

Last updated 3/29/23

Table 1			
Observed and predicted β -delayed	particle emission from the odd- Z	$T_z = +21/2$ values for	are taken from ENSDF.

Nuclide	Ex	J^{π}	$T_{1/2}$	O _F	$O_{\mathcal{E}n}$	$O_{\mathcal{F}\mathcal{A}}$	Experimental
			1/2	a	2 0 <i>p</i>	200	1
¹³⁹ Pr		5/2+	4.41(4) h	2.129(3)	-5.604(4)	0.597(4)	[1968Li08]
¹⁴³ Pm		5/2+	265(10) d	1.042(3)	-6.463(3)	1.572(4)	[1963Pa21]
¹⁴⁷ Eu		5/2+	24.1(6) d	1.721(2)	-5.379(5)	4.033(3)	[1971Av09]
¹⁵¹ Tb		$1/2^{+}$	17.609(14) h	2.565(4)	-4.120(7)	5.218(4)	[1984Gr15]
¹⁵⁵ Ho		5/2+	48(2) m	3.116(17)	-3.172(49)	5.724(18)	[1972To07]
¹⁵⁹ Tm		5/2+	9.15(17) m	3.991(28)	-1.672(39)	6.161(30)	[1982By03]
¹⁶³ Lu		$1/2^{+}$	3.97(13) m	4.500(30)	-0.603(38)	7.345(28)	[1983Ge08]
¹⁶⁷ Ta		$(3/2^+)$	80(4) s	5.120(40)	0.381(41)	8.518(32)	[1992HeZV]
¹⁷¹ Re		$(9/2^{-})$	15.2(4) s	5.840(40)	1.598(40)	9.793(40)	[1987Ru05]
¹⁷⁵ Ir		$(1/2^+)$	8(1) s	6.711(17)	2.990(31)	11.267(31)	[2004GoZZ]
175mIr	0.169(7)*	(9/2-)	4.9(4) s	6.880(18)	3.159(32)	11.436(32)	[2004GoZZ]
¹⁷⁹ Au		1/2+	7.3(3) s	7.280(14)	3.977(22)	12.692(17)	[2021Ha32]
¹⁸³ Tl		$(5/2^{-})$	6.9(7) s	7.217(12)	4.428(21)	13.256(12)	[1992BoZO]
^{183m} Tl	0.6287(3)	$(9/2^{-})$	53.3(3) ms	7.846(12)	5.077(21)	13.885(12)	[2022Ve01, 2011Ve01]
¹⁸⁷ Bi		$(1/2^+)$	38(2) ms**	8.604(11)	6.211(23)	14.996(12)	[2006An11, 1999Ba45]
^{187m} Bi	0.112(11)	$(9/2^{-})$	370(20) µs	8.716(16)	6.211(25)	14.996(16)	[2006An11]
¹⁹¹ At		$(1/2^+)$	$1.7^{+1.1}_{-0.5}$ ms	8.933(18)	7.171(26)	16.426(17)	[2003Ke08]
^{191m} At	0.050(30)	(7/2 ⁻)	$2.1^{+0.3}_{-0.3}$ ms	8.983(35)	7.221(40)	16.476(34)	[2003Ke08]

* Excitation calculated as 169(7) keV, based on an unhindered α -decay of the ¹⁷⁵Ir isomer to the ground state of ¹⁷¹Re, and the α -energy of the ¹⁷⁵Ir ground state to an unhindered to the 189.8 keV in ¹⁷¹Re.

** Weighted average of 40(2) ms [2006An11] and 32(3) ms [1999Ba45].

Table 2

Particle separation, Q-values, and measured values for direct particle emission of the odd-Z, $T_z = +21/2$ nuclei. Unless otherwise stated, all S and Q-values are taken from [2021Wa16] or deduced from values therein.

