

Fig. 1: Known experimental values for heavy particle emission of the even-Z T_z = +1/2 nuclei.

Table 1

Observed and predicted β -delayed particle emission from the odd-Z, $T_z = +21$ nuclei. J^{π} values for ²⁰⁴Tl and ²⁰⁸Bi are taken from ENSDF. Unless otherwise stated, all Q-values are taken from [2021Wa16] or deduced from values therein.

Nuclide	Ex.	J^{π}	$T_{1/2}$	$Q_{\mathcal{E}}$	$Q_{\varepsilon p}$	$Q_{\varepsilon \alpha}$	$\mathrm{BR}_{\varepsilon_F}$	Experimental
201			1					
²⁰⁴ Tl*		2^{-}	3.794(2) y**	0.344(1)	-8.492(3)	-0.172(20)		[1970Ha32, 1969Bo24, 1968Ho07, 1965An07]
²⁰⁸ Bi		5^{+}	$3.68(4) \times 10^5$ y	2.878(2)	-5.125(6)	3.395(2)		[1964Ha07]
²¹² At		(1^{-})	314.5(21) ms***	1.741(2)	-4.058(6)	10.695(3)		[1976FrZO, 1970Re02]
^{212m}At	0.229(3)	(9 ⁻)	112.6(9) ms@	1.970(4)	-3.829(7)	10.924(4)		[1976FrZO, 1970Re02]
²¹⁶ Fr		(1^{-})	0.7(2) μs	2.718(7)	-3.061(8)	10.916(4)		[1970Bo13]
^{216m1} Fr	0.1333(1)	(3 ⁻)	71(5) ns	2.851(7)	-2.928(8)	11.049(4)		[1971EpZY]
^{216m2} Fr	0.219(5)	(9-)	850(30) ns	2.937(9)	-2.842(9)	11.135(6)		[2007Ku30]
²²⁰ Ac			26.4(2) ms	3.472(10)	-2.162(9)	11.066(8)		[1990An19]
²²⁴ Pa		(5 ⁻)	844(19) ms ^{@@}	3.867(12)	-1.252(10)	11.165(11)		[1996Li05, 1997Wi15]
²²⁸ Np			61.4(15) s	4.61(10)#	-0.29(10)#	11.41(10)#	0.020(9)%	[1994Kr13, 1978SoZZ, 1976SoZT]
²³² Am			79(2) s	5.06(30)#	0.51(30)#	11.78(30)#	0.069(10)%	[1990Ha28, 1989HaZO, 1978Ha05]
²³⁶ Bk			22^{+13}_{-6} s	5.69(36)#	1.63(36)#	12.76(36)#	4(2)%	[2017Ko02]
²⁴⁰ Es			5(2) s	6.24(37)#	2.69(42)#	13.95(37)#	4.8(18)%	[2017Ko02]
²⁴⁴ Md			$\approx 6 \text{ s}$	6.63(43)#	3.56(43)#	15.18(38)#		[2020Po07]
^{244m} Md	х		$0.4^{+0.4}_{-0.1}$ s	6.63(43)#+x	3.56(43)#+x	15.18(38)#+x		[2020Po07]

* Decays by 97.08(7)% β^- and 2.92(7)% β^+ [1990Sc08]. ** Weighted average of 3.793(5) y [1970Ha32], 3.774(5) y [1969Bo24], 3.825(3) y [1968Ho07] and 3.754(4) y [1965An07].

*** Weighted average of 314(3) ms [1976FrZO] and 315(3) ms [1970Re02].

[@] Weighted average of 115(2) ms [1976FrZO] and 112(1) ms [1970Re02].

^{@@} Weighted average of 790(60) ms [1996Li05] and 850(20) ms [1997Wi15].

Table 2

Particle separation, Q-values, and measured values for direct particle emission of the odd-Z, $T_z = +21$ nuclei. Unless otherwise stated, all S and Q-values are taken from [2021Wa16] or deduced from values therein.

