

last updated 3/27/23

Table 1

Observed and predicted β -delayed particle emission from the odd-Z, $T_z = +19/2$ nuclei.	Unless otherwise stated, all Q-values are taken from [2021Wa16] or
deduced from values therein. J^{π} values for ¹³³ La, ¹³⁷ Pr, ¹⁴¹ Pm, ¹⁴⁵ Eu, ¹⁵³ Ho are taken fro	m ENSDF.

Nuclide	Ex	J^{π}	$T_{1/2}$	Qε	Q_{ε_p}	$Q_{\varepsilon \alpha}$	$BR_{\beta F}$	Experimental
¹³³ La ¹³⁷ Pr		5/2 ⁺ 5/2 ⁺	4.0 h 1.28(3) h	2.059(28)	-5.631(28) -4 453(54)	0.777(28) 1.927(8)		[1973Re05] [1973Bu18]
¹⁴¹ Pm ¹⁴⁵ Eu		5/2 ⁺ 5/2 ⁺	20.90(5) m 5.93(4) d	3.669(14)	-3.126(15) -3.864(4)	2.971(14) 3.775(4)		[1967Bl27] [1980Ho33]
¹⁴⁹ Tb ^{149m} Tb	0.02578(8)	$1/2^+$	4.13(5) h*	3.639(4)	-2.480(11)	6.738(4) 6.774(4)		[1960T050] [1960T010, 1968St09] [202252, 1073B106]
¹⁵³ Ho	0.05578(8)	11/2 ⁻ 11/2 ⁻	2.02(3) m	4.131(6)	-2.510(11) -1.584(40)	7.690(6)		[1993A103] [1993A103]
¹⁵⁷ Tm	0.0687(3)	1/2+ 1/2+	9.3(5) m 3.6(3) m	4.200(6) 4.700(40)	-1.515(40) -0.460(48)	7.759(6) 8.009(28)		[2020Ni06, 1967Ha34] [1976La03]
¹⁰¹ Lu ¹⁶⁵ Ta		1/2+ (9/2 ⁻)	78(2) s 31.0(15) s	5.270(30) 5.790(30)	0.450(43) 1.506(31)	8.426(39) 9.561(20)		[1983Ge08] [1982Li17]
¹⁶⁹ Re ^{169m} Re	0.187(17)	$(9/2^{-})$ $(1/2^{+}, 3/2^{+})$	8.1(3) s 16.3(8) s	6.509(19) 6.696(25)	2.696(30) 2.883(34)	10.801(30) 10.988(34)		[1992Me10, 1992MeZW] [2021Ha32, 1992Me10, 1992MeZW]
¹⁷³ Ir ^{173m} Ir	0.213(6)	$(3/2^+, 5/2^+)$ $(11/2^-)$	8.3(3) s** 2.150(47) s***	7.170(18) 7.386(19)	4.009(37) 4.222(37)	12.224(19) 12.437(20)		[2004GoZZ, 1992Bo21, 1992Sc16 [2021Ha32, 2004GoZZ, 1992Sc16]
¹⁷⁷ Au ^{177m} Au	0.1819(4)	$(1/2^+)$ $(11/2^-)$	1.486(20) s [@] 1.186(12) s [@] [@]	7.825(18) 8.843(18)	5.047(13) 6.056(13)	13.468(18) 13.650(18)		[2021Ha32, 2009An14, 2004GoZZ, 2001Ko14] [2021Ha32, 2001Ko14]
¹⁸¹ Tl ^{181m} Tl ^e	0.8359(4)	$(1/2^+)$ $(9/2^-)$	2.9(1) s 1.40(3) ms	7.862(18) 7.862(18)	5.538(10) 5.538(10)	14.147(18) 14.983(18)		[2018Cu04] [2009An14]
¹⁸⁵ Bi	. ,	$(1/2^+)$	$2.8^{+23}_{-10}\ \mu { m s}$	9.310(80)#	7.359(82)#	16.001(82)#		[2021Do08]

* Weighted average of 4.10(5) h [1960T010] and 4.15(5) h [1968St09].
** Weighted average of 9.8(14) s [1992Sc16], 8.1(3) s [1992Bo21] and 10(1) [2004GoZZ].
*** Weighted average of 2.20(5) s [1992Sc16] and 2.105(47) s [2004GoZZ].
@ Weighted average of 1.501(20) s [2021Ha32], 1.53(7) s [2009An14], 1.462(32) s [2004GoZZ], and 1.462(32) s [2001Ko14].
@@ Weighted average of 1.193(13) s [2021Ha32], and 1.180(12) s [2001Ko14].

Table 2

Particle separation, Q-values, and measured values for direct particle emission of the odd-Z, $T_z = +19/2$ nuclei. Unless otherwise stated, all S and Q-values are taken from [2021Wa16] or deduced from values therein.

