.840(20)	37(23)%	10(5)%		0.163(28)+x		1.5462(63)	$< 90^{+100}_{-40}$
7.016(20)	6.890(20)	56(28)%	15(5)%		0.112(28)+x		1.5462(63)	$< 90^{+60}_{-40}$
7.098(20)	6.970(20)	30(16)%	8(3)%		0.031(28)+x		1.5462(63)	$< 330^{+0.50}_{-1.40}$
7.128(20)	7.000(20)	56(28)%	15(5)%		0.0+x		1.5462(63)	$<230^{+140}_{-80}$

* All values from [1972Es03], except where noted.

** Weighted average of 62(3) s [1973Mo07] and 66(3) s [1972Es03].

*** Interpolated between 1.5539(57) fm (220 Ra) and 1.5385(27) fm (224 Rn).

Table 12

direct α emission from ²²⁶ Pa	*, $T_{1/2} =$	1.8(2) m**,	$BR_{\alpha} = 74\%$
---	----------------	-------------	----------------------

$E_{\alpha}(c.m.)$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(\text{rel})$	$I_{\alpha}(abs)$	$J_f^{\pi**}$	$E_{daughter}(^{222}\mathrm{Ac})$	coincident γ-rays**	R ₀ (fm)***	HF
6.844(10) 6.941(10) 6.982(10)	6.723(10) 6.818(10) 6.858(10)	2% 88% 100%	1% 46% 52%	(2-)	0.137 0.041 0.0		1.5311(58) 1.5311(58) 1.5311(58)	80 4.0 5.1

* All values from [1964Mc21], except where noted. Uncertainties for branching ratios was not provided.

** [1951Me10].

*** Interpolated between 1.5385(27) fm (224 Th) and 1.5237(51) fm (228 U).

Table 13

direct α emission from ²³⁰Np*, T_{1/2} = 4.6(3) m, BR_{α} = \approx 3%.

$E_{\alpha}(\text{c.m.})$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(abs)$	${\sf J}_f^{\pi}$	$E_{daughter}(^{226}\mathrm{Pa})$	coincident γ-rays	R ₀ (fm)**	HF	
6.778(20)	6.660(20)	100%		0.0?		1.506(50)	≈ 3	
* All valu ** Interpo Table 14 direct α emiss	tes from [1968Ha1 blated between 1.5; ion from ²³⁴ Am*,	4], except where 237(51) fm (228 U T _{1/2} = 2.32(8) m	noted.) and 1.487(, $BR_{\alpha} = 0.03$	50) fm (²³² Pu). 89(12)%.				
$E_{\alpha}(c.m.)$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(abs)$	${ m J}_f^\pi$	$E_{daughter}(^{226}\mathrm{Pa})$	coincident γ-rays	R ₀ (fm)**	HF	
6.57	6.46	100%		0.0?		1.503(50)	11^{+26}_{-9}	

* All values from [1990Ha02], except where noted. ** Interpolated between 1.487(50) fm (232 Pu) and 1.5181(67) fm (236 Cm).

Table 15 direct *q* emission from 242 Es T₄ = 16.9(8) s* *BR* = -49(3)%**

$E_{\alpha}(c.m.)$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(\text{rel})$	$I_{\alpha}(abs)$	J_f^π	$E_{daughter}(^{238}\mathrm{Bk})^{***}$	coincident γ-rays***	R ₀ (fm)	HF
8.053(20) 8.160(20)	7.920(20)*** 8.025(20)***	100%*** ≈5%***	≈47% ≈2%		0.107 0.0	0.0866, 0.1070, 0.1224		
* [2024] ** Weig *** [201	KhXX]. hted average of 41(3) [,] 0An08].	% [2024KhXX] ;	and 57(3)% [20)10An08].				
Table 16 direct α emis	sion from ²⁴⁶ Md*, T	$_{/2} = 0.9(2)$ s, <i>BK</i>	$R_{\alpha} = 100\%.$					
$E_{\alpha}(c.m.)$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(\text{rel})$	$I_{\alpha}(abs)$	${\sf J}_f^{\pi}$	E _{daughter} (²⁴² Es)	coincident γ-rays	R ₀ (fm)	HF
8.671(30) 8.886(14)	8.530(30)** 8742(14)***	≈33% 100%	≈25% ≈75%		0.215(33) 0.0?			
* All val ** [1996 *** Wei	ues from [2010An08] 5Ni09]. ghted average of 8.74	, except where n 4(20) MeV [2010	otee. This isom 0An08] and 8.7	ner may not 740(20) Me	be the ground state. V [1996Ni09].			
Fable 17 direct α emis	sion from ^{246m} Md*, 7	$\Gamma_{1/2} = 4.4(8) \text{ s, } B$	$R_{\alpha} = \langle 23\%.$					
	$E_{\alpha}(lab)$	$I_{\alpha}(abs)$	J_f^{π}	Edaught	er (²⁴² Es) coincid	lent γ -rays R_0 (fm)	HF	
$E_{\alpha}(c.m.)$	Bu(me)		1	÷				