Nuclide	S_p	S_{2p}	Qα	BRα	Experimental
²⁰⁴ Tl	6 366(1)	14 571(23)	0 469(27)		
²⁰⁸ Bi	3.707(2)	11,195(2)	3.051(2)		
²¹² At	3.485(2)	8.414(2)	7.817(1)	100%	[1976FrZO, 1970Re02, 2009Vi09, 2007Ku30, 1999Ho28,
		0			1996Li37, 1975FrZR, 1968Va18, 1963Jo09, 1961Gr43]
^{212m}At	3.256(4)	8.185(4)	8.046(3)	$\approx 100\%$	[1976FrZO, 1970Re02, 2009Vi09, 2007Ku30, 1999Ho28,
					1996Li37, 1975FrZR, 1968Va18, 1963Jo09, 1961Gr43]
²¹⁶ Fr	3.149(7)	8.228(5)	9.174(3)	100%	[2007Ku30, 1970Bo13, 2003Ni10, 1996Li37, 1970VaZZ]
216m1 Fr	3.016(7)	8.095(5)	9.307(3)	>50%	[1996Li37, 1971EpZY]
^{216m2} Fr	2.930(9)	8.0098(7)	9.393(6)	100%	[2007Ku30]
²²⁰ Ac	2.939(9)	7.894(7)	8.348(4)	pprox 100%	[1997Sh09, 2007Ku30, 2003Ni10, 1971EpZY, 1971HyZX,
					1970Bo13]
²²⁴ Pa	2.812(11)	7.337(9)	7.694(4)	$\approx 100\%$	[1996Li05, 2003Ni10, 1997Sh09, 1997Wi15, 1993AnZS,
					1990An19, 1990AnZQ, 1989AnZL, 1987FaZT, 1970Bo13]
²²⁸ Np	2.51(10)#	6.79(10)#	7.54(10)#	40(11)%	[2003Ni10, 2004NiZZ, 2003NiZV, 1994Kr13]
²³² Am	2.18(30)#	6.40(31)#	7.17(32)#		
²³⁶ Bk	1.76(38)#	5.50(39)#	7.70(20)#	$\approx 17\%$	[2020Po07 , 2017Ko02]
²⁴⁰ Es	1.27(39)#	4.57(45)#	8.259(63)	70(10)%	[2017Ko02, 2020Kh08, 2020Po07]
²⁴⁴ Md	1.01(40)#	3.78(45)#	8.947(79)	$\approx 100\%$	[2020Po07, 2020Kh08]
^{244m} Md	1.01(40)#-x	3.78(45)#-x	8.947(79)+x	$\approx 100\%$	[2020Po07]

Table 3

direct α emission from ²¹²At*, $J^{\pi} = 1^{-}$, $T_{1/2} = 314.5(21)$ ms**, $BR_{\alpha} = 100\%$.

$E_{\alpha}(c.m.)$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(\text{rel})$	$I_{\alpha}(abs)$	J_f^π	$E_{daughter}(^{208}\mathrm{Bi})^{@}$	coincident γ-rays [@]	$R_0(fm)^{@@}$	HF
6.7488(8)	6.6215(8)	0.162(7)%	0.135(6)%	3+	1.0691(1)	0.0630, 0.4357, 0.4674, 0.0630, 0.4357, 0.4674, 0.5384, 0.5701, 0.6015, 1.0062, 1.0693	1.4714(45)	$28.9^{+3.3}_{-3.0}$
6.796(1)	6.668(1)***	0.06(2)%	0.05(2)%	4+	1.020(1)		1.4714(45)	120^{+80}_{-40}
6.859(5)	6.730(5)	0.07(2)%	0.06(2)%	4+	0.9590(1)	0.0630, 0.3257, 0.5701, 0.6015, 0.8960, 0.9590	1.4714(45)	170_{-50}^{+90}
6.884(2)	6.754(2)***	0.14(4)%	0.12(3)%	3+	0.9363(1)	0.063, 0.873, 0.936	1.4714(45)	100^{+40}_{-20}

Table 3 direct α emission from ²¹²At*, $J^{\pi} = 1^{-}$, $T_{1/2} = 314.5(21) \text{ ms**}$, $BR_{\alpha} = 100\%$.

6.8878(12)	6.7578(12)	0.08(2)%	0.07(2)%	2^{+}	0.9249(1)	0.063, 0.2918, 0.5701,	1.4714(45)	190^{+80}_{-50}
						0.8618		
6.929(2)	6.798(2)	0.058(6)%	0.048(5)%	5^{+}	0.8864(1)	0.063, 0.8233, 0.8864	1.4714(45)	390^{+60}_{-50}
7.1844(4)	7.0488(4)	0.48(2)%	0.40(2)%	3+	0.6331(1)	0.063, 0.5701	1.4714(45)	360(40)
7.2156(3)	7.0795(3)	0.71(1)%	0.59(1)%	4+	0.6015(1)	0.063, 0.5384, 0.6015	1.4714(45)	316^{+33}_{-30}
7.3057(5)	7.1679(5)	0.180(9)%	0.150(7)%	6^{+}	0.5103(1)	0.5103	1.4714(45)	210(24)
7.7539(2)	7.6076(2)	18.5(7)%	15.4(6)%	4^{+}	0.0630(1)	0.063	1.4714(45)	650(70)
7.8165(2)	7.6690(2)	100.0(7)%	83.2(6)%	5^{+}	0.0		1.4714(45)	186(19)

* All values from [1976FrZO], except where noted.

