

Fig. 1: Known experimental values for heavy particle emission of the odd-Z T_z = +19 nuclei.

Last updated 1/13/24

Table 1

Observed and predicted β -delayed particle emission from the odd-Z, $T_z = +19$ nuclei. J^{π} values for ¹⁸⁰Lu, ¹⁸⁴Ta, ¹⁸⁸Re, ¹⁹²Ir, ¹⁹⁶Au, ²⁰⁰Tl and ²⁰⁴Bi are taken from ENSDF. Unless otherwise stated, all Q-values are taken from [2021Wa16] or deduced from values therein.

Nuclide	J^{π}	Ex.	$T_{1/2}$	Qε	$Q_{\varepsilon p}$	$Q_{\varepsilon \alpha}$	Experimental
100							
¹⁸⁰ Lu*		5^{+}	5.7(1) m	-1.96(31)#			[1973KaYQ]
¹⁸⁴ Ta*		(5^{-})	8.7(1) h	-1.340(3)			[1955Bu80]
¹⁸⁸ Re*		1^{-}	0.70846(14) d	-0.349(3)			[2004Sc04]
¹⁹² Ir**		4^{+}	73.831(8) d	1.047(2)	-7.774(10)	1.407(3)	[1980Ho17]
196Au***		2^{-}	6.1669(6) d	0.687(3)	-6.735(3)	2.319(4)	[2001Li17]
²⁰⁰ Tl		2^{-}	26.1(1) h	2.456(6)	-5.242(6)	3.172(6)	[1962Ja10]
²⁰⁴ Bi		6^{+}	11.22(10) h	4.464(9)	-2.174(9)	6.432(9)	[1960St21]
²⁰⁸ At		6^{+}	1.63(3) h	4.999(9)	0.296(9)	10.215(9)	[1964Th07]
²¹² Fr		5^{+}	20.3(3) m [@]	5.143(9)	0.842(9)	11.528(9)	[1973GoZX, 1950Hy27]
²¹⁶ Ac		1^{-}	443(7) μs	4.858(12)	0.543(12)	14.384(10)	[2000He17]
²²⁰ Pa		(1^{-})	0.75(4) µs ^{@@}	5.589(20)	1.420(54)	14.562(17)	[2023Lu04, 2021Ma66, 2020Ma27,
							2019Ya04, 2017Hu08]
^{220m1} Pa	0.124(40)	(3 ⁻)	233^{+108}_{-56} ns	5.589(20)	1.544(67)	14.686(43)	[2021Ma66]
^{220m2} Pa	0.274(62)		69^{+330}_{-30} ns	5.589(20)	1.694(82)	14.836(75)	[2018Hu13]
²²⁴ Np			$38^{+26}_{-11} \mu s$	6.290(30)	2.406(81)	14.918(32)	[2018Hu13]
²²⁸ Am				6.74(20)#	2.98(22)#	14.68(20)#	

* 100% β^- emitter.

** 92.24(4)% β^- , 4.76(4)% ε emitter [2012Ba36]. *** 97.0(3)% β^- , 93(3)% ε emitter [2007Hu13].

[@] Weighted average of 20.6(3) m [1973GoZX] and 19.3(5) m [1950Hy27].

[@] Weighted average of 0.83(7) μs [2023Lu04], 0.75(8) μs [2021Ma66], 0.73(11) μs [2020Ma27], 0.91(10) μs [2019Ya04] and 0.90(13) μs [2017Hu08].

Table 2

Particle separation, Q-values, and measured values for direct particle emission of the odd-Z, $T_z = +19$ nuclei. Unless otherwise stated, all S and Q-values are taken from [2021Wa16] or deduced from values therein.