* All values from [2010An08], except where noted.

References used in the Tables

- [1] 1949Me54 W. W. Meinke, A. Ghiorso, G. T. Seaborg, Phys. Rev. 75, 314 (1949). https://doi.org/10.1103/PhysRev.75.314
- [2] 1951Me10 W. W. Meinke, A. Ghiorso, G. T. Seaborg, Phys. Rev. 81, 782 (1951). https://doi.org/10.1103/PhysRev.81.782
- [3] 1952Me13 W. W. Meinke, A. Ghiorso, G. T. Seaborg, Phys. Rev. 85, 429 (1952). https://doi.org/10.1103/PhysRev.85.429
- [4] 1953Hu42 D. J. Hughes, H. Palevsky, Phys. Rev. 92, 1206 (1953). https://doi.org/10.1103/PhysRev.92.1206
- [5] 1954Le60 H. B. Levy, I. Perlman, Phys. Rev. 94, 152 (1954). https://doi.org/10.1103/PhysRev.94.152
- [6] 1956Ro18 J. Robert, J. Tobailem, J. Phys. Radium 17, 440 (1956). https://doi.org/10.1051/jphysrad:01956001705044000
- [7] 1958Go89 S. V. Golenetskii, L. I. Rusinov, Y. I. Filimonov, Zhur. Eksptl. i Teoret. Fiz. 35, 1313 (1958); Soviet Phys. JETP 8, 917 (1959).
- [8] 1958To25 P. A. Tove, Arkiv Fysik 13, 549 (1958).
- [9] 1959G077 S. V. Golenetskii, L. I. Rusinov, Y. I. Filimonov, Zhur. Eksptl. i Teoret. Fiz. 37, 560 (1959).; Soviet Phys. JETP 10, 395 (1960).
- [10] 1959Wa05 R. J. Walen, G. Bastin-Scoffier, J. Phys. Radium 20, 589 (1959). https://doi.org/10.1051/jphysrad:01959002006058900
- [11] 1960Wa14 R. J. Walen, G. Bastin-Scoffier, Nuclear Phys. 16, 246 (1960). https://doi.org/10.1016/S0029-5582(60).81035-8
- [12] 1960Wi14 R. G. Wilson, M. L. Pool, Phys. Rev. 120, 980 (1960). https://doi.org/10. 1103/PhysRev.120.980
- [13] 1961Ru02 L. I. Rusinov, Y. N. Andreev, S. V. Golenetskii, M. I. Kislov, Y. I. Filimonov, Zhur. Eksptl. i Teoret. Fiz. 40, 1007 (1961).; Soviet Phys. JETP 13, 707 (1961).
- [14] 1962Ka27 P. Kauranen, Ann. Acad. Sci. Fennicae, Ser. A VI, No. 96 (1962).
- [15] 1962Ko12 G. A. Korolev, G. E. Kocharov, Izv. Akad. Nauk SSSR, Ser. Fiz. 26, 235 (1962).; Columbia Tech. Transl. 26, 233 (1963).
- [16] **1964Mc21** J. D. McCoy, Soc. Sci. Fennica, Commentationes Phy. Math. **30**, No. 4 (1964).