** Weighted average of 314(3) ms [1976FrZO] and 315(3) ms [1970Re02].

*** [1970Re02].

[@] [2007Ma45]. Only those transition > 10% are listed.

[@] Interpolated between 1.40879(38) fm (210 Po) and 1.5340(25) fm (214 Rn).

Table 4

direct α emission from ²¹²At*, Ex. = 229(3) keV, $J^{\pi} = 9^-$, $T_{1/2} = 112.6(9)$ ms**, $BR_{\alpha} = \approx 100\%$.

$E_{\alpha}(\text{c.m.})$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(\text{rel})$	$I_{\alpha}(abs)$	$\mathbf{J}_f^{\boldsymbol{\pi}}$	$E_{daughter}(^{208}\mathrm{Bi})^{***}$	coincident γ-rays***	$R_0 (fm)^@$	HF
6.9436(8)	6.8126(8)	0.53(6)%	0.36(4)%	6+	1.0951(1)	0.063, 0.2078, 0.8233, 0.8864	1.4714(45)	21^{+4}_{-3}
7.0807(15)	6.9471(15)	0.077(10)%	0.052(7)%	4+	0.9590(1)	0.0630, 0.3257, 0.5701, 0.6015, 0.8960, 0.9590	1.4714(45)	440^{+90}_{-70}
7.1570(2)	7.022(2)	0.19(3)%	0.13(2)%	5+	0.8864(1)	0.063, 0.8233, 0.8864	1.4714(45)	310^{+70}_{-50}
7.3902(9)	7.2508(9)	0.56(12)%	0.38(8)%	7^{+}	0.6506(1)	0.1401, 0.5103, 0.6506	1.4714(45)	670^{+200}_{-140}
7.1844(4)	7.0488(4)	0.48(2)%	0.40(2)%	3+	0.6331(1)	0.063, 0.5701	1.4714(45)	720(80)
7.4116(7)	7.2718(7)	0.53(12)%	0.36(8)%	5^{+}	0.6283(1)	0.063, 0.5262	1.4714(45)	830^{+260}_{-180}
7.4388(15)	7.2984(15)	0.10(1)%	0.07(1)%	4+	0.6015(1)	0.063, 0.5384, 0.6015	1.4714(45)	$5.2^{+1.1}_{-0.9} \times 10^3$
7.5298(6)	7.3877(6)	0.52(3)%	0.35(2)%	6^{+}	0.5103(1)	0.5103	1.4714(45)	$2.1(2) \times 10^3$
7.9769(2)	7.8264(2)	100.0(9)%	67.6(6)%	4^{+}	0.0630(1)	0.063	1.4714(45)	242^{+24}_{-22}
8.0394(2)	7.8877(2)	45.4(8)%	30.7(5)%	5^{+}	0.0		1.4714(45)	810(80)

* All values from [1976FrZO], except where noted.

** Weighted average of 115(2) ms [1976FrZO] and 122(1) ms [1970Re02].

*** [2007Ma45]. Only those transition >10% are listed. @ Interpolated between 1.40879(38) fm (^{210}Po) and 1.5340(25) fm (^{214}Rn).

Table 5

direct α emission from ²¹⁶Fr*, $J^{\pi} = (1^{-})$, $T_{1/2} = 0.7(2) \ \mu s^{**}$, $BR_{\alpha} = 100\%$.

$E_{\alpha}(\text{c.m.})$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(\text{rel})$	$I_{\alpha}(abs)$	J_f^{π}	$E_{daughter}(^{212}\text{At})***$	coincident γ-rays***	R ₀ (fm) [@]	HF
8.977(15) 9.028(15)	8.811(15) 8.861(15)	$\approx 0.2\%$ 0.5(2)%	$\approx 0.2\%$ 0.5(2)%	(3^{-}) (2^{-})	0.2053 0.1603	0.045, 0.1603 0.1603	1.5498(28) 1.5498(28)	≈ 250 130^{+150}_{-60}
9.174(5)	9.004(5)	100%	99.3(10)%	(1-)	0.0		1.5498(28)	$1.6(5)^{-00}$

* All values from [1996Li37], except where noted.

** [1970Bo13].

*** [2020Au03].

 $^{@}$ Interpolated between 1.5340(25) fm (214 Rn) and 1.5655(13) fm (218 Ra.