Nuclide	\mathbf{S}_p	S_{2p}	Qα	BR_{α}	Experimental
139 D	4.552(4)	12 266(4)	0 (10(10)		
143 PT	4.552(4)	12.200(4)	-0.610(10)		
145 Pm	4.300(3)	11.524(3)	-0.557(5)		
¹⁴⁷ Eu	3.837(4)	10.855(3)	2.991(3)	0.0022(6)%	[1967Go32, 1962Si14 , 1964To04, 1960To05, 1953Ra02]
¹⁵¹ Tb	3.148(7)	9.760(5)	3.496(4)	0.0095(15)%	[1974To07, 1967Go32 , 1975ToZT, 1970ToZV,
					1969To04, 1967Ko09, 1967Ch32, 1967Ch28,
					1966Ch22, 1964Ma19, 1960Ma47, 1960To05,
					1953Ra02]
¹⁵⁵ Ho	2.935(19)	9.304(18)	3.159(18)		
¹⁵⁹ Tm	2.556(38)	8.315(36)	3.044(33)		
¹⁶³ Lu	2.259(32)	7.471(40)	3.354(40)		
¹⁶⁷ Ta	1.781(40)	6.487(39)	4.015(40)		
¹⁷¹ Re	1.248(31)	5.538(40)	4.676(40)		
¹⁷⁵ Ir	0.688(16)	4.419(31)	5.710(5)	0.85(22)%	[2004GoZZ, 1986Ke03, 1967Si02, 1992Sc16]
175mIr	0.518(17)	4.250(32)	5.879(9)*	$pprox 70\%^{**}$	[2004GoZZ]
¹⁷⁹ Au	0.280(15)	3.519(23)	5.981(5)	22.0(9)%	[2021Ha32, 1986Ke03, 2004Ra28, 1996Pa01,
					1980Da09, 1968De01, 1968Si01, 1965Si07]
¹⁸³ Tl	0.299(14)	3.294(22)	5.976(9)		
^{183m} Tl	-0.330(14)	2.665(22)	6.605(9)	1.45(42)%	[2022Ve01, 2011Ve01, 2006An11, 2004Ra28,
					1987To09, 1984ScZQ, 1980Sc09]
¹⁸⁷ Bi	-1.009(15)	1.203(23)	7.779(4)	≈100%***	[2006An11, 1999Ba45, 2003Ke08, 1998DaZR,
					1984ScZQ]
^{187m} Bi	-1.121(19)	1.091(25)	7.891(12)	≈100%***	[2006An11, 1999Ba45, 2003Ke08, 1998DaZR,
					1984ScZQ]
¹⁹¹ At	-1.138(21)	0.649(26)	7.822(14)	100%@	[2003Ke08 , 2005Ke10, 2005Su03]
^{191m} At	-1.188(40)	0.599(40)	7.872(33)	100%@	[2003Ke08 , 2005Ke10, 2005Su03]
		5.077(1.5)		20070	[

* Deduced from α energies, 5.431(31) MeV in [2021Wa16]. ** Assuming an unhindered (HF =1.0) to the ground state of ¹⁷¹Re.

