

Fig. 1: Known experimental values for heavy particle emission of the odd-Z  $T_z$ = +20 nuclei.

Last updated 2/20/24

## Table 1

Observed and predicted  $\beta$ -delayed particle emission from the odd-Z,  $T_z = +20$  nuclei. Unless otherwise stated, all Q-values are taken from [2021Wa16] or deduced from values therein.

| Nuclide            | Ex.      | $J^{\pi}$         | $T_{1/2}$                 | $Q_{\mathcal{E}}$ | $Q_{\varepsilon p}$ | $Q_{\varepsilon \alpha}$ | $BR_{\varepsilon F}$ | Experimental                   |
|--------------------|----------|-------------------|---------------------------|-------------------|---------------------|--------------------------|----------------------|--------------------------------|
| 105                |          |                   |                           |                   |                     |                          |                      |                                |
| <sup>186</sup> Ta* |          | (3 <sup>-</sup> ) | 10.390(27) m              | -2.180(80)        |                     |                          |                      | [1995ItZY]                     |
| <sup>190</sup> Re* |          | $(2)^{-}$         | 2.96(1) h                 | -1.210(40)        |                     |                          |                      | [1973DeWI]                     |
| <sup>194</sup> Ir* |          | 1-                | 19.37(1) h                | -0.097(2)         |                     |                          |                      | [2016Kr06, 1972Em01]           |
| <sup>198</sup> Au* |          | $2^{-}$           | 2.6971(20) d              | 0.323(2)          | -8.606(20)          | 0.429(2)                 |                      | [2008Ku09]                     |
| <sup>202</sup> Tl  |          | $2^{-}$           | 12.23(2) d                | 1.365(1.8)        | -6.869(4)           | 1.499(3)                 |                      | [1995Co19]                     |
| <sup>206</sup> Bi  |          | $6^{+}$           | 6.243(3) d                | 3.757(8)          | -3.496(8)           | 4.892(8)                 |                      | [1961Br19]                     |
| <sup>210</sup> At  |          | $(5^{+})$         | 8.440(79) h               | 3.981(8)          | -1.002(8)           | 9.388(8)                 |                      | [2003HaZT]                     |
| <sup>214</sup> Fr  |          | $(1^{-})$         | 5.0(2) ms                 | 3.361(12)         | -1.668(10)          | 12.570(9)                |                      | [1968To10]                     |
| $^{214m}$ Fr       | 0.121(7) | (8 <sup>-</sup> ) | 3.35(5) ms                | 3.486(14)         | -1.547(12)          | 12.691(11)               |                      | [1968To10]                     |
| <sup>218</sup> Ac  |          | $(1^{-})$         | 1.12(3) µs**              | 4.210(60)         | -0.753(58)          | 12.746(58)               |                      | [2021Hu18, 2019Mi08, 2019Ya04, |
|                    |          |                   |                           |                   |                     |                          |                      | 2017Su18, 2015Kh09, 1989De06,  |
|                    |          |                   |                           |                   |                     |                          |                      | 1989Mi17, 1983Sc23]            |
| <sup>222</sup> Pa  |          |                   | $2.76^{+0.43}_{-0.33}$ ms | 4.860(90)         | 0.24(10)            | 12.994(87)               |                      | [2021Hu18]                     |
| <sup>226</sup> Np  |          |                   | 43(5) ms***               | 5.49(10)          | 1.17(13)            | 13.19(10)                |                      | [2019Mi08, 1990Ni05]           |
| <sup>230</sup> Am  |          |                   | $32^{+22}_{-9}$ s         | 5.94(14)#         | 1.78(18)#           | 13.12(14)#               | >30%                 | [2017Wi13, 2016Ka13, 2010KaZV] |
| <sup>234</sup> Bk  |          |                   | $19_{-4}^{+6}$ s          | 6.67(15)#         | 2.82(19)#           | 14.04(15)#               |                      | [2016Ka13]                     |
|                    |          |                   | -                         |                   |                     |                          |                      |                                |

\* 100%  $\beta^-$  emitter.

\*\* Weighted average of  $0.87^{+0.18}_{-0.07} \ \mu s$  [2021Hu18], 1.8(1)  $\mu s$  [2019Mi08], 1.04(12)  $\mu s$  [2019Ya04], 0.98(12)  $\mu s$  [2017Su18], 0.96(5)  $\mu s$  [2015Kh09], 1.31(12)  $\mu s$  [1989De06], 1.06(9)  $\mu s$  [1989Mi17] and 1.21(18)  $\mu s$  [1983Sc23].

\*\*\* Weighted average of 43(5) ms [2019Mi08] and 31(8) ms [1990Ni05].