Table 6

Table 0					
direct α emission from	216m1 Fr*, Ex. =	$133.3(1)$ keV, J^{π}	$T = (3^{-}), T_{1/2} =$	= 71(5) ns**,	$BR_{\alpha} = \approx 50\%^{***}.$

$E_{\alpha}(c.m.)$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(abs)$	J_f^π	$E_{daughter}(^{212}\mathrm{At})^{@}$	coincident γ-rays [@]	$R_0 (fm)^{@@}$	HF
9.102(8)	8.933(8)	$\approx 50\%^{***}$	(3 ⁻)	0.2053	0.045, 0.1603	1.5498(28)	≈0.21 ^{@@@}

* All values from [1996Li37], except where noted.

** [1971EpZY].

*** [2007Wu02].

@ [2020Au03].

 $^{@\,@}$ Interpolated between 1.5340(25) fm ($^{214}Rn)$ and 1.5655(13) fm ($^{218}Ra.$ $^{@\,@\,@}$ The reason for the unphysically low HF value is unknown.

Table 7

direct α emis	sion from ^{216m1} Fr	r*, Ex. = 219(8)	keV, $J^{\pi} = (9^{-1})^{\pi}$), $T_{1/2} = 850(30)$ ns, BR_{α}	= 100%.		
$E_{\alpha}(\text{c.m.})$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(abs)$	${ m J}_f^{\pi}$	$E_{daughter}(^{212}\mathrm{At})$	coincident γ -rays	R ₀ (fm)**	HF
9.169(5)	9.000(5)	100%	(9 ⁻)	0.2239		1.5498(28)	1.85(13)

* All values from [2007Ku30], except where noted.

** Interpolated between 1.5340(25) fm (214 Rn) and 1.5655(13) fm (218 Ra.

Table 8

direct α emission from ²²⁰Ac*, T_{1/2} = 26.4(2) ms**, *BR*_{α} = \approx 100%.

$E_{\alpha}(c.m.)$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(\text{rel})$	$I_{\alpha}(abs)$	${ m J}_f^{m \pi}$	$E_{daughter}(^{216}\mathrm{Fr})$	coincident γ -rays	R ₀ (fm)***	HF
7.763	7.622	15%	4%	(3)	0.5814	0.0374, 0.0579, 0.0786, 0.1210, 0.1333, 0.1210, 0.1333, 0.1210, 0.1333, 0.1600	1.5613(21)	61
						0.1722, 0.3270, 0.3902, 0.4484		
7.776	7.635	15%	4%	(4,5 ⁻)	0.5867	0.0349, 0.0579, 0.1333, 0.3427,	1.5613(21)	50
						0.3780		
7.794	7.652	35%	9%	(3)-	0.5507	0.0374, 0.0536, 0.0643, 0.0786,	1.5613(21)	34
						0.349, 0.579, 0.1333, 0.2067,		
						0.2544, 0.2964, 0.3014		
7.806	7.664	15%	4%	(3,4,5 ⁻)	0.5394	0.0349, 0.0579, 0.0928, 0.1333,	1.5613(21)	83
						0.3129		
7.812	7.670	31%	8%	(3,4,5)	0.5320	0.0349, 0.0374, 0.0579, 0.0786,	1.5613(21)	44
						0.0928, 0.1233, 0.1333, 0.1373,		
						0.1600, 0.1878, 0.1828, 0.2437,		
						0.2678		
7.852	7.709	42%	11%	$(3,4,5^{-})$	0.4934	0.0349, 0.0374, 0.0579, 0.0643,	1.5613(21)	42
						0.0786, 0.1333, 0.1490, 0.1531,		
						0.2036, 0.2437, 0.2678		
7.936	7.792	38%	10%	$(2,3,4,5^{-})$	0.4093	0.0374, 0.0786, 0.1333, 0.1600	1.5613(21)	84
7.995	7.850	19%	5%	(2,3,4)	0.3492	0.0786, 0.1333, 0.1373		
8.000	7.855	100%	26%	$(4,5^{-})$	0.3442	0.0374, 0.0579, 0.0786, 0.0928,	1.5613(21)	51
						0.0948, 0.1182, 0.1333, 0.1531		
8.091	7.944	$\approx 8\%$	$\approx 2\%$	(2)	0.2544	0.1210, 0.1333	1.5613(21)	1.22×10^{3}
8.119	7.971	15%	4%	$(4)^{-}$	0.2261	0.0349, 0.0579, 0.1333	1.5613(21)	740
8.154	8.006	12%	3%	(5)-	0.1912	0.0579, 0.1333	1.5613(21)	$1.25 imes 10^3$
8.204	8.055	15%	4%	$(0)^{-}$	0.1416	0.1416	1.5613(21)	1.31×10^{3}
8.212	8.063	8%	2%	(3-)	0.1333	0.1333	1.5613(21)	$2.8 imes 10^3$
8.346	8.194	15%	4%	(1^{-})	0.0		1.5613(21)	3.3×10^{3}

* All values from [1997Sh09], except where noted. No uncertainties were reported in [1997Sh09].