Nuclide	S_p	BR_p	S _{2p}	Qα	BR _α	Experimental
1331 9	1 3/8(28)		12 017(28)	-0.420(28)		
137 pr	3.082(8)		12.017(20) 11.136(12)	-0.420(20)		
141 pm	3.555(14)		10.272(14)	0.152(2))		
145 Eu	3.335(14) 3.315(3)		0.600(4)	0.234(10) 0.106(14)		
149 Th	2.513(3)		9.009(4)	4.078(2)	17 6(14)0/*	[1078]_14_1074T_07_1068Cb20_10685400
10	2.308(3)		8.322(4)	4.078(2)	17.0(14)%	$10670 \circ 22$ 1060T $\circ 10$ 1006D $\circ 01$ 1081K $\circ 71$
						$1070H_010$ $1078Af77$ $1074D_07S$ $1074T_07N$
						19791010, 19707122, 19741023, 197410210, 107410210, 10741070, 10741070, 10741070, 10741070, 107410730, 1074100, 10741000, 10741000, 10741000, 10741000, 107410000, 107410000000000000000000000000000000000
						10720k77 1068Wi21 1067Ch28 1068Ch32
						19720 km^2 , 1960 km^2 , 1907 cm^2 , 1960 cm^2 , 1966 cm^2 , 1966 cm^2 , 1961 cm^2 , 196
						1960To1011
^{149m} Tb	2472(3)		8 486(4)	4 114(2)	0 022(3)%**	[1974To17] 1973Bi06 1964Ma14 1973BoXW
10	2.472(3)		0.400(4)	4.114(2)	0.022(3)70	1974ToZN 1974ToZO 1974ToZO 1968Go13
						1967Go32 1963Ma17 1960Ma471
¹⁵³ Ho	2 183(7)		7 966(6)	4 052(4)	0.039(14)%***	$[1974T_0ZN \ 1978\Delta f77 \ 1974T_070 \ 1974S_c19$
110	2.105(7)		7.900(0)	4.032(4)	0.037(14)70	$1971T_{0}01 1964M_{2}10 1961M_{2}40 1960M_{2}471$
^{153m} Ho	2114(7)		7 897(6)	4 121(4)	$0.14(4)\%^{@}$	[1974ToZN 1974Sc19 1974PeZS 1974ToZO
110	2.114(7)		1.077(0)	4.121(4)	0.14(4)/0	1971ToZX 1970ToZS 1970ToZY 1968Go13
						1967Ha34 1963Ma17 1961Ma40]
¹⁵⁷ Tm	1 787(37)		7 247(33)	3 878(28)		
¹⁶¹ Lu	1.688(28)		6.570(40)	3.722(40)		
¹⁶⁵ Ta	1.318(20)		5 634(31)	4 290(31)		
¹⁶⁹ Re	0.805(16)		4 636(30)	5.014(13)	obs	[1992Me10, 1992MeZW]
^{169m} Re	0.618(23)		4 449(34)	5.101(21)	obs	[1992Me10, 1992MeZW 1984Sc06, 1982De11
10	01010(20)			0.101(21)	000	1981DeZA, 1981DeZL, 1978Ca11]
¹⁷³ Ir	0.314(15)		3.596(30)	5.716(9)	4(2)%	[2021Ha32, 2004GoZZ, 1992Bo21, 1992Sc16
						2009An14, 1992MeZW]
173m Ir	0.101(16)		3.383(30)	5.929(11)	11(1)% ^{@@}	[2021Ha32, 2004GoZZ, 1996Pa01, 1992Sc16
						1982De11, 2009An14, 1992MeZW, 1986Ke03,
						1967Si02]
¹⁷⁷ Au	-0.099(14)		2.729(16)	6.298(4)	54(5)%@@@	[2021Ha32, 2009An14, 2004GoZZ, 2001Ko14,
						2000KoZN, 1996Pa01, 1991Se01, 1990KaZI,
						1984Gr14, 1975Ca06, 1973Ga08, 1968Si01]
^{177m} Au	-0.099(14)		2.729(16)	6.298(4)	56(8)%	[2021Ha32, 2001Ko14, 2009An14, 2004GoZZ
						2000KoZN, 1996Pa01, 1991Se01, 1990KaZI,
						1984Gr14, 1975Ca06, 1973Ga08, 1968Si01]
¹⁸¹ Tl	-0.999(14)		1.552(15)	6.322(4)	8.6(6)%	[2018Cu04, 2009An14, 1998To14, 1993BoZK
						1992BoZO, 1992BlZW,1984ScZQ]
^{181m} Tl	-0.163(14)		2.388(15)	7.158(4)	0.40(6)%	[2009An14, 1998To14, 1984ScZQ]
¹⁸⁵ Bi	$-1.592(5)^{b}$	91(2)% ^{<i>a</i>}	0.226(82)#	$8.207(15)^{b}$	$9(2)\%^{c}$	[2021Do08, 2004An07, 2001Po05, 2000PoZY,
						1996Da06, 1995DaZX]

* Weighted average of 15.8(14)% [1978Ja14] and 22.6(23)% [1968Ch30].

** Weighted average of 0.020(4)% [1973Bi06] and 0.0225(25)% [1964Ma14].

*** Weighted average of 0.034(17)% and 0.051(25)% [1974ToZN].

[@] Weighted average of 0.12(5)% and 0.18(8)% [1974ToZN].

[@] Weighted average of 7(2)% [1996Pa01], 12(1)% [1992Sc16] and 14(3)% [2004GoZZ].

^{@@@} Weighted average of 40(6)% [2009An14] and 64(5)%5 [2021Ha32].

^a Weighted average of 92(2)% [2021Do08], and 90(2)% [2004An07].

^b Deduced from α and p energies; S_p = -1.527(81)#, and Q_{α} = 8.138(81)# in [2021Wa16]. Combining the p energy and the mass excess of ¹⁸⁴Pb gives -2.171(14) MeV for the mass excess of ¹⁸⁵Bi. The α energy and mass excess of ¹⁸¹Tl gives -2.167(17) MeV, resulting in a weighted average of -2.169(11) MeV; -2.240(80)# in [2021Wa16].

^c Weighted average of 8(2)% [2021Do08], and 10(2)% [2004An07].