# Table 2

Particle separation, Q-values, and measured values for direct particle emission of the odd-Z,  $T_z = +20$  nuclei. Unless otherwise stated, all S and Q-values are taken from [2021Wa16] or deduced from values therein.

| Nuclide           | $\mathbf{S}_p$ | $S_{2p}$   | Qα         | $BR_{\alpha}$   | Experimental                                       |
|-------------------|----------------|------------|------------|-----------------|----------------------------------------------------|
| <sup>186</sup> Ta | 7 577(88)      | 16 89(21)  | 0.74(21)   |                 |                                                    |
| <sup>190</sup> Re | 7.06(20)       | 16 25(20)  | 0.600(60)  |                 |                                                    |
| <sup>194</sup> Ir | 6 426(2)       | 15.521(71) | 0.626(5)   |                 |                                                    |
| <sup>198</sup> Au | 6.450(1)       | 14.723(38) | 0.526(1)   |                 |                                                    |
| <sup>202</sup> Tl | 5.607(2)       | 13.318(27) | 1.175(2)   |                 |                                                    |
| <sup>206</sup> Bi | 3.547(8)       | 10.260(8)  | 3.527(8)   |                 |                                                    |
| <sup>210</sup> At | 2.895(8)       | 7.680(8)   | 5.631(1)   | 0.18(2)%        | [1981Va27, 1981Va29, 1977VaZT, 1969Go23, 2003HaZT, |
|                   |                |            |            |                 | 1975Ja09, 1975JaZF, 1968GuZX, 1955Mo68, 1953AsZZ]  |
| <sup>214</sup> Fr | 2.551(9)       | 6.908(9)   | 8.589(4)   | 100%            | [1970To18, 2021Hu18, 2019Mi08, 2016Fa11, 2015Kh09, |
|                   |                |            |            |                 | 2005Ku06, 2005Li17, 1989AnZL, 1968To10, 1968Va18]  |
| $^{214m}$ Fr      | 2.430(11)      | 6787(11)   | 8.710(8)   | 100%            | [ <b>1970To18</b> , 2016Fa11, 2005Ku06, 1966Ro12]  |
| <sup>218</sup> Ac | 2.328(58)      | 6.698(58)  | 9.379(10)* | 100%            | [2021Hu18, 2017Su18, 1970Bo13, 2021Hu19, 2019Mi17, |
|                   |                |            |            |                 | 2019Ya04, 2015Kh09, 1989De06, 1989Mi17, 1989MiZK,  |
|                   |                |            |            |                 | 1989MiZZ, 1988MiZJ, 1983Sc23, 1970Bo13, 1970VaZZ]  |
| <sup>222</sup> Pa | 2.165(87)      | 6.257(87)  | 8.789(65)  | 100%            | [2021Hu18, 2019Mi08, 1995AnZY, 1979Sc09, 1970Bo13, |
|                   |                |            |            |                 | 1970VaZZ]                                          |
| <sup>226</sup> Np | 1.84(10)       | 5.62(10)   | 8.328(54)  | $\approx 100\%$ | [2019Mi08, 1994AnZY, 1994Ye08, 1993AnZS, 1990Ni05] |
| <sup>230</sup> Am | 1.81(16)#      | 5.53(18)#  | 7.63(10)#  |                 |                                                    |
| <sup>234</sup> Bk | 1.19(17)#      | 4.60(34)#  | 8.100(50)  | $>\!\!80\%$     | [2016Ka13, 2003MoZT, 2010KaZV, 2003MoZX]           |

\* Deduced from  $\alpha$  energy, 9.384(57) MeV in [2021Wa16].

### Table 3

direct  $\alpha$  emission from <sup>210</sup>At\*,  $J^{\pi} = (5^+)$ ,  $T_{1/2} = 8.440(79)$  h\*\*,  $BR_{\alpha} = 0.18(2)\%$ \*\*\*

| $E_{\alpha}(\text{c.m.})$ | $E_{\alpha}(\text{lab})$ | $I_{\alpha}(\text{rel})$ | $I_{\alpha}(abs)$          | $J_f^{\pi@}$      | <i>E</i> <sub>daughter</sub> ( <sup>206</sup> Bi) | coincident γ-rays <sup>@</sup> | $R_0 \ (fm)^{@ @}$ | HF                              |
|---------------------------|--------------------------|--------------------------|----------------------------|-------------------|---------------------------------------------------|--------------------------------|--------------------|---------------------------------|
| 5.275(4)                  | 5.175(4)                 | 0.7(2)%                  | $3.8(12) 	imes 10^{-4}$ %  | $(3,4)^+$         | 0.356                                             | 0.338                          | 1.4320(26)         | $66^{+30}_{-17}$                |
| 5.344(3)                  | 5.242(3)                 | 2.8(4)%                  | $1.6(3) \times 10^{-3} \%$ | $(4^+, 5^+)$      | 0.288                                             |                                | 1.4320(26)         | $36^{+8'}_{-6}$                 |
| 5.4640(13)                | 5.3599(13)               | 91(5)%                   | 0.050(7)%                  | $5^{+}$           | 0.167                                             | 0.106, 0.167                   | 1.4320(26)         | $5.3^{+0.9}_{-0.7}$             |
| 5.492(2)                  | 5.387(2)                 | 15.0(10)%                | $8.3(11) 	imes 10^{-3}$ %  | 7+                | 0.140                                             | 0.141                          | 1.4320(26)         | $44^{+8}_{-6}$                  |
| 5.5485(15)                | 5.4428(15)               | 93(5)%                   | 0.051(6)%                  | (5 <sup>+</sup> ) | 0.083                                             | 0.083                          | 1.4320(26)         | $14.1^{+2.3}_{-1.9}$            |
| 5.562(2)                  | 5.456(2)                 | 1.3(2)%                  | $7.2(13) 	imes 10^{-4}$ %  | (3 <sup>+</sup> ) | 0.069                                             |                                | 1.4320(26)         | $1.2^{+0.4}_{-0.3} \times 10^3$ |
| 5.5714(15)                | 5.4653(15)               | 23.6(10)%                | 0.013(2)%                  | $4^{+}$           | 0.060                                             |                                | 1.4320(26)         | $73^{+12}_{-10}$                |