** [1990An19].

*** Interpolated between 1.5655(13) fm (218 Ra and 1.5571(17) fm (222 Th).

Table 9

direct α emission from ²²⁴Pa*, T_{1/2} = 844(19) ms**, $BR_{\alpha} = \approx 100\%$.

$E_{\alpha}(\text{c.m.})$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(\text{rel})$	$I_{\alpha}(abs)$	J_f^π	$E_{daughter}(^{220}\mathrm{Ac})$	coincident γ-rays	R ₀ (fm)***	HF
7.281	7.151	< 0.1%	<0.05%		0.4120	0 0138 0 3980 0 4120	1,5483(38)	>530
7.336	7.205	0.3%	0.2%		0.3561	0.0280, 0.0407, 0.0678, 0.2476, 0.2874, 0.3158	1.5483(38)	210
7.357	7.226	0.1%	0.1%		0.3354	0.0138, 0.0407, 0.1510, 0.1705, 0. 1820, 0.1842, 0.2947, 0.3350	1.5483(38)	500
7.381	7.249	0.1%	0.1%		0.3120	0.0138, 0.2982	1.5483(38)	600
7.430	7.297	2.9%	2%	(4+)	0.2632	0.0280, 0.0407, 0.0678, 0.1095, 0.1131, 0.1547, 0.1945	1.5483(38)	45
7.459	7.326	2.1%	1.5%	(5^{+})	0.2339	0.0280, 0.0407, 0.1651	1.5483(38)	75
7.509	7.375	3.6%	2.5%	(3 ⁻)	0.1842	0.0138, 0.1705, 0.1842	1.5483(38)	67
7.540	7.405	17.1%	12%	(2^{-})	0.1530	0.0138, 0.1392, 0.1530	1.5483(38)	18
7.543	7.408	5.7%	4%	(4-)	0.1502	0.0407, 0.1095	1.5483(38)	55

Table 9 direct α emission from ²²⁴Pa*, T_{1/2} = 844(19) ms**, BR_{α} = \approx 100%.

7.579	7.444	3.6%	2.5%	(1^{-})	0.1133	0.1133	1.5483(38)	116
7.584	7.449	5.7%	4%	(3 ⁻)	0.1085	0.0407, 0.0678,	1.5483(38)	76
7.624	7.488	100%	70%	(5-)	0.0687	0.0280, 0.0407	1.5483(38)	5.9

* All values from [1996Li05], except where noted. No uncertainties were reported in [1996Li05].

** Weighted average of 790(60) ms [1996Li05] and 850(20) ms [1997Wi15]. *** Interpolated between 1.5571(17) fm (²²²Th) and 1.5394(34) fm (²²⁶U).

Table 10

lirect α emission from	om ²²⁸ Np*, T	$_{1/2} = 61.4(14) \text{ s}^*$	$BR_{\alpha} = 40(11)\%^*$
-------------------------------	--------------------------	---------------------------------	----------------------------

$E_{\alpha}(c.m.)$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(abs)$	J_f^{π}	$E_{daughter}(^{224}\mathrm{Pa})$	coincident γ-rays	R ₀ (fm)***	HF
7.250	7.123**	40(11)%				1.5385(66)	$6.8^{+3.0}_{-1.8}$

* [1994Kr13].

** Average of 5 events identified by α - α chains [2003Ni10, 2004NiZZ, 2003NiZV] (See Fig. 1f in [2003Ni10]). This is likely several unresolved peaks. *** Interpolated between 1.5394(34) fm (²²⁶U) and 1.5375(56) (²³⁰Pu).