Table 3

$E_{\alpha}(c.m.)$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(\text{rel})$	$I_{\alpha}(abs)$	$J_f^{{m \pi}}$	$E_{daughter}(^{145}\mathrm{Eu})$	coincide	nt γ-rays	R_0 (fm)	HF
3.745(5) 4.076(5)	3.644(5)*** 3.967(5)***	0.03(1)% 100% [@]	0.0068(23)% [@] 17.6(14)%**	7/2+ 5/2+	0.330 0.0	0.330		1.5656(18) 1.5656(18)	130^{+70}_{-30} 5.9(7)
* Weigh ** Weig *** [1968 @ [1968	nted average of 4.10(hted average of 15.8 67Go32]. 8Ch30].	5) h [1960To10] ar 8(14)% [1978Ja14]	nd 4.15(5) h [1968 and 22.6(23)% [1	8St09]. 1968Ch30].					
Table 4 direct α emin	ssion from ^{149m} Tb, I	Ex = 35.75(8) keV	$J^{\pi} = 11/2^{-}, T_{1/2}$	$= 4.16(4) \text{ m}^{**}, Bl$	$R_{\alpha} = 0.022(3)\%^{***}.$				
$E_{\alpha}(\text{c.m.})$	$E_{\alpha}(lab)$	$I_{\alpha}(abs)$	$\mathbf{J}_f^{\boldsymbol{\pi}}$	$E_{daughter}(^{145}\mathrm{Eu})$	coincident j	∕-rays	R_0 (fm)	HF	
4.109(7)	3.999(7) [@]	0.22(3)%***	5/2+	0.0			1.5656(18)	127^{+26}_{-21}	
* [2022] ** [197] *** Wei @ [1974 Table 5 direct α emin	Si28]. 3Bi06]. ighted average of 0.0 FT007]. ssion from ¹⁵³ Ho, J ⁷)20(4)% [1973Bi06 ^r = 11/2 ⁻ , T _{1/2} = 2	5] and $0.0225(25)^{\circ}$.02(3) m*, BR_{α} =	% [1964Ma14]. : 0.039(14)%**.					
$E_{\alpha}(\text{c.m.})$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(abs)$	J_f^{π}	$E_{daughter}(^{149m})$	Гb) coincide	nt γ-rays	R_0 (fm)	HF	
4.070(5)	3.910(5)***	0.039(14)%**	11/2-	0.036			1.565(11)	$1.5\substack{+0.9 \\ -0.5}$	
* [1993. ** Weig *** [197 Table 6 direct α emi	A103]. hted average of 0.02 74ToZN].	34(17)% and $0.051(17)%$	(25)% [1974 ToZN]	√]. - 9.3(5) m** <i>BR</i>	- 0 14(4)%***				
		Lx = 00.7(3) KeV,	J = 1/2 , 1 _{1/2} -	- 9.5(5) μ , 5Κα	- 0.14(4) // .				
$E_{\alpha}(c.m.)$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(abs)$	J_f^π	$E_{daughter}(^{149}\mathrm{Tb})$	coincident	γ-rays	R ₀ (fm)	HF	
4.119(5) * [2020] ** [196 *** Wei @ [1974	4.011(5) [@] Ni06]. 7Ha34]. ighted average of 0.1 IToZN].	0.14(4)%*** 12(5)% and 0.18(8)	1/2+ % [1974ToZN].	0.0			1.565(11)	$4.1^{+2.2}_{-1.3}$	
Table 7 direct α emine	ssion from ¹⁶⁹ Re*, J	$\pi^{\pi} = (9/2^{-}), T_{1/2} =$	8.1(3) s, $BR_{\alpha} = 0$	bs.					
$E_{\alpha}(\text{c.m.})$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(abs)$	\mathbf{J}_f^{π}	$E_{daughter}(^{165}\mathrm{Ta})$	coincident j	/-rays	R ₀ (fm)	HF	
4.814(12) 4.989(12)	4.700(12) 4.871(12)		4	0.175 0.0?			1.571(21) 1.571(21)		

* All values taken from [1992Me10].