*** Based on half-life.

Table 3

$E_{\alpha}(c.m.)$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(abs)$	${\sf J}_f^{\pi}$	$E_{daughter}(^{143}\mathrm{Pm})$	coincident γ-ra	ays R_0 (fm)	HF	
2.987(5)	2.906(5)***	0.0022(6)%**	5/2+	0.0	5/2+		1.5813(49)	$0.63^{+0.27}_{-0.17}$
* [1971. ** [196] *** 2.90	Au09]. 2Si14]. 08(5) MeV [1967Go	032], adjusted to 2.9	906(5) MeV in [199	91Ry01].				
Table 4 direct α eminents	ssion from ¹⁵¹ Tb, J ²	$\pi = 1/2^+, T_{1/2} = 17$	$.609(14) h^*, BR_{\alpha} =$	= 0.0095(15)%**.				
$E_{\alpha}(\text{c.m.})$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(\text{rel})$	$I_{\alpha}(abs)$	$\mathbf{J}_f^{\boldsymbol{\pi}}$	$E_{daughter}(^{147}\mathrm{Eu})$	coincident γ -rays	R ₀ (fm)	HF
3.268(5) 3.500(5)	3.181(5)*** 3.407(5) [@]	0.1%*** 100%***	9.5(15)×10 ⁻⁶ %** 90.0095(15)%**	* 7/2 ⁺ 5/2 ⁺	0.2292 0.0	0.2292	1.5772(70) 1.5772(70)	$81 \\ 6.3^{+1.8}_{-1.4}$
Table 5 direct α emin	ssion from ¹⁷⁵ Ir, J ^{π}	$= (1/2^+), T_{1/2} = 8($	(1) s*, $BR_{\alpha} = 0.85($	22)%**.	(¹⁷¹ Re) co	incident % rays	Po (fm)	HE
5,520(5)	$E_{\alpha}(1ab)$	$\Gamma_{\alpha}(abs)$	J_f	0 1899($r(\mathbf{R})$ $correction (1)$	1809(3)	1 550(19)	3 3+2.7
* [2004 ** [198 *** Wei @ [2018 Table 6 direct α emi	GoZZ]. 6Ke03]. ighted average of 5. 3Ba33]. ssion from ^{175m} Ir, E	395(5) [2004GoZZ Ex = 169(7) keV*, J] and 5.393(5) MeV $\pi = (9/2^{-}), T_{1/2} = 1$	√ [1967Si02]. 4.9(4) s**, BR_{α} =	≈ 70%***.			
$E_{\alpha}(c.m.)$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(abs)$	J_f^π	E_{dat}	_{ughter} (¹⁷¹ ERe)	coincident γ -rays	R_0 (fm)	HF
5.879(5)	5.745(5)**	0.85(22)%	** (9/2-)	0.0		1.550(19)	≈ 1.0	
* Excita state to an ur ** [200 *** Ass @ [2018	tion calculated as 1 hindered to the 189 4GoZZJ. uming an unhindere BBa33].	.69(7) keV, based o 0.8 keV in ¹⁷¹ Re. ed (HF =1.0) to the	n an unhindered $lpha$ ground state of ¹⁷¹	-decay of the ¹⁷⁵ I Re.	r isomer to the ground	d state of ¹⁷¹ Re, and th	e α -energy of the	¹⁷⁵ Ir ground

$E_{\alpha}(c.m.)$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(\text{rel})$	$I_{\alpha}(abs)$	$\mathbf{J}_f^{\boldsymbol{\pi}}$	$E_{daughter}(^{175}\mathrm{Ir})$	coincident γ -rays	R ₀ (fm)	HF
5.72810 5.835(15) 5.849(10) 5.982(4)	5.600(10) 5.705(15) 5.718(10) 5.848(4)	0.36(1)% <0.16(7)% <0.98(31)% 100	$\begin{array}{l} 0.078(4)\% \\ < 0.036(16)\% \\ < 0.22(7)\% \\ 22.0(9)\% \end{array}$	(1/2+)	0.2603(7) 0.1460(7) 0.1319(4) 0.0	0.0261, 0.2342 0.0261, 0.1199 0.0261, 0.1053, 0.1319	1.5516(28) 1.5516(28) 1.5516(28) 1.5516(28)	$38(4) \\ > 270^{+23}_{-9} \\ > 51^{+28}_{-15} \\ 1.85(17)$

* All values from [2021Ha32], except where noted. ** [1986Ke03].

Table 8	
direct α emission from ^{183m} Tl*, Ex = 628.7(3) keV, J ^{π} = (9/2 ⁻), T _{1/2} = 53.3(3) ms, BR _{α} = 1.45(42)%.	