Table 11

direct α emission from ²³⁶ Bk, T _{1/2}	$_{2} = 22^{+15}_{6} \text{ s}^{*}, BR_{\alpha} = \approx 17 \%^{*}$
---	--

$E_{\alpha}(\text{c.m.})$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(abs)$	${ m J}_f^{\pi}$	$E_{daughter}(^{232}\mathrm{Am})$	coincident γ-rays	R ₀ (fm)***	HF	
7.447(14)	7.321(14)**	$\approx 17\%^*$				1.515(26)	pprox 0.5	
* [2017K ** [2020] *** Inter	002]. Po07]. polated between 1.5	375(56) (²³⁰ Pu) a	nd 1.491(25)	fm (²³⁴ Cm).				
Table 12 direct α emiss	sion from 240 Es, T $_{1/2}$	$_2 = 5(2) \text{ s}, BR_{\alpha} =$	70(10) %.					
$E_{\alpha}(\text{c.m.})$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(\text{rel})$	$I_{\alpha}(abs)$	$J_f^{\pi} = E_{daught}$	er (²³⁶ Bk) coincider	nt γ-rays	R_0 (fm)	HF
8.227(30) 8.329(30)	8.090(30) 8.190(30)	$\approx 25\%$ 100%	≈14% ≈56%					
* All valu	ues from [2017Ko02].						
Table 13 direct α emiss	sion from 244 Md, T $_1$	$_{/2} = \approx 6 \text{ s}, BR_{\alpha} =$	$\approx 100\%.$					
$E_{\alpha}(\text{c.m.})$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(abs)$	J_f^{π}	<i>E</i> _{daughter} (²⁴⁰ Es)	coincident γ -rays	R ₀ (fm)	HF	
8.446(19)	8.308(19)	$\approx 100\%$						
* All valu	ues from [2020Po07]].						
Table 14 direct α emiss	sion from ^{244m} Md, E	x. = unk., T _{1/2} =	$0.4^{+0.4}_{-0.1}$ s, <i>BR</i> _c	$a_{\rm f} = \approx 100\%.$				
$E_{\alpha}(c.m.)$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(abs)$	$\mathbf{J}_{f}^{\pmb{\pi}}$	$E_{daughter}(^{240}\mathrm{Es})$	coincident γ -rays	R ₀ (fm)	HF	
8.807(23)	8.663(23)	$\approx 100\%$						
* All vol	100 from [2020Bo07	1						

All values from [2020Po07].

References used in the Tables

[1] 1961Gr43 R. D. Griffioen, R. D. Macfarlane, Lawrence Radiation Laboratory, Chemistry Division Annual Report (1961),

UCRL-10023, p. 50 (1961).