	$E_{\alpha}(\text{lab})$	$I_{\alpha}(abs)$	$\mathbf{J}_f^{m{\pi}}$	$E_{daughter}(^{149}\mathrm{Tb})$	coincident y	-rays	R ₀ (fm)	HF	
5.184(10)	5.061(10)			Х			1.571(21)		
* All va	lues taken from [199	92Me10].							
Table 9	· c 173τ τπ	(2)(2 ⁺ 5)(2 ⁺) T	0.2(2) * D	A (A) (1 + +					
	ssion from ^{the} Ir, J th	$=(3/2^+, 5/2^+), 1_1$	$1/2 = 8.3(3) s^*, BI$	$a_{\alpha} = 4(2)\%^{**}.$					
$E_{\alpha}(c.m.)$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(abs)$	J_f^{π}	$E_{daughter}(^{169}$	Re) coincident	γ-rays	R ₀ (fm)	HF	
5.546(4)	5.418(4)***	4(2)%**	(1/2 ⁺ , 3/2 ⁺)	0.187(7)			1.5691(81)	$1.3^{+1.4}_{-0.5}$	
* Weigł ** [200 *** [20	nted average of 9.8(1 4GoZZ]. 21Ha32].	4) s [1992Sc16],	8.1(3) s [1992Bo2	21] and 10(1) [2004	łGoZZ].				
Table 10 direct α emi	ssion from ^{173m} Ir*, I	Ex = 213(16) keV	$J^{\pi} = (11/2^{-}), T_1$	$_{/2} = 2.150(47) \text{ s}^{**}$	$BR_{\alpha} = 11(1)\%^{***}.$				
$E_{\alpha}(\text{c.m.})$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(\text{rel})$	$I_{\alpha}(abs)$	\mathbf{J}_{f}^{π}	E _{daughter} (¹⁶⁹ Re)	coincident γ	-rays	R ₀ (fm)	HF
5.809(5) 5.953(15)	5.675(5) 5.815(15)	100% 6(1)%**	10(1)% 0.7(1) %	(11/2 ⁻) (9/2 ⁻)	0.1362(2) 0.0			1.5691(81) 1.5691(81)	2.0(5) 120^{+40}_{-30}
* All va ** Weig *** We	lues taken from [202 ghted average of 2.20 ighted average of 7(2	21Ha32], except v 0(5) s [1992Sc16] 2)% [1996Pa01],	where noted. and 2.105(47) s [12(1)% [1992Sc1	2004GoZZ]. 6] and 14(3)% [200)4GoZZ].				
Table 11 direct α emi	ssion from ¹⁷⁷ Au, J ^π	$T = (1/2^+), T_{1/2} =$	1.486(20) s*, BR	$\alpha = 54(5)\%^{**}.$					
Table 11 direct α emi E_{α} (c.m.)	ssion from ¹⁷⁷ Au, J ^{π} E_{α} (lab)	$f = (1/2^+), T_{1/2} =$ $I_{\alpha}(abs)$	1.486(20) s*, <i>BR</i> J_{f}^{π}	$\alpha = 54(5)\%^{**}.$ $E_{daughter}(^{173})$	Ir) coincident γ	-rays R ₍	₀ (fm)	HF	
Table 11direct α emi $E_{\alpha}(c.m.)$ $6.300(3)$	ssion from ¹⁷⁷ Au, J ^{π} E_{α} (lab) 6.157(3)***	$E = (1/2^+), T_{1/2} = I_{\alpha}(abs)$ 54(5)%**	1.486(20) s*, <i>BR</i> J_f^{π} (3/2 ⁺ , 5/2 ⁺)	$\alpha = 54(5)\%^{**}.$ $E_{daughter}(^{173})$ 0.0	Ir) coincident γ ——	-rays R ₍) (fm) 5503(36)	HF 2.56(31)	
Table 11direct α emi $E_{\alpha}(c.m.)$ $6.300(3)$ * Weigh ** Weigh	$\frac{E_{\alpha}(\text{lab})}{6.157(3)^{***}}$ nted average of 1.501 ghted average of 40(6	$\frac{I_{\alpha}(abs)}{54(5)\%^{**}}$	$\frac{1.486(20) \text{ s*, } BR}{J_f^{\pi}}$ $(3/2^+, 5/2^+)$ 2], 1.53(7) s [2009 and 64(5)%5 [202	$\frac{\alpha = 54(5)\%^{**}}{E_{daughter}(^{173})}$ 0.0 PAn14], 1.462(32) 1Ha32].	Ir) coincident γ s [2004GoZZ], and 1.4	-rays R(1 462(32) s [2003) (fm) 5503(36) 1Ko14].	HF 2.56(31)	
Table 11 direct α emi $E_{\alpha}(c.m.)$ 6.300(3) * Weigl ** Weigl Table 12 direct α emi	$\frac{E_{\alpha}(\text{lab})}{6.157(3)^{***}}$ the average of 1.501 ghted average of 40(6 sssion from 177m Au*;	$\frac{I_{\alpha}(abs)}{54(5)\%^{**}}$ $\frac{I_{\alpha}(abs)}{50\%} = \frac{I_{\alpha}(abs)}{1000}$ $\frac{I_{\alpha}(abs)}{50\%} = \frac{I_{\alpha}(abs)}{I_{\alpha}(abs)}$ $\frac{I_{\alpha}(abs)}{I_{\alpha}(abs)} = \frac{I_{\alpha}(abs)}{I_{\alpha}(abs)}$ $\frac{I_{\alpha}(abs)}{I_{\alpha}(abs)} = \frac{I_{\alpha}(abs)}{I_{\alpha}(abs)}$ $\frac{I_{\alpha}(abs)}{I_{\alpha}(abs)} = \frac{I_{\alpha}(abs)}{I_{\alpha}(abs)}$	1.486(20) s*, BR J_f^{π} (3/2 ⁺ , 5/2 ⁺) 2], 1.53(7) s [2009 and 64(5)%5 [2029 eV, J ^{π} = (11/2 ⁻),	$\frac{E_{daughter}(^{173})}{0.0}$ 0.0 0.14], 1.462(32) 1Ha32]. T _{1/2} = 1.186(12) s	Ir) coincident γ s [2004GoZZ], and 1.* **, BR _α = 56(8)%.	-rays R ₍ 1. 462(32) s [2003) (fm) 5503(36) 1Ko14].	HF 2.56(31)	
Table 11direct α emi $E_{\alpha}(c.m.)$ 6.300(3)* Weigh ** Weigh * Weigh direct α emiTable 12 direct α emi $E_{\alpha}(c.m.)$	$\frac{E_{\alpha}(\text{lab})}{6.157(3)^{***}}$ the average of 1.501 ghted average of 40(6 ssion from ^{177m} Au [*] , $E_{\alpha}(\text{lab})$	$\frac{I_{\alpha}(abs)}{54(5)\%^{**}}$ $I(20) s [2021Ha325)\% [2009An14] = 100000000000000000000000000000000000$	1.486(20) s*, BR J_{f}^{π} (3/2 ⁺ , 5/2 ⁺) 2], 1.53(7) s [2009 and 64(5)%5 [2029 eV, J ^π = (11/2 ⁻), I_{α} (abs)	$\alpha = 54(5)\%^{**}.$ $E_{daughter}(^{173})$ 0.0 $DAn14], 1.462(32)$ 1Ha32]. $T_{1/2} = 1.186(12) \text{ s}$ J_f^{π}	Ir) coincident γ s [2004GoZZ], and 1.4 **, $BR_{\alpha} = 56(8)\%$. $E_{daughter}(^{173}Ir)$	-rays R(1.: 462(32) s [200 coinciden) (fm) 5503(36) 1Ko14]. t γ-rays	HF 2.56(31) R ₀ (fm)	HF
Table 11 direct α emi $E_{\alpha}(c.m.)$ 6.300(3) * Weigh ** Weigh * Table 12 direct α emi $E_{\alpha}(c.m.)$ 6.069(12) 6.267(5)	$\frac{E_{\alpha}(\text{lab})}{6.157(3)^{***}}$ $\frac{E_{\alpha}(\text{lab})}{6.157(3)^{***}}$ $\frac{E_{\alpha}(\text{lab})}{6.157(3)^{***}}$ $\frac{E_{\alpha}(\text{lab})}{6.125(5)}$	$\frac{I_{\alpha}(abs)}{54(5)\%^{**}}$ $\frac{I_{\alpha}(abs)}{54(5)\%^{**}}$ $\frac{I_{\alpha}(abs)}{12009An14]}$ $\frac{I_{\alpha}(abs)}{I_{\alpha}(abs)}$ $\frac{I_{\alpha}(abs)}{I_{\alpha}(abs)}$	1.486(20) s*, BR J_{f}^{π} (3/2 ⁺ , 5/2 ⁺) 2], 1.53(7) s [2009 and 64(5)%5 [2029 eV, J ^π = (11/2 ⁻), I _α (abs) 0.67(28)% 55(8)%	$\alpha = 54(5)\%^{**}.$ $E_{daughter}(^{173})$ 0.0 $DAn14], 1.462(32)$ 1Ha32]. $T_{1/2} = 1.186(12) \text{ s}$ J_{f}^{π} $(9/2^{-})$ $(11/2^{-})$	Ir) coincident γ s [2004GoZZ], and 1.4 **, $BR_{\alpha} = 56(8)\%$. <u>$E_{daughter}(^{173}\text{Ir})$</u> 0.424(13) 0.213(16)	-rays R(1 462(32) s [2003 coinciden 1.5503(36 1.5503(36	o (fm) 5503(36) 1Ko14]. t γ-rays 5)	HF 2.56(31) R_0 (fm) $18^{+15}_{-6}_{-1.5^{+0.4}_{-0.3}}$	HF