Nuclide	S_p	S_{2p}	Qα	BR_{α}	Experimental
1801 11	7 33(21)#	17.04(31)#	0.27(12)		
¹⁸⁴ Ta	6.845(40)	$17.04(31)\pi$ 15.65(20)	1.412(75)		
¹⁸⁸ Re	6402(1)	14 987(60)	1.398(26)		
¹⁹² Ir	5,729(1)	13 831(5)	1.356(20)		
¹⁹⁶ Au	5.634(3)	13.185(3)	1.272(3)		
²⁰⁰ Tl	4.790(6)	12.044(6)	1.667(6)		
²⁰⁴ Bi	3.148(11)	9.243(9)	3.976(11)		
²⁰⁸ At	2.613(11)	7.020(12)	5.751(2)	0.56(5)%	[1981Va27, 1981Va29, 1970GoZZ, 1950Hy27, 1981VaZM,
					1981VaZN, 1981VaZO, 1980VaZT, 1963Uh01]
²¹² Fr	2.050(11)	6.122(12)	6.529(2)	44(4)%*	[2005Ku06, 1981Va27, 1981Va29, 1950Hy27, 1980VaZT,
					1974Ho27, 1973GoZX, 1971ReZE, 1966Va21, 1955Mo69,
					1953AsZZ]
²¹⁶ Ac	1.671(12)	5.470(13)	9.241(3)	100%	[2004Ku24, 2021Ma66, 2018Hu13, 2017Hu08, 2005Li17,
					2000He17, 1970To18, 1969MaZT, 1968Va18, 1966Ro12]
²²⁰ Pa	1.473(58)	5.150(59)	9.704(11)	100%	[2023Lu04, 2021Ma66, 2020Ma27, 2019Ya04, 2019Zh54,
					2017Hu08, 1987FaZS]
^{220m1} Pa	1.349(70)	5.026(71)	9.828(41)	100%	[2021Ma66]
^{220m2} Pa	1.199(85)	4.876(86)	9.976(63)	100%	[2018Hu13]
²²⁴ Np	1.302(66)	4.610(91)	9.329(30)	100%	[2018Hu13]
²²⁸ Am	1.21(22)#	4.55(23)\$	8.39(20)#		

* based on the K-xray/ α ratio of 1.3(1)% [1950Hy01].

Table 3 direct α emission from ²⁰⁸At, $J^{\pi} = 6^+$, $T_{1/2} = 1.63(3)$ h*, $BR_{\alpha} = 0.56(6)\%^{**}$.

$E_{\alpha}(c.m.)$	$E_{\alpha}(\text{lab})^{***}$	$I_{\alpha}(\text{rel})^{***}$	$I_{\alpha}(abs)$	$J_f^{\pi @}$	$E_{daughter}(^{204}\mathrm{Bi})^{@}$	coincident γ-rays [@]	$R_0 (fm)^{@@@}$	HF
≈5.615 5.696(2) 5.736(4) 5.752(3)	≈5.507 ^{@@} 5.586(2) 5.626(4) 5.641(3)	$\approx 0.2^{@@}\%$ 0.9(1)% 2.2(2)% 100(3)%	$pprox 1.1 imes 10^{-3}\%$ 4.9(8) $ imes 10^{-3}\%$ 1.2(2) $ imes 10^{-2}\%$ 0.54(6)%	7^+ 4^+ 6^+	0.137 0.0534(2) 0.0151(1) 0.000	0.0534(2)	1.4558(24) 1.4558(24) 1.4558(24) 1.4558(24)	$\begin{array}{c} 420\\ 250^{+50}_{-40}\\ 160^{+40}_{-30}\\ 4.2^{+0.7}_{-0.5}\end{array}$

* [1964Th07].

** Based on the ratio of K x-ray/ α from ²⁰⁸At [1950Hy27].

*** [1981Va27, 1981Va29], except where noted.

^(a) [2010Ch02].
^(a) [2010Ch02].
^(a) From [1970GoZZ]. Not observed in [1981Va27, 1981Va29], but may have been below statistical threshold.
^(a) ^(a) ^(a) ^(a) ^(b) ^(a) ^(b) ^(a) ^(b) ^(b)

Table 4

direct α emission from ²¹²Fr, J^{π} = 5⁺, T_{1/2} = 20.3(3) m^{*}, BR_{α} = 44(4)%^{**}.