| Lable J |
|---------|
|---------|

| lirect $\alpha$ emission from <sup>210</sup> At*, $J^{\pi}$ = | $(5^+), T_{1/2} = 8.4$ | 440(79) h**, $BR_{\alpha}$ | $= 0.18(2)\%^{***}$ |
|---------------------------------------------------------------|------------------------|----------------------------|---------------------|
|---------------------------------------------------------------|------------------------|----------------------------|---------------------|

| 5.6314(13) | 5.5241(13) | 100(3)% | 0.055(6)% | $6^{+}$ | 0.0 |  | 1.4320(26) | $35^{+5}_{-4}$ |
|------------|------------|---------|-----------|---------|-----|--|------------|----------------|
|------------|------------|---------|-----------|---------|-----|--|------------|----------------|

\* All values from [1977VaZT, 1981Va27, 1981Va29], except where noted.

\*\* [2003HaZT].

\*\*\* [1969Go23].

@ [2008Ko21].

<sup>@</sup><sup>@</sup> Interpolated between 1.42967(74) fm (<sup>208</sup>Po) and 1.4343(25) fm (<sup>212</sup>Rn).

| Table | 4 |
|-------|---|
|-------|---|

| lirect $\alpha$ emission from <sup>214</sup> Fr*, $J^{\pi}$ = | $(1^{-}), T_{1}$ | $_{1/2} = 5.0(2) \text{ ms}^{**}, BR_{\alpha} =$ | 100% |
|---------------------------------------------------------------|------------------|--------------------------------------------------|------|
|---------------------------------------------------------------|------------------|--------------------------------------------------|------|

| $E_{\alpha}(c.m.)$               | $E_{\alpha}(\text{lab})^{***}$   | $I_{\alpha}(\text{rel})$         | $I_{\alpha}(abs)$                                              | $J_{f}^{\pi@@}$               | $E_{daughter}(^{210}\mathrm{At})^{@@}$ | coincident γ-rays <sup>@@</sup>   | $R_0 (fm)^{@@@}$                       | HF                                                     |
|----------------------------------|----------------------------------|----------------------------------|----------------------------------------------------------------|-------------------------------|----------------------------------------|-----------------------------------|----------------------------------------|--------------------------------------------------------|
| 7.549(5)<br>7.752(8)             | 7.408(5)<br>7.607(8)             | $\approx 0.3\%$<br>$\approx 1\%$ | $\approx 0.3\%$<br>$\approx 1\%$                               | (3+)                          | 1.0367<br>0.8378                       | 0.073, 0.424, 0.496, 0.540, 0.946 | 1.4888(44)<br>1.4888(44)               | $\approx 31 \\ \approx 40$                             |
| 8.090(8)<br>8.519(5)<br>8.588(5) | 7.939(8)<br>8.360(5)<br>8.428(5) | ≈1%<br>5.2(2)%<br>100.(5)%       | $\approx 1\%$<br>4.8(2)% <sup>@</sup><br>93.0(5)% <sup>@</sup> | $(4^+)$<br>$(4^+)$<br>$(5^+)$ | 0.4962(1)<br>0.073(1)<br>0.0           | 0.073                             | 1.4888(44)<br>1.4888(44)<br>1.4888(44) | $\approx 420$<br>1.33(15) × 10 <sup>3</sup><br>107(11) |

\* All values from [1970To18], except where noted.

\*\* [1968To10].

\*\*\* Adjusted by +2.3 keV in [1991Ry01].

<sup>@</sup> [2016Fa11].

@@ [2014Ba41].

@@@ Interpolated between 1.4343(25) fm ( $^{212}$ Rn) and 1.5433(36) fm ( $^{216}$ Ra).

#### Table 5

direct  $\alpha$  emission from <sup>214m</sup>Fr\*, Ex. = 121(7) keV,  $J^{\pi} = (8^{-})$ ,  $T_{1/2} = 3.35(5)$  ms,  $BR_{\alpha} = 100\%$ 