direct α emission from ¹⁸¹ Tl*, J ^{π} = (1/2 ⁺), T _{1/2} = 2.9(1) s, BR _{α} = 8.6(6)%.										
$E_{\alpha}(c.m.)$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(abs)$	$J^{\pi}_{\mathfrak{L}}$	$E_{daughtar}(^{177}\mathrm{Au})$	coincident <i>y</i> -rays	R_0 (fm)	HF			
6.323(5)	6.183(5)**	8.6(6)%	(1/2+)	0.0		1.5209(44)	3.3(4)			

* All values from [2018Cu04], except where noted. ** Weighted average of 6.183(7) MeV [2018Cu04], 6.181(7) MeV [2009An14], and 6.186(10) MeV [1998To14].

$E_{\alpha}(c.m.)$	$E_{\alpha}(lab)$	$I_{\alpha}(\text{rel})$	$I_{\alpha}(abs)$	J_{c}^{π}	Edgughter (¹⁷⁷	Au) coincider	nt γ-rays	R_0 (fm)	HF
<u>-u(1111)</u>	-u()	-4()	-u()	Ĵ	-uuugmer (
6.727(7)	6.578(7)	96.0(7)%	0.38(6)%	$(5/2^+)$	0.431(16)	0.2415		1.5209(44)	$1.3^{+0.4}_{-0.3}$
6.972(15)	6.818(15)	1.4(7)%	0.006(3)%	$(11/2^{-})$	0.189(16)			1.5209(44)	600_{-30}^{+70}
7.131(15)	6.9748(15)	2.6(7)%	0.010(3)%	(9/2-)	0.031(16)			1.5209(44)	$1.1^{+0.6}_{-0.4} \times 10^3$
* All va Table 15 direct p emis	lues from [2009An1 sion from ¹⁸⁵ Bi, J [#]	4], except where = $(1/2^+)$, $T_{1/2}$ =	noted. $2.8^{+23}_{-10} \ \mu s^*, Bl$	$R_p = 91(2)\%^*$	**.				
$E_p(\text{c.m.})$	$E_p(lab)$	$I_p(abs$)	\mathbf{J}_f^{π}	$E_{daughter}(^{184}\text{Pb})$	coincident	γ-rays		
1.592(5)	1.583(5)***	91(2)	%**	0^{+}	0.0				
* [2021] ** Weig *** [200 Table 16 direct α emis	Do08]. hted average of 92(2)4An07]. ssion from ¹⁸⁵ Bi, J ^π	2)% [2021Do08] = $(1/2^+)$, $T_{1/2}$ =	and 90(2)% [2 2.8 ⁺²³ ₋₁₀ µs*, B	2004An07]. $R_{\alpha} = 9(2)\%^*$	*.				
$E_{\alpha}(\text{c.m.})$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(abs)$	${ m J}_f^\pi$	E_{daug}	ghter(¹⁸¹ Tl)	coincident γ-rays	R ₀ (fm)	HF	
8.207(15)	8.030(15)***	9(2)%**	(1/2+)	0.0			1.496(13)	$0.5^{+0.7}_{-0.4}$	

Table 14 direct α emission from ^{181m}Tl*, Ex. = 836.9(4) keV, J^{π} = (9/2⁻), T_{1/2} = 1.40(3) ms, BR_{α} = 0.40(6)%.

* [2021Do08].

** Weighted average of 8(2)% [2021Do08], and 10(2)% [2004An07].

*** [2004An07].

References used in the Tables

- [1] 1960Ma47 R. D. Macfarlane, UCRL-9566, p. 46 (1960).
- [2] 1960To10 K S Toth, S Bjornholm, M H Jorgensen, O B Nielsen, O Skilbreid, A Svanheden, J Inorg Nuclear Chem 14, 1 (1960). https://doi.org/10.1016/0022-1902(60)80190-X
- [3] 1961Ma39 R. D. Macfarlane, UCRL-10023, p. 41 (1961)
- [4] 1961Ma40 R. D. Macfarlane, R. D. Griffioen, UCRL-10023, p. 45 (1961).
- [5] 1961St15 A. T. Strigachev, D. S. Novikov, A. A. Sorokin, V. A. Khalkin, N. B. Levetkova, V. S. Shpinel, Izvest. Akad. Nauk SSSR, Ser. Fiz. 25, 813 (1961); Columbia Tech. Transl. 25, 824 (1962).
- [6] 1963Ma17 R. D. Macfarlane, R. D. Griffioen, Phys. Rev. 130, 1491 (1963). https://doi.org/10.1103/PhysRev.130.1491
- [7] 1964Da20 A. S. Danagulyan, A. T. Strigachev, V. S. Shpinel, Izv. Akad. Nauk SSSR, Ser. Fiz. 28, 90 (1964); Bull. Acad. Sci. USSR, Phys. Ser. 28, 86 (1965).
- [8] 1964Ma10 M. May, L. Yaffe, J. Inorg. Nucl. Chem. 26, 479 (1964). https://doi.org/10.1016/0022-1902(64)80278-5
- [9] 1964Ma14 W. H. Martin, D. M. Clare, Nucl. Sci. Eng. 19, 465 (1964). https://doi.org/10.13182/NSE64-A19008
- [10] 1965Gr28 K. Y. Gromov, I. Mahunka, M. Mahunka, T. Fenyes, Izv. Akad. Nauk SSSR, Ser. Fiz. 29, 194 (1965); Bull. Acad. Sci. USSR, Phys. Ser. 29, 195 (1966).
- [11] 1967Bl27 H. -J. Bleyl, H. Munzel, G. Pfennig, Radiochim. Acta -- bf8, 200 (1967).
- [12] 1967Ch28 V. G. Chumin, Z. T. Zhelev, K. Y. Gromov, B. Makhmudov, Izv. Akad. Nauk SSSR, Ser. Fiz. 31, 146 (1967); Bull. Acad. Sci. USSR, Phys. Ser. 31, 138 (1968).
- [13] 1967Ch32 V. G. Chumin, Z. Zhelev, K. Y. Gromov, B. Makhmudov, Intern. Nucl. Phys. Conf., Gatlinburg, Tenn. (1966); R. L. Becker, C. D. Goodman, P. H. Stelson, A. Zucker, Eds., Academic Press, New York, p. 922 (1967).
- [14] 1967Go32 N. A. Golovkov, K. Y. Gromov, N. A. Lebedev, B. Makhmudov, A. S. Rudnev, V. G. Chumin, Izv. Akad. Nauk SSSR, Ser. Fiz. 31, 1618 (1967); Bull. Acad. Sci. USSR, Phys. Ser. 31, 1657 (1968).