$E_{\alpha}(\text{c.m.})$	$E_{\alpha}(\text{lab})^{***}$	$I_{\alpha}(\text{rel})^{***}$	$I_{\alpha}(abs)$	\mathbf{J}_f^{π}	$E_{daughter}(^{208}\mathrm{At})^{@@@}$	coincident γ-rays ^{@@@}	R ₀ (fm) [@]	HF
5.848(6)	5.738(6)@@@	$\approx 0.005\%^{@@@}$	≈0.002%		0.6817	0.6871	1.4563(25)	≈ 200
5.940(6)	5.828(6)	0.13(8)%	0.022(13)%		0.5879	0.0235, 0.0401, 0.0503, 0.5879	1.4563(25)	22^{+35}_{-9}
						0.1245, 0.1479, 0.1635, 0.1699,		
						0.2037, 0.2199, 0.2272, 0.2601,		
						0.2835, 0.3047, 0.3613, 0.4406,		
						0.5242, 0.5879		
6.098(4)	5.983(4) ^{@@}	0.19(3)%	0.031(5)%		0.4295	0.0235, 0.0401, 0.0719, 0.1245	1.4563(25)	90^{+40}_{-20}
						0.1479, 0.1635, 0.2023, 0.2037,		
						0.2272, 0.2816, 0.3577, 0.4058		
6.194(3)	6.077(3)	2.5(3)%	0.40(6)%		0.3347	0.0235, 0.0401, 0.2170, 0.3112, 0.3347	1.4563(25)	$17.9^{+3.5}_{-2.7}$
6.245(3)	6.127(3)	3.4(3)%	0.57(7)%		0.2835	0.0235, 0.0401, 0.0503, 0.1699, 0.2199	1.4563(25)	21.0(23)
						0.2601, 0.2835		
6.292(4)	6.173(4)@@	3.4(3)%	0.57(7)%		0.2372	0.0235, 0.0401, 0.1736, 0.2137	1.4563(25)	34^{+6}_{-5}
6.303(3)	6.184(3)	4.2(4)%	0.69(8)%		0.2272	0.0235, 0.0401, 0.1635, 0.2037, 0.2272	1.4563(25)	30_{-4}^{+5}
6.383(3)	6.263(3)	100(5)%	16.5(16)%	5^{+}	0.1479	0.0235, 0.1245, 0.1479	1.4563(25)	2.79(31)
6.458(3)	6.336(3)@@	27(2)%@@	4.4(5)%	(3^+)	0.1139	0.0235, 0.0401, 0.0503	1.4563(25)	14(2)
6.464(3)	6.342(3)	8.0(6)%	1.32(15)%	7+	0.0719	0.0719	1.4563(25)	73^{+11}_{-9}
6.507(3)	6.384(3)	64(3)%	10.6(10)%	(5^{+})	0.0235	0.0235	1.4563(25)	14.4(6)
6.528(3)	6.405(3)	59(3)%	9.7(9)%	6+	0.0		1.4563(25)	19.6(23)

* Weighted average of 20.6(3) m [1973GoZX] and 19.3(5) m [1950Hy27].

*** Weighted average of 20.0(3) in [19/3002X] and 19.5(3) in [19/301927]. *** Based on the K-xray/ α ratio of 1.3(1)% [1950Hy01]. *** Weighted average of values from [2005Ku06] and [1981Va27, 1981Va29]. @ Interpolated between 1.4568(22) fm (²¹⁰Rn) and 1.4557(12) fm (²¹⁴Ra).

^{@@} [1981Va27, 1981Va29]. ^{@@@} [2005Ku06].

Table 5 direct α emission from ²¹⁶Ac*, J^{π} = 1⁻, T_{1/2} = 443(7) μ s**, BR $_{\alpha}$ = 100%.