- [2] 1963Jo09 W. B. Jones, Phys. Rev. 130, 2042 (1963). https://doi.org/10.1103/PhysRev.130.2042
- [3] 1964Ha07 J. Halperin, C. R. Baldock, R. E. Druschel, J. H. Oliver, R. W. Stoughton, J. Inorg. Nucl. Chem. 26, 391 (1964). https://doi.org/10.1016/0022-1902(64)90001-6
- [4] 1965An07 S. C. Anspach, L. M. Cavallo, S. B. Garfinkel, J. M. R. Hutchinson, C. N. Smith, NP-15663 (1965).
- [5] 1968Ho07 D. L. Horrocks, Nucl. Phys. A110, 238 (1968). https://doi.org/10.1016/0375-9474(68)90697-0
- [6] 1968Va18 K. Valli, E. K. Hyde, Phys. Rev. 176, 1377 (1968). https://doi.org/10.1103/PhysRev.176.1377
- [7] 1969Ho24 Y. S. Horowitz, N. K. Sherman, R. E. Bell, Nucl. Phys. A134, 577 (1969). https://doi.org/10.1016/0375-9474(69)90023-2
- [8] 1970Bo13 J. Borggreen, K. Valli, E. K. Hyde, Phys. Rev. C2, 1841 (1970). https://doi.org/10.1103/PhysRevC.2.1841
- [9] 1970Ha32 G. Harbottle, Radiochim. Acta 13, 132 (1970).
- [10] 1970Re02 P. L. Reeder, Phys. Rev. C1, 721 (1970). https://doi.org/10.1103/PhysRevC.1.721
- [11] 1970VaZZ K. Valli, E. K. Hyde, J. Borggreen, CONF Leysin Vol1 P545, CERN 70-30
- [12] 1971HyZX E Hyde, CONF Dubna, P156.
- [13] 1970Re02 P. L. Reeder, Phys. Rev. C1, 721 (1970). https://doi.org/10.1103/PhysRevC.1.721
- [14] 1971EpZY R. E. Eppley, E. K. Hyde, UCRL-20426, p. 27 (1971).
- [15] 1975FrZR K. Fransson, M. af Ugglas, P. Carle, Res. Inst. Phys., Stockholm, 1974, Ann. Rept., p. 147 (1975).
- [16] 1976FrZO K. Fransson, M. af Ugglas, P. Carle, T. Erikson, USIP-76-09 (1976).
- [17] 1976SoZT L. P. Somerville, M. J. Nurmia, A. Ghiorso, LBL-5075, p. 39 (1976).
- [18] 1978Ha05 D. Habs, H. Klewe-Nebenius, V. Metag, B. Neumann, H. J. Specht, Z. Phys. A285, 53 (1978). https://doi.org/10.1007/BF01410224
- [19] 1978SoZZ L. P. Somerville, M. J. Nurmia, A. Ghiorso, G. T. Seaborg, Bull. Am. Phys. Soc. 23, No. 1, 45, DE6 (1978).
- [20] 1987FaZT T. Faestermann, A. Gillitzer, K. Hartel, P. Kienle, E. Nolte, Contrib. Proc. 5th Int. Conf. Nuclei Far from Stability, Rosseau Lake, Canada, K4 (1987).
- [21] 1989AnZL A. N. Andreev, D. D. Bogdanov, V. I. Chepigin, V. A. Gorshkov, A. P. Kabachenko, A. N. Kuznetsov, Sh. Sharo, G. M. Ter-Akopian, A. V. Eremin, JINR-E15-89-683 (1989).
- [22] 1989HaZO H. L. Hall, LBL-27878 (1989).
- [23] 1990An19 A. N. Andreev, D. D. Bogdanov, V. I. Chepigin, A. P. Kabachenko, S. Sharo, G. M. Ter-Akopian, A. V. Eremin, Z. Phys. A337, 229 (1990).
- [24] 1990AnZQ A. N. Andreev, D. D. Bogdanov, A. V. Eremin, A. P. Kabachenko, G. M. Ter-Akopyan, V. I. Chepigin, Sh. Sharo, Program and Thesis, Proc. 40th Ann. Conf. Nucl. Spectrosc. Struct. At. Nuclei, Leningrad, p. 131 (1990).
- [25] 1990Ha28 H. L. Hall, K. E. Gregorich, R. A. Henderson, C. M. Gannett, R. B. Chadwick, J. D. Leyba, K. R. Czerwinski, B. Kadkhodayan, S. A. Kreek, N. J. Hannink, D. M. Lee, M. J. Nurmia, D. C. Hoffman, C. E. A. Palmer, P. A. Baisden, Phys. Rev. C42, 1480 (1990). https://doi.org/10.1103/PhysRevC.42.1480
- [26] 1993AnZS A. N. Andreyev, D. D. Bogdanov, V. I. Chepigin, M. Florek, A. P. Kabachenko, O. N. Malyshev, S. Sharo, G. M. Ter-Akopian, M. Veselsky, A. V. Yeremin, Proc. 6th Intern. Conf. on Nuclei Far from Stability + 9th Intern. Conf. on Atomic Masses and Fundamental Constants, Bernkastel-Kues, Germany, 19-24 July, 1992, R. Neugart, A. Wohr, Eds., p. 759 (1993).
- [27] 1994Kr13 S. A. Kreek, H. L. Hall, K. E. Gregorich, R. A. Henderson, J. D. Leyba, K. R. Czerwinski, B. Kadkhodayan, M. P. Neu, C. D. Kacher, T. M. Hamilton, M. R. Lane, E. R. Sylwester, A. Turler, D. M. Lee, M. J. Nurmia, D. C. Hoffman, Phys. Rev. C50, 2288 (1994). https://doi.org/10.1103/PhysRevC.50.2288
- [28] 1996Li05 C. F. Liang, P. Paris, A. Plochocki, E. Ruchowska, A. Gizon, D. Barneoud, J. Genevey, G. Cata, R. K. Sheline, Z. Phys. A354, 153 (1996). https://doi.org/10.1007/s002180050026
- [29] 1996Li37 C. F. Liang, P. Paris, R. K. Sheline, P. Alexa, A. Gizon, Phys. Rev. C54, 2304 (1996). https://doi.org/10.1103/PhysRevC.54.2304
- [30] 1997Sh09 R. K. Sheline, C. F. Liang, P. Paris, A. Gizon, Phys. Rev. C55, 1162 (1997). https://doi.org/10.1103/PhysRevC.55.1162
- [31] 1997Wi15 P. A. Wilk, K. E. Gregorich, M. B. Hendricks, M. R. Lane, D. M. Lee, C. A. McGrath, D. A. Shaughnessy,

D. A. Strellis, E. R. Sylwester, D. C. Hoffman, Phys. Rev. C56, 1626 (1997); Erratum Phys. Rev. C-bf58, 1352 (1998). https://doi.org/10.1103/PhysRevC.56.1626