- [15] 1967Ha34 R. L. Hahn, K. S. Toth, T. H. Handley, Phys. Rev. 163, 1291 (1967). https://doi.org/10.1103/PhysRev.163.1291
- [16] 1967Si02 A. Siivola, Nucl. Phys. A92, 475 (1967). https://doi.org/10.1016/0375-9474(67)90230-8
- [17] 1968Ch30 Y. Y. Chu, E. M. Franz, G. Friedlander, Phys. Rev. 175, 1523 (1968). https://doi.org/10.1103/PhysRev.175.1523
- [18] 1968Go13 N. A. Golovkov, So Ki Kvan, V. G. Chumin, Contrib. Intern. Conf. Nucl. Struct., Dubna, p. 27 (1968).
- [19] 1968Si01 A. Siivola, Nucl. Phys. A109, 231 (1968). https://doi.org/10.1016/0375-9474(68)90571-X
- [20] 1968St09 E. P. Steinberg, A. F. Stehney, C. Stearns, I. Spaletto, Nucl. Phys. A113, 265 (1968). https://doi.org/10.1016/0375-9474(68)90405-3
- [21] 1968Wi21 K. Wilsky, K. Y. Gromov, Z. T. Zhelev, V. V. Kuznetsov, G. Muziol, O. B. Nielsen, O. Skilbreid, Izv. Akad. Nauk SSSR, Ser. Fiz. 32, 187 (1968); Bull. Acad. Sci. USSR, Phys. Ser. 32, 169 (1969).
- [22] 1970ToZS K. S. Toth, R. L. Hahn, Proc. Int. Conf. Prop. Nuclei Far from Region of Beta-Stability, Leysin, Switzerland, Vol. 1, p. 533 (1970); CERN-70-30 (1970).
- [23] 1970ToZY K. S. Toth, CONF Leysin Vol1 P533, CERN 70-30.
- [24] 1971To01 K S Toth, R L Hahn, Phys Rev C3, 854 (1971). https://doi.org/10.1103/PhysRevC.3.854
- [25] 1971ToZX K. S. Toth, REPT ORNL 4649 P65 (1971).
- [26] 1972OkZZ D. U. O'Kain, K. S. Toth, C. R. Bingham, R. L. Hahn, ORNL-4791, p. 5 (1972).
- [27] 1973Bi06 C. R. Bingham, D. U. O'Kain, K. S. Toth, R. L. Hahn, Phys. Rev. C7, 2575 (1973). https://doi.org/10. 1103/Phys-RevC.7.2575
- [28] 1973BoXW J. D. Bowman, E. K. Hyde, R. E. Eppley, LBL-1666, p. 4 (1973).
- [29] 1973Bu18 V. S. Buttsev, T. Vylov, K. Y. Gromov, V. G. Kalinnikov, I. I. Gromova, V. A. Morozov, T. M. Muminov, K. Fuya, A. B. Khalikulov, Izv. Akad. Nauk SSSR, Ser. Fiz. 37, 953 (1973); Bull. Acad. Sci. USSR, Phys. Ser. 37, No. 5, 39 (1974).
- [30] 1973Ga08 H. Gauvin, R. L. Hahn, Y. Le Beyec, M. Lefort, J. Livet, Nucl. Phys. A208, 360 (1973). https://doi.org/10.1016/0375-9474(73)90381-3
- [31] 1973Re05 D J Reuland, D W Pagliughi, J Inorg Nucl Chem 35, 1777 (1973). https://doi.org/10.1016/0022-1902(73)80111-3
- [32] 1974PeZS I. Penev, K. Zuber, Y. Zuber, A. Lyatushinskii, A. V. Potempa, Program and Thesis, Proc. 24th Ann. Conf. Nucl. Spectrosc. Struct. At. Nuclei, Kharkov, p. 106 (1974).
- [33] 1974Sc19 W-D. Schmidt-Ott, K. S. Toth, E. Newman, C. R. Bingham, Phys. Rev. C10, 296 (1974). https://doi.org/10.1103/PhysRevC.10.296 bibitem1974To07 1974To07 K. S. Toth, C. R. Bingham, W. -D. Schmidt-Ott, Phys. Rev. C10, 2550 (1974). https://doi.org/10.1103/PhysRevC.10.2550
- [34] 1974ToZN K. S. Toth, R. L. Hahn, E. Newman, C. R. Bingham, W. -D. Schmidt-Ott, ORNL-4937, p. 53 (1974).
- [35] 1974ToZO K. S. Toth, D. C. Hensley, E. Newman, C. R. Bingham, W. D. Schmidt-Ott, ORNL-4937, p. 49 (1974).
- [36] 1974ToZQ K. S. Toth, CONF Nashville(Reactions Between Complex Nuclei), Vol1 P156 (1974).
- [37] 1975Ca06 C. Cabot, C. Deprun, H. Gauvin, B. Lagarde, Y. Le Beyec, M. Lefort, Nucl. Phys. A241, 341 (1975). https://doi.org/10.1016/0375-9474(75)90323-1
- [38] 1976La03 A Latuszynski, J Mikulski, I Penev, A W Potempa, A Zielinski, K Zuber, J Zuber, J Inorg Nucl Chem 38, 585 (1976). https://doi.org/10.1016/0022-1902(76)80309-0
- [39] 1978AfZZ V.P.Afanasev, L.Kh.Batist, E.E.Berlovich, K.Ya.Gromov, V.G.Kalinnikov, T.Kozlovski, Ya.Kormitski, K.A.Mezilev, F.V.Moroz, Yu.N.Novikov, V.N.Panteleev, A.G.Polyakov, V.I.Raiko, E.Rurarz, V.K.Tarasov, Yu.V.Yushkevich, Program and Theses, Proc.28th Ann.Conf.Nucl.Spectrosc.Struct.At.Nuclei, Alma-Ata, p.70 (1978).
- [40] 1978Ca11 C. Cabot, S. Della Negra, C. Deprun, H. Gauvin, Y. Le Beyec, Z. Phys. A287, 71 (1978). https://doi.org/10.1007/BF01408363
- [41] 1978Ja14 S V Jackson, J W Starner, W R Daniels, M E Bunker, R A Meyer, Phys Rev C 18, 1840 (1978). https://doi.org/10.1103/PhysRevC.18.1840
- [42] 1979Ho10 S. Hofmann, W. Faust, G. Munzenberg, W. Reisdorf, P. Armbruster, K. Guttner, H. Ewald, Z. Phys. A291, 53 (1979). https://doi.org/10.1007/BF01415817
- [43] 1980Ho33 J. J. Hogan, Radiochim. Acta 27, 73 (1980).
- [44] 1981DeZA S. Della Negra, C. Deprun, D. Jacquet, Y. Le Beyec, Univ. Paris, Inst. Phys. Nucl., Ann. Rept., p. R5 (1981).
- [45] 1981DeZL S. Della Negra, C. Depr'jn, D. Jacqaat, Y. Le Seyec REPT IPNO-RC-81-07.