				- 77				
$E_{\alpha}(c.m.)$	$E_{\alpha}(\text{lab})^{***}$	$I_{\alpha}(\text{rel})^{***}$	$I_{\alpha}(abs)$	J_f^{n}	$E_{daughter}(^{212}\mathrm{Fr})$	coincident γ -rays	$R_0 (fm)^{***}$	HF
7.904(6)	7.758(6)	0.023(6)%	0.011(3)%		1.3753(3)	0.0826(1), 0.4368(6), 0.8558(7), 0.9382(1), 1.2931(4), 1.3753(3)	1.5022(32)	230^{+100}_{-60}
7.923(15)	7.776(15)	> 0.0020(8)%	>0.0010(4)%		1.356(2)	1.356(2)	1.5022(32)	$< 1.6 \times 10^{3}$
7.994(15)	7.846(15)	0.033(6)%	0.016(3)%		1.2871(8)	1.2871(8)	1.5022(32)	<300
8.041(10)	7.892(10))	0.043(4)%	0.021(2)%		1.2399(4)	1.2399(4)	1.5022(32)	<310
8.074(15)	7.924(15)	0.0027(4)%	0.0013(2)%		1.2095(5)	1.2095(5)	1.5022(32)	$< 6.3 \times 10^{3}$
8.152(15)	8.001(15)	> 0.0049(33)%	>0.0024(16)%		1.1299(5)	0.0826(1), 1.0475(9), 1.1299(5)	1.5022(32)	$< 5.8 \times 10^{3}$
8.267(9)	8.114(9)	>0.0041(6)%	>0.002 0(3)%		1.0087(4)	1.0087(4)	1.5022(32)	${<}1.6 imes10^4$
8.341(5)	8.187(5)	1.5(1)%	0.74(2)%		0.9382(1)	0.0826(1), 0.8558(7), 0.9382(1)	1.5022(32)	68(6)
8.426(5)	8.270(5)	2.9(2)%	1.40(7)%		0.8537(1)	0.0826(1), 0.3529(2), 0.4183(1),	1.5022(32)	69(7)
8.503(7)	8.346(7)	>0.21%	<0.1%		0.7773(2)	0.5007(1), 0.7713(1), 0.8537(1) 0.0826(1), 0.2766(2), 0.4183(1), 0.5007(1), 0.6948(1), 0.7773(1)	1.5022(32)	>140
8.670(7)	8.509(7)	>0.035(2)%	>0.017(1)%		0.6106(2)	0.6106(2)	1.5022(32)	$<2.3 imes10^4$
8.675(6)	8.514(6)	> 0.23(4)%	>0.11(2)%		0.6062(1)	0.0826(1), 0.1058(2), 0.4183(1), 0.5007(1), 0.5237(1), 0.6062(1)	1.5022(32)	$< 3.7 \times 10^{3}$
8.697(15)	8.536(15)	> 0.25(4)%	>0.12(2)%		0.5750(4)	0.0826(1), 0.4924(1), 0.5750(4)	1.5022(32)	$< 4.1 \times 10^{3}$
8.738(6)	8.576(6)	> 0.94(10)%	>0.46(5)%	$(7)^{+}$	0.542(1)	0.542(1)	1.5022(32)	$< 1.3 \times 10^{3}$
8.743(6)	8.581(6)	> 1.05(12)%	>0.51(6)%		0.5363(1)	0.0826(1), 0.4539(1), 0.5363(1)	1.5022(32)	$< 1.2 \times 10^3$
8.779(6)	8.616(6)	0.47(10)%	0.23(5)%		0.5007(1)	0.0826(1), 0.4183(1), 0.5007(1)	1.5022(32)	$3.4^{+1.1}_{-0.7} \times 10^3$
9.199(7)	9.029(7)	100(3)%	48.8(10)%	(4^{+})	0.0826(1)	0.0826(1)	1.5022(32)	177(15)
9.277(7)	9.105(7)	97(2)%	47.5(5)%	5^{+}	0.0		1.5022(32)	288(25)

* All values from [2004Ku24], except where noted. Previous works [2000He17, 1970To18, 1968Va18] had assigned α 's as decaying from both a 1⁻ ground state and a 9⁻ isomer. [2004Ku24] demonstrated that all α 's could be accounted for using HF and coincident γ -rays.