| $E_{\alpha}(\text{c.m.})$ | $E_{\alpha}(\text{lab})^{**}$ | $I_{\alpha}(\text{rel})$ | $I_{\alpha}(abs)$ | $J_{f}^{\pi@@}$ | $E_{daughter}(^{210}\mathrm{At})^{@@}$ | coincident γ-rays <sup>@@@@</sup> | $R_0 (fm)^b$ | HF  |
|---------------------------|-------------------------------|--------------------------|-------------------|-----------------|----------------------------------------|-----------------------------------|--------------|-----|
| 7 401(5)                  | 7 241(5)                      | 0.10                     | 0.050             |                 | 1 229(7)4                              |                                   | 1 4999/44    | 75  |
| 7.481(5)                  | 7.341(5)                      | 0.1%                     | 0.05%             |                 | 1.228(7)                               |                                   | 1.4888(44)   | 75  |
| 7.739(5)                  | 7.594(5)                      | 1.0%                     | 0.5%              |                 | 0.966(2)                               | 0.966(2)                          | 1.4888(44)   | 51  |
| 7.859(5)                  | 7.712(5)***                   | 2.2%                     | 1.1%              |                 | 0.8469(3)                              | 0.0728(2), 0.7747(4), 0.8469(3)   | 1.4888(44)   | 54  |
| 8.104(6)                  | 7.953(6)                      |                          |                   |                 | 0.6035(5)                              | 0.0728(2), 0.5307(4)              | 1.4888(44)   |     |
| 8.131(5)                  | 7.979(5)                      | 1.4%                     | 0.7%              | $(7^{+})$       | 0.5767(3)                              | 0.5767(3)                         | 1.4888(44)   | 540 |
| 8.177(6)                  | 8.024(6)@                     |                          |                   | (3+)            | 0.5311(4)                              | 0.0728(2), 0.4583(3)              | 1.4888(44)   |     |
| 8.199(5)                  | 8.046(5)                      | 1.8%                     | 0.9%              | $(6^{+})$       | 0.5074(2)                              | 0.0728(2), 0.4231(6), 0.5074(2)   | 1.4888(44)   | 660 |
| 8.211(5)                  | 8.058(6)@                     |                          |                   | $(4^{+})$       | 0.4966(6)                              | 0.0728(2), 0.4231(6), 0.4966(6)   | 1.4888(44)   |     |
| 8.636(5)                  | 8.475(5)***                   | 100%                     | 50.9%             | $(4^{+})$       | 0.0728(2)                              | 0.0728(2)                         | 1.4888(44)   | 180 |
| 8.709(5)                  | 8.546(5)***                   | 90.4%                    | 46.0%             | $(5^{+})$       | 0.0                                    |                                   | 1.4888(44)   | 300 |

\* All values from [1968To10], except where noted. Uncertainties for  $I_{\alpha}$  are not given.

\*\* Energy values from [1968To10] are adjusted by +0.8 keV in [1991Ry01].

\*\*\* Weighted average of values from [1968To10] and [2005Ku06].

<sup>@</sup>  $\alpha$  not observed. Deduced in [2005Ku06] from  $\alpha$ - $\gamma$  coincidences.

@@ [2014Ba41]. @@@ [2005Ku06].

<sup>*a*</sup> Deduced from  $\alpha$  energies [1968To10]. <sup>*b*</sup> Interpolated between 1.4343(25) fm (<sup>212</sup>Rn) and 1.5433(36) fm (<sup>216</sup>Ra).

## Table 6

direct  $\alpha$  emission from <sup>218</sup>Ac,  $J^{\pi} = (1^{-})$ ,  $T_{1/2} = 1.12(3) \ \mu s^*$ ,  $BR_{\alpha} = 100\%$ 

| $E_{\alpha}(\text{c.m.})$ | $E_{\alpha}(\text{lab})$ | $I_{\alpha}(abs)$ | $J_{f}^{\pi@@}$   | $E_{daughter}(^{214}\mathrm{Fr})^{@@}$ | coincident γ-rays <sup>@@</sup> | $R_0 (fm)^{@@@}$ | HF     |
|---------------------------|--------------------------|-------------------|-------------------|----------------------------------------|---------------------------------|------------------|--------|
| 9.379(10)                 | 9.207(10)                | 100%              | (1 <sup>-</sup> ) | 0.0                                    |                                 | 1.5742(56)       | 2.9(4) |

\* Weighted average of 0.87<sup>+0.18</sup><sub>-0.07</sub> μs [2021Hu18], 1.8(1) μs [2019Mi08], 1.04(12) μs [2019Ya04], 0.98(12) μs [2017Su18], 0.96(5) μs [2015Kh09], 1.31(12) μs [1989De06], 1.06(9) μs [1989Mi17] and 1.21(18) μs [1983Sc23].
\*\* Weighted average of 9.917(15) MeV [2021Hu18], 9.919(15) MeV [2017Su18] and 9.205(15) MeV [1970Bo13].

\*\*\* Interpolated between 1.5433(36) fm ( $^{216}$ Ra) and 1.6051(43) fm ( $^{220}$ Th).