- [46] 1981KoZL Ya. Konichek, I. Prokhazka, V. N. Pavlov, M. Finger, V. M. Tsupko-Sitnikov, W. D. Hamilton, Program and Theses, Proc. 31st Ann. Conf. Nucl. Spectrosc. Struct. At. Nuclei, Samarkand, p. 105 (1981).
- [47] 1982De11 S. Della Negra, C. Deprun, D. Jacquet, Y. Le Beyec, Ann. Phys. (Paris) 7, 149 (1982).
- [48] 1982Li17 C.F. Liang, P. Paris, D. Bucurescu, S. Della Negra, J. Obert, J. C. Putaux, Z. Phys. A309, 185 (1982).
- [49] 1983Ge08 W. Gelletly, Nucl. Instrum. Methods 211, 89 (1983). https://doi.org/10.1016/0167-5087(83)90559-8
- [50] 1984Gr14 K. Ya. Gromov, ATOMKI Kozlem, 26, 43 (1984).
- [51] 1984Sc06 U. J. Schrewe, E. Hagberg, H. Schmeing, J. C. Hardy, V. T. Koslowsky, K. S. Sharma, Z. Phys. A315, 49 (1984). https://doi.org/10.1007/BF01436208
- [52] **1984ScZQ** J. Schneider GSI-84-3 (1984).
- [53] 1986Ke03 J. G. Keller, K. -H. Schmidt, F. P. Hessberger, G. Munzenberg, W. Reisdorf, H. -G. Clerc, C. -C. Sahm, Nucl. Phys. A452, 173 (1986). https://doi.org/10.1016/0375-9474(86)90514-2
- [54] 1990KaZI K. Katori, T. Ohshima, H. Miyatake, A. Shinohara, S. Hatori, I. Katayama, S. Morinobu, RCNP (Osaka), Ann. Rept., 1989, p. 75 (1990).
- [55] 1991Se01 P. J. Sellin, P. J. Woods, R. D. Page, S. J. Bennett, R. A. Cunningham, M. Freer, B. R. Fulton, M. A. C. Hotchkis, A. N. James, Z. Phys. A338, 245 (1991).
- [56] 1992BIZW Yu. S. Blinnikov, V. A. Bolshakov, A. G. Dernyatin, K. A. Mezilev, Yu. N. Novikov, A. G. Polyakov, A. V. Popov, Yu. Ya. Sergeev, V. A. Sergienko, V. I. Tikhonov, G. V. Veselov, V. M. Zeleznyakov, Leningrad Nucl. Phys. Inst., 1990-1991 Ann. Rept., p. 63 (1992).
- [57] 1992Bo21 A Bouldjedri, R Duffait, R Beraud, A Emsallem, N Redon, A Gizon, J Genevey, D Barneoud, J Blachot, Z Phys A342, 267 (1992). https://doi.org/10.1007/BF01291508
- [58] 1992BoZO V. A. Bolshakov, A. G. Dernyatin, K. A. Mezilev, Yu. N. Novikov, A. V. Popov, Yu. Ya. Sergeev, V. I. Tikhonov, V. A. Sergienko, G. V. Veselov, Contrib. 6th Intern. Conf. on Nuclei Far from Stability + 9th Intern. Conf. on Atomic Masses and Fundamental Constants, Bernkastel-Kues, Germany, PE50 (1992)
- [59] 1992Me10 F. Meissner, H. Salewski, W. -D. Schmidt-Ott, U. Bosch-Wicke, R. Michaelsen, Z. Phys. A343, 283 (1992). https://doi.org/10.1007/BF01291527
- [60] 1992MeZW F. Meissner, W. -D. Schmidt-Ott, H. Salewski, U. Bosch-Wicke, R. Michaelsen, Contrib. 6th Intern. Conf. on Nuclei Far from Stability + 9th Intern. Conf. on Atomic Masses and Fundamental Constants, Bernkastel-Kues, Germany, PE42 (1992).
- [61] 1992Sc16 W. -D. Schmidt-Ott, H. Salewski, F. Meissner, U. Bosch-Wicke, P. Koschel, V. Kunze, R. Michaelsen, Nucl. Phys. A545, 646 (1992). https://doi.org/10.1016/0375-9474(92)90297-W
- [62] 1993Al03 G. D. Alkhazov, L. H. Batist, A. A. Bykov, F. V. Moroz, S. Yu. Orlov, V. K. Tarasov, V. D. Wittmann, Z. Phys. A344, 425 (1993). https://doi.org/10.1007/BF01283198
- [63] 1993BoZK V. A. Bolshakov, A. G. Dernyatin, K. A. Mezilev, Yu. N. Novikov, A. V. Popov, Yu. Ya. Sergeev, V. I. Tikhonov, V. A. Sergienko, G. V. Veselov, Proc. 6th Intern. Conf. on Nuclei Far from Stability + 9th Intern. Conf. on Atomic Masses and Fundamental Constants, Bernkastel-Kues, Germany, 19-24 July, 1992, R. Neugart, A. Wohr, Eds., p. 743 (1993).
- [64] 1995DaZX C. N. Davids, P. J. Woods, J. C. Batchelder, C. R. Bingham, D. J. Blumenthal, L. T. Brown, B. C. Busse, L. F. Conticchio, T. Davinson, S. J. Freeman, M. Freer, D. J. Henderson, R. J. Irvine, R. D. Page, H. T. Penttila, A. V. Ramayya, D. Seweryniak, K. S. Toth, W. B. Walters, A. H. Wuosmaa, B. E. Zimmerman, Proc. Intern. Conf on Exotic Nuclei and Atomic Masses, Arles, France, June 19-23, 1995, p. 263 (1995).
- [65] 1996Da06 C N Davids, P J Woods, H T Penttila, J C Batchelder, C R Bingham, D J Blumenthal, L T Brown, B C Busse, L F Conticchio, T Davinson, D J Henderson, R J Irvine, D Seweryniak, K S Toth, W B Walters, B E Zimmerman, Phys Rev Lett 76, 592 (1996). https://doi.org/10.1103/PhysRevLett.76.592
- [66] 1996Pa01 R. D. Page, P. J. Wood, R. A. Cunningham, T. Davinson, N. J. Davis, A. N. James, K. Livingston, P. J. Sellin, A. C. Shotter, Phys. Rev. C53, 660 (1996). https://doi.org/10.1103/PhysRevC.53.660
- [67] 1998To14 K. S. Toth, X. -J. Xu, C. R. Bingham, J. C. Batchelder, L. F. Conticchio, W. B. Walters, L. T. Brown, C. N. Davids, R. J. Irvine, D. Seweryniak, J. Wauters, E. F. Zganjar, Phys. Rev. C58, 1310 (1998). https://doi.org/10.1103/PhysRevC.58.1310
- [68] 2000KoZN F. G. Kondev, K. Abu Saleem, I. Ahmad, M. Alcorta, P. Bhattacharyya, L. T. Brown, J. Caggiano, M. P. Carpenter, C. N. Davids, S. M. Fischer, A. Heinz, R. V. F. Janssens, R. A. Kaye, T. L. Khoo, T. Lauritsen, C. J. Lister, G. L. Poli, J. Ressler, D. Seweryniak, A. A. Sonzogni, I. Wiedenhover, H. Amro, S. Siem, J. Uusitalo, J. A. Cizewski, M. Danchev, D. J. Hartley, B.