** [2000He17].

*** Interpolated between 1.4557(12) fm (²¹⁴Ra) and 1.5487(30) ²¹⁸Th

Table 6

direct α emission from	220 Pa, J $^{\pi}$ = (1^{-}), $T_{1/2} = 0.75(4)$) $\mu s^*, BR_{\alpha} = 100\%.$
-------------------------------	-----------------------------	--------------------------------	-----------------------------------

$E_{\alpha}(c.m.)$	$E_{\alpha}(\text{lab})^{**}$	$I_{\alpha}(abs)$	J_f^π	$E_{daughter}(^{216}\mathrm{Ac})$	coincident γ -rays	R ₀ (fm)***	HF
9.719(6)	9.542(6)	100%	1-	0.0		1.539(15)	$1.4^{+0.5}_{-0.4}$

* Weighted average of 0.83(7) µs [2023Lu04], 0.75(8) µs [2021Ma66], 0.73(11) µs [2020Ma27], 0.91(10) µs [2019Ya04] and 0.90(13) µs [2017Hu08].

** [2023Lu04].

*** Interpolated between 1.5487(30) fm ²¹⁸Th and 1.529(15) fm ²²²U.

Table 7

direct α emission from ^{220m2}Pa*, Ex. = 124(40) keV, J^{π} = (3⁻), T_{1/2} = 233⁺¹⁰⁸₋₅₆ ns, BR_{α} = 100%.

$E_{\alpha}(\text{c.m.})$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(abs)$	J_f^π	$E_{daughter}(^{216}\mathrm{Ac})$	coincident γ-rays	R ₀ (fm)**	HF
9.843(40)	9.664(40)	100%	1-	0.0		1.539(15)	0.8(5)

* All values from [2021Ma66]. They assign a $J^{\pi} = (3^{-})$. However the HF indicates a unhindered decay, suggesting 1^{-} as a more likely value. ** Interpolated between 1.5487(30) fm ²¹⁸Th and 1.529(15) fm ²²²U.

Table 8

direct	α	emission	from	^{220m2} Pa*.	Ex.	= 2740	62) keV	ζ. T _{1 //}	$r = 69^{+32}$	³⁰ ns.	BR_{α}	= 100%.
	~	•					02) 110	· · · · / .	/	1	2.0	100/01

$E_{\alpha}(\text{c.m.})$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(abs)$	${f J}_f^\pi$	$E_{daughter}(^{216}\mathrm{Ac})$	coincident γ -rays	R ₀ (fm)**	HF
9.993(62)	9.811(62)	100%	1-	0.0		1.539(15)	$0.5^{+2.4}_{-0.3}$

* All values from [2021Ma66]. They assign a $J^{\pi} = (3^{-})$. However the HF indicates a unhindered decay, suggesting 1^{-} as a more likely value. ** Interpolated between 1.5487(30) fm ²¹⁸Th and 1.529(15) fm ²²²U.

Table 9 direct α emission from ²²⁴Np*, $T_{1/2} = 38^{+26}_{-11} \mu$ s, $BR_{\alpha} = 100\%$.

$E_{\alpha}(c.m.)$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(\text{rel})$	$I_{\alpha}(abs)$	${ m J}_f^\pi$	$E_{daughter}(^{220}\mathrm{Pa})$	coincident γ-rays	R ₀ (fm)**	HF
9.029(62) 9.303(20)	8.868(62) 9.137(20)	≈20% 100%	0.17(17)% 83(51)%	0.0	0.274(62)	1.503(50)	$1.503(50) \\ 0.3^{+1.0}_{-0.2}$	$0.3^{+8.5}_{-0.2}$

* All values form [2018Hu13].