## **Table 7** direct $\alpha$ emission from <sup>222</sup>Pa\*, $T_{1/2} = 2.76^{+0.43}_{-0.33}$ ms, $BR_{\alpha} = 100\%$

| $E_{\alpha}(\text{c.m.})$ | $E_{\alpha}(\text{lab})$ | $I_{\alpha}(\text{rel})$ | $I_{\alpha}(abs)^{**}$ | ${ m J}_f^\pi$ | $E_{daughter}(^{218}\mathrm{Ac})$ | coincident $\gamma$ -rays | R <sub>0</sub> (fm)*** | HF  |
|---------------------------|--------------------------|--------------------------|------------------------|----------------|-----------------------------------|---------------------------|------------------------|-----|
| 8.206(18)                 | 8.058(18)                | 23%                      | 5.7%                   |                | 0 589                             |                           | 1.5783(52)             | 27  |
| 8.401(16)                 | 8.250(16)                | 77%                      | 19.2%                  |                | 0.393                             |                           | 1.5783(52)             | 30  |
| 8.491(16)                 | 8.338(16)                | 58%                      | 14.4%                  |                | 0.303                             |                           | 1.5783(52)             | 72  |
| 8.592(16)                 | 8.437(16)                | 80%                      | 19.9%                  |                | 0.203                             |                           | 1.5783(532)            | 100 |
| 8.681(16)                 | 8.525(16)                | 64%                      | 15.9%                  |                | 0.113                             |                           | 1.5783(52)             | 220 |
| 8.794(15)                 | 8.636(15)                | 100%                     | 24.9%                  | $(1^{-})$      | 0.0                               |                           | 1.5783(52)             | 280 |

\* All values from [2021Hu18], except where noted.

\*\* No uncertainties were reported [2021Hu18].

\*\*\* Interpolated between 1.6051(43) fm (<sup>220</sup>Th) and 1.5514(30) fm (<sup>224</sup>U).

### Table 8

```
direct \alpha emission from <sup>226</sup>Np*, T<sub>1/2</sub> = 43(5) ms**, BR<sub>\alpha</sub> = \approx 100%
```

| $E_{\alpha}(c.m.)$     | $E_{\alpha}(\text{lab})$ | $I_{\alpha}(\text{rel})$ | $I_{\alpha}(abs)$ | $\mathrm{J}_f^\pi$ | $E_{daughter}(^{222}\text{Pa})$ | coincident $\gamma$ -rays | $R_0 \ (fm)^@$         | HF                         |
|------------------------|--------------------------|--------------------------|-------------------|--------------------|---------------------------------|---------------------------|------------------------|----------------------------|
| 8.134(20)<br>8.236(20) | 7.990(20)<br>8.090(20)   | ***                      | ***               |                    | 0.193(28)<br>0.091(28)          |                           | 1.516(42)<br>1.516(42) | $\approx 3$<br>$\approx 5$ |
| 8.327(20)              | 8.180(20)                | ***                      | ***               |                    | 0.0 <sup>@@</sup>               |                           | 1.516(42)              | $\approx 10$               |

\* All values from [2019Mi08], except where noted.

\*\* Weighted average of 43(5) ms [2019Mi08] and 31(8) ms [1990Ni05].

\*\*\* Text from [2019Mi08]: "For <sup>226</sup>Np, the  $\alpha$ 1 events (Fig. 4 top right energy panel) show a broad energy distribution E=(7.9 – 8.4) MeV, however with the signature for three different  $\alpha$ -decay transitions with comparable intensities at 7.98(2), 8.09(2) and 8.18(2) MeV. This could correspond to either single  $\alpha$  decay activities or to  $\alpha$ -decay+conversion electron summing." In the aforementioned Fig. 4, there are  $\approx$  6 counts in each peak.

<sup>@</sup> Interpolated between 1.5514(30) fm (<sup>224</sup>U) and 1.480(42) (<sup>228</sup>Pu).

<sup>@@</sup> Transition is assumed to feed the ground state.

#### Table 9

| direct $\alpha$ emission from <sup>234</sup> Bk*, T | $_{1/2} = 19^{+6}_{-4}$ s, $BR_{\alpha} = > 80\%^{**}$ |
|-----------------------------------------------------|--------------------------------------------------------|
|-----------------------------------------------------|--------------------------------------------------------|

| $E_{\alpha}(c.m.)$ | $E_{\alpha}(\text{lab})$ | $I_{\alpha}(\text{rel})$ | $I_{\alpha}(abs)$ | $\mathbf{J}_f^{\pi}$ | $E_{daughter}(^{230}\mathrm{Am})$ | coincident $\gamma$ -rays | $R_0$ (fm) | HF |
|--------------------|--------------------------|--------------------------|-------------------|----------------------|-----------------------------------|---------------------------|------------|----|
| 7 753(20)          | 7 620(20)                | ***                      | ***               |                      | 0 345(28)                         |                           |            |    |
| 7.895(20)          | 7.760(20)                | ***                      | ***               |                      | 0.203(28)                         |                           |            |    |
| 7.997(20)          | 7.860(20)                | ***                      | ***               |                      | 0.101(28)                         |                           |            |    |
| 8.098(20)          | 7.960(20)                | ***                      | ***               |                      | $0.0^{@}$                         |                           |            |    |

\* All values from [2016Ka13], except where noted.

\*\* [2003MoZT].

\*\*\* Fig. 2a in [2016Ka13] shows the  $\alpha$  spectrum of <sup>234</sup>Bk. The four peaks present each have  $\approx$  5 counts each.

<sup>@</sup> Transition is assumed to feed the ground state.