$E_{\alpha}(c.m.)$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(\text{rel})$	$I_{\alpha}(abs)$	$\mathbf{J}_f^{\boldsymbol{\pi}}$	$E_{daughter}(^{179}\mathrm{Au})$	coincident γ-rays	R ₀ (fm)	HF
6.193(15) 6.475(9)	6.058(15) 6.333(9)	1.6(3)% 100(2)%	0.024(8)% 1.45(42)%	$(9/2^{-})$ $(9/2^{-})$	0.407(17) 0.127(17)	0.0271, 0.0624, 0.0895, 0.2798 0.0271, 0.0624, 0.0895	1.5108(76) 1.5108(76)	6^{+4}_{-2} $1.3^{+0.7}_{-0.4}$
6.602(15)	6.458(15)	1.13 (31)%	0.016(7)%	$(1/2^+)$	0.0		1.5108(76)	350^{+250}_{-120}

* All values from [2022Ve01], except where noted.

Table 9

direct α emission from ¹⁸⁷ Bi*, J ^{π} = (1/2 ⁺), T _{1/2} = 38(2) ms**, BR _{α} = \approx 100%
--

$E_{\alpha}(c.m.)$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(\text{rel})$	$I_{\alpha}(abs)$	$\mathbf{J}_f^{\boldsymbol{\pi}}$	$E_{daughter}(^{183}\text{Tl})$	coincident γ -rays	R ₀ (fm)	HF
7.156(5)	7.000(5)	100(5)%	88(4)%	(9/2 ⁻)	0.625(7)		1.4864(88)	$0.43\substack{+0.10\\-0.08}$
7.506(15)	7.342(15)	3.4(8)%	3.0(7)%	$(3/2^+)$	0.273(1)	0.273	1.4864(88)	170^{+70}_{-50}
7.782(5)	7.612 (5)	10.2(7)%	9.0(5)%	$(1/2^+)$	0.0		1.4864(88)	390^{+80}_{-70}

* All values from [2006An11], except where noted.

107

** Weighted average of 40(2) ms [2006An11] and 32(3) ms [1999Ba45].

Table 10

direct α emissi	ion from ^{18/m} Bi*, Ex	$= 112(11) \text{ keV}, J^{\mu}$	$T = (9/2^{-}), T_{1/2} =$	$370(20) \ \mu s, BR_{\alpha} = 100\%$			
$E_{\alpha}(c.m.)$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(abs)$	${f J}_f^\pi$	$E_{daughter}(^{183}\mathrm{Tl})$	coincident γ -rays	R ₀ (fm)	HF
7.894(10)	7.721(10)	100%	$(1/2^+)$	0.0		1.4864(88)	$0.72\substack{+0.16 \\ -0.13}$
* All value	es from [2006An11],	except where note	ed.				
Table 11							

direct α emiss	lirect α emission from ¹⁹¹ At*, $J^{\pi} = (1/2^+)$, $T_{1/2} = 1.7^{+11}_{-5}$ ms, $BR_{\alpha} = 100\%$.									
$E_{\alpha}(c.m.)$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(abs)$	\mathbf{J}_f^{π}	Edaughter(¹⁸⁷ Bi)	coincident γ -rays	R_0 (fm)	HF			
7.714(11)	7.552(11)	100%	(1/2 ⁺)	0.112(20)		1.522(12)	0.41(29)			

* All values from [2003Ke08].

Table 12

direct α emiss	Firect α emission from ^{191m} At*, Ex = 50(30) keV, J ^{π} = (7/2 ⁻), T _{1/2} = 2.1 ⁺⁴ ₋₃ ms, BR _{α} = 100%.										
$E_{\alpha}(c.m.)$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(\text{rel})$	$I_{\alpha}(abs)$	${ m J}_f^\pi$	$E_{daughter}(^{187}\mathrm{Bi})$	coincident γ -rays	R ₀ (fm)	HF			
7.817(15)	7.653(15)	100(2)% 2(2)%	98(2)% 2(2)%	$(7/2^{-})$ $(9/2^{-})$	0.063(10)	0.063(10)	1.522(12) 1.522(12)	$1.1^{+0.4}_{-0.3}$ 1200(1100)			

* All values from [2003Ke08].