** Interpolated between 1.521(15) fm (220 U) and 1.484(48) fm (224 Pu).

References used in the Tables

- [1] 1950Hy27 E. K. Hyde, A. Ghiorso, G. T. Seaborg, Phys. Rev. 77, 765 (1950). https://doi.org/10.1103/PhysRev.77.765
- [2] 1953AsZZ F. Asaro, Thesis, Univ. California (1953); UCRL-2180 (1953).
- [3] 1955Bu80 F. D. S. Butement, A. J. Poe, Phil. Mag. 46, 482 (1955). https://doi.org/10.1080/14786440508520584
- [4] 1955Mo69 F. F. Momyer, Jr. , F. Asaro, E. K. Hyde, J. Inorg. Nucl. Chem. 1, 267 (1955). https://doi.org/10.1016/0022-1902(55)80032-2
- [5] **1960St21** R. Stockendal, Arkiv Fysik **17**, 579 (1960).
- [6] 1962Ja10 J. F. W. Jansen, S. Hultberg, P. F. A. Goudsmit, A. H. Wapstra, Nuclear Phys. 38, 121 (1962). https://doi.org/10.1016/0029-5582(62)91022-2
- [7] 1963Uh01 J. Uhler, W. Forsling, B. Astrom, Arkiv Fysik 24, 421 (1963).
- [8] 1964Th07 P. E. Thoresen, F. Asaro, I. Perlman, J. Inorg. Nucl. Chem. 26, 1341 (1964).
- [9] 1966Ro12 H. Rotter, A. G. Demin, L. P. Pashchenko, H. F. Brinckmann, Yad. Fiz. 4, 246 (1966); Soviet J. Nucl. Phys. 4, 178 (1967).
- [10] 1966Va21 K. Valli, E. K. Hyde, UCRL-16580, p. 85 (1966).
- [11] 1968Va18 K. Valli, E. K. Hyde, Phys. Rev. 176, 1377 (1968). https://doi.org/10.1103/PhysRev.176.1377
- [12] 1969MaZT R. D. Macfarlane, ORO-3820-1 (1969).
- [13] 1970GoZZ N. A. Golovkov, R. B. Ivanov, Y. V. Norseev, V. G. Chumin, Program and Theses, Proc. 20th Ann. Conf. Nucl. Spectrosc. Struct. At. Nuclei, Pt. 1, Leningrad, p. 168 (1970).
- [14] 1970To18 D. F. Torgerson, R. D. Macfarlane, Phys. Rev. C2, 2309 (1970). https://doi.org/10.1103/PhysRevC.2.2309
- [15] 1971ReZE J. -L. Reyss, Thesis, Univ. Paris (1971); FRNC-TH-124 (1971).
- [16] 1973GoZX N. A. Golovkov, et al., CONF Tbilisi, p123.
- [17] 1973KAYQ N. Kaffrell, W. Herzog, unpublished (November 1973).
- [18] 1974Ho27 P. Hornshoj, P. G. Hansen, B. Jonson, Nucl. Phys. A230, 380 (1974). https://doi.org/10.1016/0375-9474(74)90144-4
- [19] 1980Ho17 H. Houtermans, O. Milosevic, F. Reichel, Int. J. Appl. Radiat. Isotop. 31, 153 (1980). https://doi.org/10.1016/0020-708X(80)90139-8
- [20] 1980VaZT V. M. Vakhtel, N. A. Golovkov, R. B. Ivanov, M. A. Mikhailova, A. F. Novgorodov, Yu. V. Norseev, V. G. Chumin, Yu. V. Yushkevich, JINR-P6-80-840 (1980).
- [21] 1981Va27 V. M. Vakhtel, N. A. Golvkov, R. B. Ivanov, M. A. Mikhailova, A. F. Novgorodov, Yu. V. Norseev, V. G. Chumin, Yu. V. Yushkevich, Izv. Akad. Nauk SSSR, Ser. Fiz. 45, 1861 (1981).
- [22] 1981Va29 V. M. Vakhtel, N. A. Golovkov, R. B. Ivanov, M. A. Mikhailova, V. G. Chumin, Izv. Akad. Nauk SSSR, Ser. Fiz. 45, 1966 (1981).
- [23] 1981VaZM V. M. Vakhtel, B. S. Dzhelepov, A. Karakhodzhaev, M. Ya. Kuznetsova, Yu. V. Norseev, T. I. Popova, V. P. Prikhodtseva, V. G. Chumin, Program and Theses, Proc. 31st Ann. Conf. Nucl. Spectrosc. Struct. At. Nuclei, Samarkand, p. 160 (1981).
- [24] 1981VaZN V. M. Vakhtel, Ts. Vylov, N. A. Golovkov, B. S. Dzhelepov, A. Karakhodzhaev, M. Ya. Kuznetsova, M. Milanov, Yu. V. Norseev, T. I. Popova, V. P. Prikhodtseva, V. G. Chumin, Yu. V. Yushkevich, Program and Theses, Proc. 31st Ann. Conf. Nucl. Spectrosc. Struct. At. Nuclei, Samarkand, p. 158 (1981).