## **References used in the Tables**

- [1] 1953AsZZ F. Asaro, Thesis, Univ. California (1953); UCRL-2180 (1953).
- [2] 1955Mo68 F. F. Momyer, Jr., E. K. Hyde, J. Inorg. Nucl. Chem. 1, 274 (1955). https://doi.org/10.1016/0022-1902(55)80033-4
- [3] 1961Br19 J. H. Brunner, R. Lombard, C. F. Perdrisat, H. J. Leisi, Helv. Phys. Acta 34, 472 (1961).
- [4] 1966Ro12 H. Rotter, A. G. Demin, L. P. Pashchenko, H. F. Brinckmann, Yad. Fiz. 4, 246 (1966); Soviet J. Nucl. Phys. 4, 178 (1967).
- [5] 1968GuZX L. Gueth, S. Gueth, E. Daroczy, B. S. Dzhelepov, Y. V. Norseev, V. A. Khalkin, JINR-P6-4079 (1968).
- [6] 1968To10 D. F. Torgerson, R. A. Gough, R. D. Macfarlane, Phys. Rev. 174, 1494 (1968). https://doi.org/10.1103/PhysRev.174.1494
- [7] 1968Va18 K. Valli, E. K. Hyde, Phys. Rev. 176, 1377 (1968). https://doi.org/10.1103/PhysRev.176.1377
- [8] 1969Go23 N. A. Golovkov, S. Guetkh, B. S. Dzhelepov, Y. V. Norseev, V. A. Khalkin, V. G. Chumin, Izv. Akad. Nauk SSSR, Ser. Fiz. 33, 1622 (1969); Bull. Acad. Sci. USSR, Phys. Ser. 33, 1489 (1970).