References used in the Tables

- [1] 1953Ra02 J. O. Rasmussen, Jr., S. G. Thompson, A. Ghiorso, Phys. Rev. 89, 33 (1953).
- [2] 1960Ma47 R. D. Macfarlane, UCRL-9566, p. 46 (1960).
- [3] 1960To05 K. S. Toth, J. O. Rasmussen, Nuclear Phys. 16, 474 (1960). https://doi.org/10.1016/S0029-5582(60)81008-5
- [4] 1962Si14 A. Siivola, Ann. Acad. Sci. Fennicae, Ser. A VI, No. --bf109 (1962).
- [5] 1963Pa21 I. M. H. Pagden, R. Jakeways, F. C. Flack, Nucl. Phys. 48, 555 (1963). https://doi.org/10.1016/0029-5582(63)90222-0
- [6] 1964Ma19 R. D. Macfarlane, D. W. Seegmiller, Nucl. Phys. 53, 449 (1964). https://doi.org/10.1016/0029-5582(64)90624-8

- [7] 1964To04 K. S. Toth, T. H. Handley, E. Newman, I. R. Williams, Phys. Rev. 136, B1233 (1964). https://doi.org/10.1103/PhysRev. 136. B1233
- [8] 1965Si07 A. Siivola, UCRL-11828, p. 25 (1965).
- [9] 1966Ch22 V. G. Chumin, Z. T. Zhelev, K. Y. Gromov, Program and Theses, Proc. 16th All-Union Conf. Nucl. Spectroscopy and Struct. of at. Nuclei, Moscow, p. 35 (1966).
- [10] 1967Ch28 V. G. Chumin, Z. T. Zhelev, K. Y. Gromov, B. Makhmudov, Izv. Akad. Nauk SSSR, Ser. Fiz. 31, 146 (1967); Bull. Acad. Sci. USSR, Phys. Ser. 31, 138 (1968).
- [11] 1967Ch32 V. G. Chumin, Z. Zhelev, K. Y. Gromov, B. Makhmudov, Intern. Nucl. Phys. Conf., Gatlinburg, Tenn. (1966); R. L. Becker, C. D. Goodman, P. H. Stelson, A. Zucker, Eds., Academic Press, New York, p. 922 (1967).
- [12] 1967Go32 N. A. Golovkov, K. Y. Gromov, N. A. Lebedev, B. Makhmudov, A. S. Rudnev, V. G. Chumin, Izv. Akad. Nauk SSSR, Ser. Fiz. 31, 1618 (1967); Bull. Acad. Sci. USSR, Phys. Ser. 31, 1657 (1968).
- [13] 1967Ko09 J. Kormicki, H. Niewodniczanski, Z. Stachura, K. Zuber, A. Budziak, Nucl. Phys. A100, 297 (1967). https://doi.org/10.1016/0375-9474(67)90410-1
- [14] 1967Si02 A. Siivola, Nucl. Phys. A92, 475 (1967). https://doi.org/10.1016/0375-9474(67)90230-8
- [15] 1968De01 A. G. Demin, T. Fenyes, I. Mahunka, V. G. Subbotin, L. Tron, Nucl. Phys. A106, 337 (1968). https://doi.org/10.1016/0375-9474(67)90878-0
- [16] 1968Li08 H. Liskien, Nucl. Phys. A118, 379 (1968). https://doi.org/10.1016/0375-9474(68)90344-8
- [17] **1968Si01** A. Siivola, Nucl. Phys. A**109**, 231 (1968). https://doi.org/10.1016/0375-9474(68)90571-X
- [18] 1969To04 K. S. Toth, Nucl. Phys. A133, 222 (1969). https://doi.org/10.1016/0375-9474(69)90461-8
- [19] 1970ToZV K. S. Toth, REPT ORNL-4534, P35 7/29/71.