- [25] 1981VaZO V. M. Vakhtel, Ts. Vylov, N. A. Golovkov, B. S. Dzhelepov, A. Karakhodzhaev, V. V. Kuznetsov, M. Ya. Kuznetsova, M. Milanov, Yu. V. Norseev, T. Popova, V. P. Prikhodtseva, V. G. Chumin, Yu. B. Yushkevich, Program and Theses, Proc. 31st Ann. Conf. Nucl. Spectrosc. Struct. At. Nuclei, Samarkand, p. 156 (1981).
- [26] 1987FaZS T. Faestermann, A. Gillitzer, K. Hartel, W. Henning, P. Kienle, Contrib. Proc. 5th Int. Conf. Nuclei Far from Stability, Rosseau Lake, Canada, K12 (1987).
- [27] 2000He17 F. P. Hessberger, S. Hofmann, D. Ackermann, V. Ninov, M. Leino, S. Saro, A. Andreyev, A. Lavrentev, A. G. Popeko, A. V. Yeremin, Eur. Phys. J. A 8, 521 (2000); Erratum Eur. Phys. J. A 9, 433 (2000). https://doi.org/10.1007/s100500070075
- [28] 2001Li17 K. Lindenberg, F. Neumann, D. Galaviz, T. Hartmann, P. Mohr, K. Vogt, S. Volz, A. Zilges, Phys. Rev. C63, 047307 (2001). https://doi.org/10.1103/PhysRevC.63.047307
- [29] 2004Ku24 P. Kuusiniemi, F. P. Hessberger, D. Ackermann, S. Hofmann, I. Kojouharov, Eur. Phys. J. A 22, 429 (2004). https://doi.org/10.1140/epja/i2004-10101-2
- [30] **2004Sc04** H. Schrader, Appl. Radiat. Isot. —bf60, 317 (2004). https://doi.org/10.1016/j.apradiso.2003.11.039
- [31] 2005Li17 Z. Liu, J. Kurcewicz, P. J. Woods, C. Mazzocchi, F. Attallah, E. Badura, C. N. Davids, T. Davinson, J. Doring, H. Geissel, M. Gorska, R. Grzywacz, M. Hellstrom, Z. Janas, M. Karny, A. Korgul, I. Mukha, M. Pfutzner, C. Plettner, A. Robinson, E. Roeckl, K. Rykaczewski, K. Schmidt, D. Seweryniak, H. Weick, Nucl. Instrum. Methods Phys. Res. A543, 591 (2005). https://doi.org/10.1016/j.nima.2004.12.023
- [32] 2017Hu08 T. H. Huang, W. Q. Zhang, M. D. Sun, Z. Liu, J. G. Wang, X. Y. Liu, B. Ding, Z. G. Gan, L. Ma, H. B. Yang, Z. Y. Zhang, L. Yu, J. Jiang, K. L. Wang, Y. S. Wang, M. L. Liu, Z. H. Li, J. Li, X. Wang, H. Y. Lu, C. J. Lin, L. J. Sun, N. R. Ma, Z. Z. Ren, F. S. Zhang, W. Zou, X. H. Zhou, H. S. Xu, G. Q. Xiao, Phys. Rev. C 96, 014324 (2017). https://doi.org/10.1103/PhysRevC.96.014324