- [9] 1970Bo13 J. Borggreen, K. Valli, E. K. Hyde, Phys. Rev. C2, 1841 (1970). https://doi.org/10.1103/PhysRevC.2.1841
- [10] **1970To18** D. F. Torgerson, R. D. Macfarlane, Phys. Rev. C2, 2309 (1970). https://doi.org/10.1103/PhysRevC.2.2309
- [11] 1970VaZZ K. Valli, E. K. Hyde, J. Borggreen, CONF Leysin Vol1 P545, CERN 70-30
- [12] 1972Em01 J. F. Emery, S. A. Reynolds, E. I. Wyatt, G. I. Gleason, Nucl. Sci. Eng. 48, 319 (1972). https://doi.org/10.13182/NSE72-A22489
- [13] 1973DeWI F. W. N. de Boer, P. F. A. Goudsmit, B. J. Meijer, W. L. Posthumus, IKO Ann. Rept. 72/73, p. 35 (1973).
- [14] 1975Ja09 L. J. Jardine, A. A. Shihab-Eldin, Nucl. Phys. A244, 34 (1975). https://doi.org/10.1016/0375-9474(75)90004-4
- [15] 1975JaZF L. J. Jardine, A. A. Shihab-Eldin, REPT LBL-4000, P13.
- [16] 1977VaZT V. M. Vakhtel, L. Vasharosh, N. A. Golovkov, R. B. Ivanov, Y. Y. Lobanov, A. F. Novgorodov, Y. V. Norseev, V. G. Chumin, Program and Theses, Proc. 27th Ann. Conf. Nucl. Spectrosc. Struct. At. Nuclei, Tashkent, p. 117 (1977).
- [17] 1979Sc09 K. -H. Schmidt, W. Faust, G. Munzenberg, H. -G. Clerc, W. Lang, K. Pielenz, D. Vermeulen, H. Wohlfarth, H. Ewald, K. Guttner, Nucl. Phys. A318, 253 (1979). https://doi.org/10.1016/0375-9474(79)90482-2
- [18] 1981Va27 V. M. Vakhtel, N. A. Golvkov, R. B. Ivanov, M. A. Mikhailova, A. F. Novgorodov, Yu. V. Norseev, V. G. Chumin, Yu. V. Yushkevich, Izv. Akad. Nauk SSSR, Ser. Fiz. 45, 1861 (1981).
- [19] 1981Va29 V. M. Vakhtel, N. A. Golovkov, R. B. Ivanov, M. A. Mikhailova, V. G. Chumin, Izv. Akad. Nauk SSSR, Ser. Fiz. 45, 1966 (1981).
- [20] 1983Sc23 N. Schulz, A. Chevallier, J. Chevallier, S. Khazrouni, L. Kraus, I. Linck, Phys. Rev. C28, 435 (1983). https://doi.org/10.1103/PhysRevC.28.435
- [21] 1988MiZJ H. Miyatake, T. Nomura, S. Kubono, J. Tanaka, M. Oyaizu, N. Ikeda, K. Sueki, H. Kudo, K. Morita, T. Shinozuka, Osaka Univ. Lab. Nucl. Studies, Ann. Rept., 1987, p. 122 (1988).
- [22] 1989AnZL A. N. Andreev, D. D. Bogdanov, V. I. Chepigin, V. A. Gorshkov, A. P. Kabachenko, A. N. Kuznetsov, Sh. Sharo, G. M. Ter-Akopian, A. V. Eremin, JINR-E15-89-683 (1989).
- [23] 1989De06 M. E. Debray, M. Davidson, A. J. Kreiner, J. Davidson, G. Falcone, D. Hojman, D. Santos, Phys. Rev. C39, 1193 (1989). https://doi.org/10.1103/PhysRevC.39.1193
- [24] 1989Mi17 H. Miyatake, T. Nomura, S. Kubono, J. Tanaka, M. Oyaizu, H. Okawa, N. Ikeda, K. Sueki, H. Kudo, K. Morita, T. Shinozuka, Nucl. Phys. A501, 557 (1989). https://doi.org/10.1016/0375-9474(89)90148-6
- [25] 1989MiZK H. Miyatake, T. Nomura, S. Kubono, J. Tanaka, M. Oyaizu, H. Okawa, N. Ikeda, K. Sueki, H. Kudo, K. Morita, T. Shinozuka, Inst. Nucl. Study, Univ. Tokyo, Ann. Rept., 1988, p. 25 (1989).
- [26] 1989MiZZ H. Miyatake, T. Nomura, S. Kubono, J. Tanaka, M. Oyaizu, H. Okawa, N. Ikeda, K. Sueki, H. Kudo, K. Morita, T. Shinozuka, INS-Rep-738 (1989).
- [27] 1990Ni05 V. Ninov, F. P. Hessberger, P. Armbruster, S. Hofmann, G. Munzenberg, M. Leino, Y. Fujita, D. Ackermann, W. Morawek, A. Luttgen, Z. Phys. A336, 473 (1990).
- [28] 1993AnZS A. N. Andreyev, D. D. Bogdanov, V. I. Chepigin, M. Florek, A. P. Kabachenko, O. N. Malyshev, S. Sharo, G. M. Ter-Akopian, M. Veselsky, A. V. Yeremin, Proc. 6th Intern. Conf. on Nuclei Far from Stability + 9th Intern. Conf. on Atomic Masses and Fundamental Constants, Bernkastel-Kues, Germany, 19-24 July, 1992, R. Neugart, A. Wohr, Eds., p. 759 (1993).
- [29] 1994Ye08 A. V. Yeremin, A. N. Andreyev, D. D. Bogdanov, G. M. Ter-Akopian, V. I. Chepigin, V. A. Gorshkov, A. P. Kabachenko, O. N. Malyshev, A. G. Popeko, R. N. Sagaidak, S. Sharo, E. N. Voronkov, A. V. Taranenko, A. Yu. Lavrentjev, Nucl. Instrum. Methods Phys. Res. A350, 608 (1994). https://doi.org/10.1016/0168-9002(94)91265-3
- [30] 1995Co19 J. Colin, G. Bizard, D. Durand, A. Genoux-Lubain, C. Le Brun, J. F. Lecolley, M. Louvel, Ch. Meslin, G. Rudolf, J. C. Steckmeyer, L. Stuttge, Nucl. Phys. A593, 48 (1995). https://doi.org/10.1016/0375-9474(95)00333-V
- [31] 1995ItZY S. Itoh, M. Yasuda, H. Yamamoto, T. Iida, A. Takahashi, K. Kawade, JAERI-Conf 95-008, p. 185 (1995).
- [32] 2003HaZT A. A. Hassan, S. M. Lukyanov, Yu. E. Penionzhkevich, L. R. Gasques, L. C. Chamon, A. Szanto de Toledo, JINR-E15-2003-186 (2003).
- [33] 2003MoZT K. Morita, K. Morimoto, D. Kaji, T. Chihara, H. Haba, H. Hasebe, Y. Higurashi, E. Ideguchi, N. Iwasa, T. Kamigaito, R. Kanungo, T. Kato, K. Katori, M. Kidera, H. Koura, H. Kudo, T. Ohnishi, T. Suda, K. Sueki, I. Sugai, T. Suzuki, S. Takeuchi, F. Tokanai, K. Uchiyama, Y. Wakasaya, H. Xu, T. Yamaguchi, A. Yeremin, A. Yoneda, A. Yoshida, Y. L. Zhao, T. Zheng, I. Tanihata, Proc. Frontiers of Collective Motion, Aizu, Japan, November 2002, H. Sagawa and H. Iwasaki, eds., p. 140 (2003)