- [20] 1971Av09 M. P. Avotina, A. V. Zolotavin, Prop. At. Nucl. No. 11, Izdatelstvo Nauk SSSR, Leningrad (1971)
- [21] 1972To07 J. P. Torres, P. Paris, D. Lecouturier, P. Kilcher, Nucl. Phys. A189, 609 (1972). https://doi.org/10.1016/0375-9474(72)90317-X
- [22] 1974To07 K. S. Toth, C. R. Bingham, W. -D. Schmidt-Ott, Phys. Rev. C10, 2550 (1974). https://doi.org/10.1103/PhysRevC. 10.2550
- [23] 1975ToZT K. S. Toth, C. R. Bingham, W. -D. Schmidt-Ott, ORNL-5025, p. 56 (1975).
- [24] 1980Da09 H. Dautet, G. Bischoff, J. M. D'Auria, B. D. Pate, Can. J. Phys. 58, 891 (1980). https://doi.org/10.1139/p80-122
- [25] 1980De01 J. De Kam, F. van Geffen, M. van der Velde, Nucl. Phys. A333, 443 (1980). https://doi.org/10.1016/0375-9474(80)90109-8
- [26] 1980Sc09 U. J. Schrewe, P. Tidemand-Petersson, G. M. Gowdy, R. Kirchner, O. Klepper, A. Plochocki, W. Reisdorf, E. Roeckl, J. L. Wood, J. Zylicz, R. Fass, D. Schardt, Phys. Lett. 91B, 46 (1980). https://doi.org/10.1016/0370-2693(80)90659-0
- [27] 1982By03 A. A. Bykov, V. D. Vitman, Yu. V. Naumov, S. Yu. Orlov, V. K. Tarasov, Izv. Akad. Nauk SSSR, Ser. Fiz. 46, 2230 (1982); Bull. Acad. Sci. USSR, Phys. Ser. 46, No. 11, 166 (1982).
- [28] 1983Ge08 W. Gelletly, Nucl. Instrum. Methods 211, 89 (1983). https://doi.org/10. 1016/0167-5087(83)90559-8
- [29] 1984Gr15 K. E. Gregorich, K. J. Moody, G. T. Seaborg, Radiochim. Acta 35, 1 (1984). https://doi.org/10.1524/ract.1984.35.1.1
- [30] 1984ScZQ J. Schneider GSI-84-3 (thesis) (1984).
- [31] 1986Ke03 J. G. Keller, K. -H. Schmidt, F. P. Hessberger, G. Munzenberg, W. Reisdorf, H. -G. Clerc, C. -C. Sahm, Nucl. Phys. A452, 173 (1986). https://doi.org/10.1016/0375-9474(86)90514-2
- [32] 1987Ru05 E. Runte, F. Meissner, V. Freystein, T. Hild, H. Salewski, W. -D. Schmidt-Ott, R. Michaelsen, Z. Phys. A328, 373 (1987).
- [33] 1987To09 K. S. Toth, D. M. Moltz, F. Blonnigen, F. T. Avignone III, Phys. Rev. C35, 2330 (1987). https://doi.org/10.1103/PhysRevC.35.2330
- [34] 1992BoZO V. A. Bolshakov, A. G. Dernyatin, K. A. Mezilev, Yu. N. Novikov, A. V. Popov, Yu. Ya. Sergeev, V. I. Tikhonov, V. A. Sergienko, G. V. Veselov, Contrib. 6th Intern. Conf. on Nuclei Far from Stability + 9th Intern. Conf. on Atomic Masses and Fundamental Constants, Bernkastel-Kues, Germany, PE50 (1992).
- [35] 1992HeZV W. Heller, R. Binder, H. Bruchertseifer, U. Becker, F. Haberberger, G. Herrmann, J. V. Kratz, M. Mendel, A.