- [33] 2018Hu13 T. H. Huang, W. Q. Zhang, M. D. Sun, Z. Liu, J. G. Wang, X. Y. Liu, B. Ding, Z. G. Gan, L. Ma, H. B. Yang, Z. Y. Zhang, L. Yu, J. Jiang, K. L. Wang, Y. S. Wang, M. L. Liu, Z. H. Li, J. Li, X. Wang, H. Y. Lu, A. H. Feng, C. J. Lin, L. J. Sun, N. R. Ma, D. X. Wang, F. S. Zhang, W. Zuo, X. H. Zhou, H. S. Xu, G. Q. Xiao, Phys. Rev. C 98, 044302 (2018). https://doi.org/10.1103/PhysRevC.98.044302
- [34] 2019Ya04 H. B. Yang, Z. G. Gan, Z. Y. Zhang, M. M. Zhang, M. H. Huang, L. Ma, C. L. Yang, Eur. Phys. J. A 55, 8 (2019). https://doi.org/10.1140/epja/i2019-12684-7
- [35] 2019Zh54 M. M. Zhang, Y. L. Tian, Y. S. Wang, X. H. Zhou, Z. Y. Zhang, H. B. Yang, M. H. Huang, L. Ma, C. L. Yang, Z. G. Gan, J. G. Wang, H. B. Zhou, S. Huang, X. T. He, S. Y. Wang, W. Z. Xu, H. W. Li, X. X. Xu, L. M. Duan, Z. Z. Ren, S. G. Zhou, H. S. Xu, Phys. Rev. C 100, 064317 (2019). https://doi.org/10.1103/PhysRevC.100.064317
- [36] 2020Ma27 L. Ma, Z. Y. Zhang, Z. G. Gan, X. H. Zhou, H. B. Yang, M. H. Huang, C. L. Yang, M. M. Zhang, Y. L. Tian, Y. S. Wang, H. B. Zhou, X. T. He, Y. C. Mao, W. Hua, L. M. Duan, W. X. Huang, Z. Liu, X. X. Xu, Z. Z. Ren, S. G. Zhou, H. S. Xu, Phys. Rev. Lett. 125, 032502 (2020). https://doi.org/10.1103/PhysRevLett.125.032502
- [37] 2020Ma27 L. Ma, Z. Y. Zhang, Z. G. Gan, X. H. Zhou, H. B. Yang, M. H. Huang, C. L. Yang, M. M. Zhang, Y. L. Tian, Y. S. Wang, H. B. Zhou, X. T. He, Y. C. Mao, W. Hua, L. M. Duan, W. X. Huang, Z. Liu, X. X. Xu, Z. Z. Ren, S. G. Zhou, H. S. Xu, Phys. Rev. Lett. 125, 032502 (2020). https://doi.org/10.1103/PhysRevLett.125.032502
- [38] 2021Ma66 L. Ma, Z. Y. Zhang, H. B. Yang, M. H. Huang, M. M. Zhang, Y. L. Tian, C. L. Yang, Y. S. Wang, Z. Zhao, W. X. Huang, Z. Liu, X. H. Zhou, Z. G. Gan, Phys. Rev. C 104, 044310 (2021). https://doi.org/10.1103/PhysRevC.104.044310
- [39] 2021Wa16 M. Wang, W. J. Huang, F. G. Kondev, G. Audi, S. Naimi, Chin. Phys. C 45, 030003 (2021). https://doi.org/10.1088/1674-1137/abddaf
- [40] 2023Lu04 H. Y. Lu, Z. Liu, Z. H. Li, X. Wang, J. Li, H. Hua, H. Huang, W. Q. Zhang, Q. B. Zeng, X. H. Yu, T. H. Huang, M. D. Sun, J. G. Wang, X. Y. Liu, B. Ding, Z. G. Gan, L. Ma, H. B. Yang, Z. Y. Zhang, L. Yu, J. Jiang, K. L. Wang, Y. S. Wang, M. L. Liu, C. J. Lin, L. J. Sun, N. R. Ma, H. S. Xu, X. H. Zhou, G. Q. Xiao, F. S. Zhang, Phys. Rev. C 108, 014302 (2023). https://doi.org/10.1103/PhysRevC.108.014302