- [34] 2003MoZX K. Morimoto, K. Morita, D. Kaji, A. Yoneda, A. Yoshida, T. Suda, E. Ideguchi, T. Ohnishi, Y. -L. Zhao, H. Xu, T. Zheng, M. Haba, H. Kudo, H. Koura, K. Katori, I. Tanihata, RIKEN Accelerator Progress Report 2002, p. 89 (2003).
- [35] 2005Ku06 P. Kuusiniemi, F. P. Hessberger, D. Ackermann, S. Hofmann, I. Kojouharov, Eur. Phys. J. A 23, 417 (2005). https://doi.org/10.1140/epja/i2004-10104-y
- [36] 2005Li17 Z. Liu, J. Kurcewicz, P. J. Woods, C. Mazzocchi, F. Attallah, E. Badura, C. N. Davids, T. Davinson, J. Doring, H. Geissel, M. Gorska, R. Grzywacz, M. Hellstrom, Z. Janas, M. Karny, A. Korgul, I. Mukha, M. Pfutzner, C. Plettner, A. Robinson, E. Roeckl, K. Rykaczewski, K. Schmidt, D. Seweryniak, H. Weick, Nucl. Instrum. Methods Phys. Res. A543, 591 (2005). https://doi.org/10.1016/j.nima.2004.12.023
- [37] **2008Ku09** V. Kumar, M. Hass, Y. Nir-El, G. Haquin, Z. Yungreiss, Phys. Rev. C **77**, 051304 (2008). https://doi.org/10.1103/PhysRevC.77.051304
- [38] 2010KaZV D. Kaji, H. Haba, Y. Kasamatsu, Y. Kudou, K. Morimoto, K. Ozeki, T. Sumita, A. Yoneda, H. Koura, N. Sato, S. Goto, H. Murayama, F. Tokanai, K. Mayama, S. Namai, M. Takeyama, K. Morita, RIKEN Accelerator Progress Report 2009, p. 28 (2010).
- [39] 2015Kh09 J. Khuyagbaatar, A. Yakushev, Ch. E. Dullmann, D. Ackermann, L. L-. Andersson, M. Block, H. Brand, D. M. Cox, J. Even, U. Forsberg, P. Golubev, W. Hartmann, R. -D. Herzberg, F. P. Hessberger, J. Hoffmann, A. Hubner, E. Jager, J. Jeppsson, b. Kindler, J. V. Kratz, J. Krier, N. Kurz, B. Lommel, M. Maiti, S. Minami, A. K. Mistry, C. M. Mrosek, I. Pysmenetska, D. Rudolph, L. G. Sarmiento, H. Schaffner, M. Schadel, B. Schausten, J. Steiner, T. Torres De Heidenreich, J. Uusitalo, M. Wegrzecki, N. Wiehl, V. Yakusheva, Phys. Rev. Lett. 115, 242502 (2015). https://doi.org/10.1103/PhysRevLett.115.242502
- [40] 2016Ka13 D. Kaji, K. Morimoto, H. Haba, E. Ideguchi, H. Koura, K. Morita, J. Phys. Soc. Jpn. 85, 015002 (2016). https://doi.org/10.7566/JPSJ.85.015002
- [41] 2016Kr06 K. S. Krane, Appl. Radiat. Isot. 115, 32 (2016). https://doi.org/10.1016/j.apradiso.2016.06.006
- [42] 2017Su18 M. D. Sun, Z. Liu, T. H. Huang, W. Q. Zhang, J. G. Wang, X. Y. Liu, B. Ding, Z. G. Gan, L. Ma, H. B. Yang, Z. Y. Zhang, L. Yu, J. Jiang, K. L. Wang, Y. S. Wang, M. L. Liu, Z. H. Li, J. Li, X. Wang, H. Y. Lu, C. J. Lin, L. J. Sun, N. R. Ma, C. X. Yuan, W. Zuo, H. S. Xu, X. H. Zhou, G. Q. Xiao, C. Qi, F. S. Zhang, Phys. Lett. B 771, 303 (2017). https://doi.org/10.1016/j. physletb.2017.03.074
- [43] 2017Wi13 G. L. Wilson, M. Takeyama, A. N. Andreyev, B. Andel, S. Antalic, W. N. Catford, L. Ghys, H. Haba, F. P. Hessberger, M. Huang, D. Kaji, Z. Kalaninova, K. Morimoto, K. Morita, M. Murakami, K. Nishio, R. Orlandi, A. G. Smith, K. Tanaka, Y. Wakabayashi, S. Yamaki, Phys. Rev. C 96, 044315 (2017). https://doi.org/10.1103/PhysRevC.96.044315
- [44] 2019Mi08 A. K. Mistry, J. Khuyagbaatar, F. P. Hessberger, D. Ackermann, B. Andel, S. Antalic, M. Block, P. Chhetri, F. Dechery, C. Droese, Ch. E. Dullmann, F. Giacoppo, J. Hoffmann, O. Kaleja, N. Kurz, M. Laatiaoui, L. Lens, J. Maurer, P. Mosat, J. Piot, S. Raeder, M. Vostinar, A. Yakushev, Z. Zhang, Nucl. Phys. A987, 337 (2019). https://doi.org/10.1016/j.nuclphysa.2019.05.003
- [45] 2019Ya04 H. B. Yang, Z. G. Gan, Z. Y. Zhang, M. M. Zhang, M. H. Huang, L. Ma, C. L. Yang, Eur. Phys. J. A 55, 8 (2019). https://doi.org/10.1140/epja/i2019-12684-7
- [46] 2021Hu18 W. Hua, Z. Zhang, L. Ma, Z. Gan, H. Yang, C. Yuan, M. Huang, C. Yang, M. Zhang, Y. Tian, X. Zhou, Chin. Phys. C 45, 044001 (2021). https://doi.org/10.1088/1674-1137/abdea8
- [47] 2021Wa16 M. Wang, W. J. Huang, F. G. Kondev, G. Audi, S. Naimi, Chin. Phys. C 45, 030003 (2021). https://doi.org/10.1088/1674-1137/abddaf