Nahler, M. Pense-Maskow, N. Trautmann, N. Wiehl, W. Bruchle, E. Jager, M. Schadel, B. Schausten, J. Alstad, G. Skarnemark, R. Dressler, S. Fischer, A. Ross, B. Eichler, S. Hubener, Univ. Mainz, 1991 Ann. Rept., p. 28 (1992).

- [36] 1992Sc16 W. -D. Schmidt-Ott, H. Salewski, F. Meissner, U. Bosch-Wicke, P. Koschel, V. Kunze, R. Michaelsen, Nucl. Phys. A545, 646 (1992). https://doi.org/10.1016/0375-9474(92)90297-W
- [37] 1996Pa01 R. D. Page, P. J. Wood, R. A. Cunningham, T. Davinson, N. J. Davis, A. N. James, K. Livingston, P. J. Sellin, A. C. Shotter, Phys. Rev. C53, 660 (1996). https://doi.org/10.1103/PhysRevC.53.660
- [38] 1998DaZR C. N. Davids, L. T. Brown, L. F. Conticchio, D. Seweryniak, J. C. Batchelder, K. S. Toth, C. R. Bingham, R. J. Irvine, W. B. Walters, J. Wauters, E. F. Zganjar, J. L. Wood, C. De Coster, B. Decroix, K. Heyde, ANL-98/24 (Physics Division Ann. Rept., 1997), p. 15 (1998).
- [39] 1999Ba45 J. C. Batchelder, K. S. Toth, C. R. Bingham, L. T. Brown, L. F. Conticchio, C. N. Davids, R. J. Irvine, D. Seweryniak, W. B. Walters, J. Wauters, E. F. Zganjar, J. L. Wood, C. De Coster, B. Decroix, K. Heyde, Eur. Phys. J. A 5, 49 (1999). https://doi.org/10.1007/s100500050255
- [40] 2003Ke08 H. Kettunen, T. Enqvist, T. Grahn, P. T. Greenlees, P. Jones, R. Julin, S. Juutinen, A. Keenan, P. Kuusiniemi, M. Leino, A. -P. Leppanen, P. Nieminen, J. Pakarinen, P. Rahkila, J. Uusitalo, Eur. Phys. J. A 17, 537 (2003). https://doi.org/10.1140/epja/i2002-10162-1
- [41] 2004GoZZ J. T. M. Goon, Thesis, University of Tennessee, Knoxville (2004).
- [42] 2004Ra28 P. M. Raddon, D. G. Jenkins, C. D. O'Leary, A. J. Simons, R. Wadsworth, A. N. Andreyev, R. D. Page, M. P. Carpenter, F. G. Kondev, T. Enqvist, P. T. Greenlees, P. M. Jones, R. Julin, S. Juutinen, H. Kettunen, M. Leino, A. -P. Leppanen, P. Nieminen, J. Pakarinen, P. Rahkila, J. Uusitalo, D. T. Joss, Phys. Rev. C 70, 064308 (2004). https://doi.org/10.1103/PhysRevC.70.064308
- [43] 2005Ke10 H. Kettunen, T. Enqvist, K. Eskola, T. Grahn, P. T. Greenlees, K. Helariutta, P. Jones, R. Julin, S. Juutinen, H. Kankaanpaa, A. Keenan, H. Koivisto, P. Kuusiniemi, M. Leino, A. -P. Leppanen, M. Muikku, P. Nieminen, J. Pakarinen, P. Rahkila, J. Uusitalo, Eur. Phys. J. A 25, Supplement 1, 181 (2005). https://doi.org/10.1140/epjad/i2005-06-114-1
- [44] 2005Su03 Y. Suzuki, H. Matsumura, Prog. Theor. Phys. (Kyoto) 113, 87 (2005). https://doi.org/10.1143/PTP. 113. 87