- [17] 1967Sp07 E. H. Spejewski, Nucl. Phys. A100, 236 (1967). https://doi.org/10.1016/0375-9474(67).90367-3
- [18] 1968Ha14 R. L. Hahn, M. F. Roche, K. S. Toth, Nucl. Phys. A113, 206 (1968). https://doi.org/10.1016/0375-9474(68).90894-4
- [19] 1968LaZZ P. G. Lawson, Thesis, Oxford Univ. (1968).
- [20] 1969La01 R. C. Lange, G. R. Hagee, J. Inorg. Nucl. Chem. 31, 2297 (1969). https://doi.org/10.1016/0022-1902(69).80558-0
- [21] 1969La18 R. C. Lange, G. R. Hagee, A. R. Campbell, Nucl. Phys. A133, 273 (1969). https://doi.org/10.1016/0375-9474(69).90631-9
- [22] 1969LaZY R. C. Lange, A. R. Campbell, W. W. Strohm, MLM-1531, p. 13 (1969).
- [23] 1970GhZY A. Ghiorso, Proc. Robert A. Welch Foundation Conf. On Chem. Research, W. O. Milligan, Ed., Houston, Texas (1969)., Vol. XIII, p. 107 (1970).
- [24] 1972Es03 K. Eskola, Phys. Rev. C5, 942 (1972). https://doi.org/10.1103/PhysRevC.5.942
- [25] 1972SoXX L. P. Somerville, A. Ghiorso, M. J. Nurmia, G. T. Seaborg, Lawrence Berkeley Laboratory Nuclear Science Division Annual Report, 1976—1977, Report No. LBL-6575, (1977).
- [26] **1973BoXL** J. D. Bowman, E. K. Hyde, R. E. Eppley, LBL-1666, p. 4 (1973).
- [27] 1973BoXW J. D. Bowman, E. K. Hyde, R. E. Eppley, LBL-1666, p. 4 (1973).
- [28] 1973Mo07 D. Molzahn, R. Brandt, Phys. Rev. C7, 2596 (1973). https://doi.org/10.1103/PhysRevC.7.2596
- [29] 1974ArYU J. K. Archer, J. B. Natowitz, Texas A and M Univ. Cyclotron Inst. Prog. Rept., p. 30 (1974).
- [30] 1975Sp07 R. Sprickmann, K. T. Knopfle, D. Ingham, M. Rogge, C. Mayer-Boricke, H. V. Geramb, Z. Phys. A274, 339 (1975). https://doi.org/10.1007/BF01434044
- [31] 1975TuZW D. Tuggle, F. Asaro, I. Perlman, LBL-4000, p. 5 (1975).
- [32] 1976TuZY D. G. Tuggle, Thesis, Univ. California (1976).; LBL-4460 (1976).
- [33] **1982Bo04** J D Bowman, R E Eppley, E K Hyde, Phys Rev C**25**, 941 (1982). https://doi.org/10.1103/PhysRevC.25.941
- [34] 1982Ew01 G. T. Ewan, E. Hagberg, B. Jonson, S. Mattsson, P. Tidemand-Petersson, Nucl. Phys. A380, 423 (1982). https://doi.org/10.1016/0375-9474(82).90568-1
- [35] 1985HiZU R. Hingmann, W. Kuehn, V. Metag, R. Novotny, A. Ruckelshausen, H. Stroeher, GSI 1985-1, p. 88 (1985).
- [36] 1988Hu08 M. Huyse, P. Dendooven, K. Deneffe, Nucl. Instrum. Methods Phys. Res. B31, 483 (1988). https://doi.org/10.1016/0168-583X(88)90350-3
- [37] 1990Ha02 H. L. Hall, K. E. Gregorich, R. A. Henderson, C. M. Gannett, R. B. Chadwick, J. D. Leyba, K. R. Czerwinski, B. Kadkhodayan, S. A. Kreek, D. M. Lee, M. J. Nurmia, D. C. Hoffman, C. E. A. Palmer, P. A. Baisden, Phys. Rev. C41, 618 (1990). https://doi.org/10.1103/PhysRevC.41.618
- [38] 1991Ga28 H. W. Gaggeler, D. T. Jost, U. Baltensperger, A. Weber, A. Kovacs, D. Vermeulen, A. Turler, Nucl. Instrum. Methods Phys. Res. A309, 201 (1991). https://doi.org/10.1016/0168-9002(91).90103-W
- [39] 1994HoZW S. Hofmann, V. Ninov, F. P. Hessberger, H. Folger, G. Munzenberg, H. J. Schott, P. Armbruster, A. N. Andreyev, A. G. Popeko, A. V. Yeremin, M. E. Leino, R. Janik, S. Saro, M. Veselsky, GSI 94-1, p. 64 (1994).
- [40] 1994Kr03 S. A. Kreek, H. L. Hall, K. E. Gregorich, R. A. Henderson, J. D. Leyba, K. R. Czerwinski, B. Kadkhodayan, M. P. Neu, C. D. Kacher, T. M. Hamilton, M. R. Lane, E. R. Sylwester, A. Turler, D. M. Lee, M. J. Nurmia, D. C. Hoffman, Phys. Rev. C49, 1859 (1994). https://doi.org/10.1103/PhysRevC.49.1859
- [41] 1994La25 Yu. A. Lazarev, Yu. Ts. Oganessian, Z. Szeglowski, V. K. Utyonkov, Yu. P. Kharitonov, O. Constantinescu, D. Lien, I. V. Shirokovsky, S. P. Tretyakova, Nucl. Phys. A580, 113 (1994). https://doi.org/10.1016/0375-9474(94).90818-4
- [42] 1996Ni09 V. Ninov, F. P. Hessberger, S. Hofmann, H. Folger, G. Munzenberg, P. Armbruster, A. V. Yeremin, A. G. Popeko, M. Leino, S. Saro, Z. Phys. A356, 11 (1996). https://doi.org/10.1007/s002180050141
- [43] 1997ShZZ D. A. Shaughnessy, K. E. Gregorich, M. B. Hendricks, M. R. Lane, D. M. Lee, D. A. Strellis, E. R. Sylwester, P. A. Wilk, D. C. Hoffman, LBNL-39764, p. 74 (1997).
- [44] 1999Sh03 R. K. Sheline, P. Alexa, C. F. Liang, P. Paris, Phys. Rev. C59, 101 (1999). https://doi.org/10.1103/PhysRevC.59.101
- [45] 2000Sh10 D. A. Shaughnessy, J. L. Adams, K. E. Gregorich, M. R. Lane, C. A. Laue, D. M. Lee, C. A. Mc-Grath, J. B. Patin, D. A. Strellis, E. R. Sylwester, P. A. Wilk, D. C. Hoffman, Phys. Rev. C61, 044609 (2000). https://doi.org/10.1103/PhysRevC.61.044609