- [32] 1999Ho28 F. Hoellinger, B. J. P. Gall, N. Schulz, N. Amzal, P. A. Butler, P. T. Greenlees, D. Hawcroft, J. F. C. Cocks, K. Helariutta, P. M. Jones, R. Julin, S. Juutinen, H. Kankaanpaa, H. Kettunen, P. Kuusiniemi, M. Leino, M. Muikku, A. Savelius, Phys. Rev. C60, 057301 (1999). https://doi.org/10.1103/PhysRevC.60.057301
- [33] 2003Ni10 K. Nishio, H. Ikezoe, S. Mitsuoka, K. Satou, C. J. Lin, Phys. Rev. C68, 064305 (2003). https://doi.org/10.1103/PhysRevC.68.064305
- [34] 2003NiZV K. Nishio, H. Ikezoe, S. Mitsuoka, K. Satou, C. J. Lin, Japan Atomic Energy Res. Inst. Tandem VDG Ann. Rept. , 2002, p. 42 (2003); JAERI-Review 2003-028 (2003).
- [35] 2004NiZZ K. Nishio, H. Ikezoe, S. Mitsuoka, K. Satou, C. J. Lin, INDC(JPN)-192/U (JAERI-Conf 2004-005), p. 167 (2004).
- [36] 2007Ku30 J. Kurcewicz, W. Czarnacki, M. Karny, M. Kasztelan, M. Kisielinski, A. Korgul, W. Kurcewicz, J. Kurpeta, S. Lewandowski, P. Majorkiewicz, H. Penttila, A. Plochocki, B. Roussiere, O. Steczkiewicz, A. Wojtasiewicz, Phys. Rev. C 76, 054320 (2007). https://doi.org/10.1103/PhysRevC.76.054320
- [37] 2009Vi09 A. M. Vinodkumar, W. Loveland, P. H. Sprunger, L. Prisbrey, M. Trinczek, M. Dombsky, P. Machule, J. J. Kolata, A. Roberts, Phys. Rev. C 80, 054609 (2009). https://doi.org/10.1103/PhysRevC.80.054609
- [38] 2017Ko02 J. Konki, J. Khuyagbaatar, J. Uusitalo, P. T. Greenlees, K. Auranen, H. Badran, M. Block, R. Briselet, D. M. Cox, M. Dasgupta, A. Di Nitto, Ch. E. Dullmann, T. Grahn, K. Hauschild, A. Herzan, R. -D. Herzberg, F. P. Hessberger, D. J. Hinde, R. Julin, S. Juutinen, E. Jager, B. Kindler, J. Krier, M. Leino, B. Lommel, A. Lopez-Martens, D. H. Luong, M. Mallaburn, K. Nishio, J. Pakarinen, P. Papadakis, J. Partanen, P. Peura, P. Rahkila, K. Rezynkina, P. Ruotsalainen, M. Sandzelius, J. Saren, C. Scholey, J. Sorri, S. Stolze, B. Sulignano, Ch. Theisen, A. Ward, A. Yakushev, V. Yakusheva, Phys. Lett. B 764, 265 (2017). https://doi.org/10.1016/j.physletb.2016.11.038
- [39] 2020Au03 K. Auranen, E. A. McCutchan, Nucl. Data Sheets 168, 117 (2020). https://doi.org/10.1016/j.nds.2020.09.002
- [40] 2020Kh08 J. Khuyagbaatar, H. M. Albers, M. Block, H. Brand, R. A. Cantemir, A. Di Nitto, C. E. Dullmann, M. Gotz, S. Gotz, F. P. Hessberger, E. Jager, B. Kindler, J. V. Kratz, J. Krier, N. Kurz, B. Lommel, L. Lens, A. Mistry, B. Schausten, J. Uusitalo, and A. Yakushev, Phys. Rev. Lett. 125, 142504 (2020). https://doi.org/10.1103/PhysRevLett.125.142504
- [41] 2020P007 J. L. Pore, J. M. Gates, R. Orford, C. M. Campbell, R. M. Clark, H. L. Crawford, N. E. Esker, P. Fallon, J. A. Gooding, J. T. Kwarsick, A. O. Macchiavelli, C. Morse, D. Rudolph, A. Samark-Roth, C. Santamaria, R. S. Shah, M. A. Stoyer, Phys. Rev. Lett. 124, 252502 (2020). https://doi.org/10.1103/PhysRevLett.124.252502
- [42] 2021Wa16 M. Wang, W. J. Huang, F. G. Kondev, G. Audi, S. Naimi, Chin. Phys. C 45, 030003 (2021). https://doi.org/10.1088/1674-1137/abddaf