- [45] 2006An11 A. N. Andreyev, S. Antalic, D. Ackermann, S. Franchoo, F. P. Hessberger, S. Hofmann, M. Huyse, I. Kojouharov, B. Kindler, P. Kuusiniemi, S. R. Lesher, B. Lommel, R. Mann, G. Munzenberg, K. Nishio, R. D. Page, J. J. Ressler, B. Streicher, S. Saro, B. Sulignano, P. Van Duppen, D. Wiseman, R. Wyss, Phys. Rev. C 73, 044324 (2006). https://doi.org/10.1103/PhysRevC.73.044324
- [46] 2011Ve01 M. Venhart, A. N. Andreyev, J. L. Wood, S. Antalic, L. Bianco, P. T. Greenlees, U. Jakobsson, P. Jones, R. Julin, S. Juutinen, S. Ketelhut, M. Leino, M. Nyman, R. D. Page, P. Peura, P. Rahkila, J. Saren, C. Scholey, J. Sorri, J. Thomson, J. Uusitalo, Phys. Lett. B 695, 82 (2011). https://doi.org/10.1016/j. physletb. 2010.10.055
- [47] 2021Ha32 R. D. Harding, A. N. Andreyev, A. E. Barzakh, J. G. Cubiss, P. Van Duppen, M. Al Monthery, N. A. Althubiti, B. Andel, S. Antalic, T. E. Cocolios, T. Day Goodacre, K. Dockx, G. J. Farooq-Smith, D. V. Fedorov, V. N. Fedosseev, D. A. Fink, L. P. Gaffney, L. Ghys, J. D. Johnson, D. T. Joss, M. Huyse, N. Imai, K. M. Lynch, B. A. Marsh, Y. Martinez Palenzuela, P. L. Molkanov, G. G. O'Neill, R. D. Page, R. E. Rossel, S. Rothe, M. D. Seliverstov, S. Sels, C. Van Beveren, E. Verstraelen, Phys. Rev. C 104, 024326 (2021). https://doi.org/10.1103/PhysRevC.104.024326
- [48] 2021Ha32 R. D. Harding, A. N. Andreyev, A. E. Barzakh, J. G. Cubiss, P. Van Duppen, M. Al Monthery, N. A. Althubiti, B. Andel, S. Antalic, T. E. Cocolios, T. Day Goodacre, K. Dockx, G. J. Farooq-Smith, D. V. Fedorov, V. N. Fedosseev, D. A. Fink, L. P. Gaffney, L. Ghys, J. D. Johnson, D. T. Joss, M. Huyse, N. Imai, K. M. Lynch, B. A. Marsh, Y. Martinez Palenzuela, P. L. Molkanov, G. G. O'Neill, R. D. Page, R. E. Rossel, S. Rothe, M. D. Seliverstov, S. Sels, C. Van Beveren, E. Verstraelen, Phys. Rev. C 104, 024326 (2021). https://doi.org/10.1103/PhysRevC.104.024326
- [49] 2021Wa16 M. Wang, W. J. Huang, F. G. Kondev, G. Audi, S. Naimi, Chin. Phys. C 45, 030003 (2021). https://doi.org/ 10.1088/1674-1137/abddaf
- [50] 2022Ve01 M. Venhart, A. N. Andreyev, J. G. Cubiss, J. L. Wood, A. E. Barzakh, C. Van Beveren, T. E. Cocolios, R. P. de Groote, D. V. Fedorov, V. N. Fedosseev, R. Ferrer, D. A. Fink, L. Ghys, M. Huyse, U. Koster, J. Lane, V. Liberati, K. M. Lynch, B. A. Marsh, P. L. Molkanov, T. J. Procter, E. Rapisarda, K. Sandhu, M. D. Seliverstov, A. M. Sjodin, P. Van Duppen, M. Veselsky, Phys. Rev. C 105, 034338 (2022). https://doi.org/10.1103/PhysRevC. 105. 034338