- [46] 2003HeZY F. P. Hessberger, Proc. Symposium on Nuclear Clusters, Rauischholzhausen, Germany, August 2002, R. Jolos and W. Scheid, Eds., p. 439 (2003).
- [47] 2008Ko21 F. G. Kondev Nucl. Data Sheets 109, 1527 (2008). https://doi.org/10.1016/j.nds.2021.06.001
- [48] 2009Vi09 A. M. Vinodkumar, W. Loveland, P. H. Sprunger, L. Prisbrey, M. Trinczek, M. Dombsky, P. Machule, J. J. Kolata, A. Roberts, Phys. Rev. C 80, 054609 (2009). https://doi.org/10.1103/PhysRevC.80.054609
- [49] 2010An08 S. Antalic, F. P. Hessberger, S. Hofmann, D. Ackermann, S. Heinz, B. Kindler, I. Kojouharov, P. Kuusiniemi, M. Leino, B. Lommel, R. Mann, S. Saro, Eur. Phys. J. A 43, 35 (2010). https://doi.org/10.1140/epja/i2009-10896-0
- [50] 2014Ba41 M. S. Basunia, Nucl. Data Sheets 121, 561 (2014). https://doi.org/10.1016/j.nds.2014.09.004
- [51] 2014Bu06 I. Budincevic, J. Billowes, M. L. Bissell, T. E. Cocolios, R. P. de Groote, S. De Schepper, V. N. Fedosseev, K. T. Flanagan, S. Franchoo, R. F. Garcia Ruiz, H. Heylen, K. M. Lynch, B. A. Marsh, G. Neyens, T. J. Procter, R. E. Rossel, S. Rothe, I. Strashnov, H. H. Stroke, K. D. A. Wendt, Phys. Rev. C 90, 014317 (2014). https://doi.org/10.1103/PhysRevC.90.014317
- [52] 2021Wa16 M. Wang, W. J. Huang, F. G. Kondev, G. Audi, S. Naimi, Chin. Phys. C 45, 030003 (2021). doi: 10.1088/1674-1137/abddaf
- [53] **2024KhXX** J. Khuyagbaatar, R. A. Cantemir, Ch. E. Düllmann, E. Jäger, B. Kindler, J. Krier, N. Kurz, B. Lommel, B. Schausten, A. Yakushev, Phys. Rev. C **109**, 034311 (2024).