Herskind, W. C. Ma, R. Nouicer, W. Reviol, L. L. Riedinger, M. B. Smith, P. G. Varmette, ANL-00/20 (Physics Division Ann. Rept., 1999), p. 36 (2000).

- [69] 2000PoZY Zs. Podolyak, P. H. Regan, M. Pfutzner, J. Gerl, M. Hellstrom, M. Caamano, P. Mayet, M. Mineva, M. Sawicka, Ch. Schlegel, for the GSI Isomer Collaboration, Proc. 2nd Intern. Conf Fission and Properties of Neutron-Rich Nuclei, St Andrews, Scotland, June 28-July 3, 1999, J. H. Hamilton, W. R. Phillips, H. K. Carter, Eds., World Scientific, Singapore, p. 156 (2000).
- [70] 2001Ko14 V. A. Korotkov, W. -D. Nowak, K. A. Oganessyan, Eur. Phys. J. C 18, 639 (2001).
- [71] 2001Po05 G L Poli, C N Davids, P J Woods, D Seweryniak, M P Carpenter, J A Cizewski, T Davinson, A Heinz, R V F Janssens, C J Lister, J J Ressler, A A Sonzogni, J Uusitalo, W B Walters, Phys Rev C 63, 044304 (2001). https://doi.org/10.1103/PhysRevC.63.044304
- [72] 2004An07 A N Andreyev, D Ackermann, F P Hessberger, K Heyde, S Hofmann, M Huyse, D Karlgren, I Kojouharov, B Kindler, B Lommel, G Munzenberg, R D Page, K Van de Vel, P Van Duppen, W B Walters, R Wyss, Phys Rev C 69, 054308 (2004). https://doi.org/10.1103/PhysRevC.69.054308
- [73] 2004GoZZ J. T. M. Goon, Thesis, University of Tennessee, Knoxville (2004).
- [74] 2009An14 A N Andreyev, S Antalic, D Ackermann, T E Cocolios, V F Comas, J Elseviers, S Franchoo, S Heinz, J A Heredia, F P Hessberger, S Hofmann, M Huyse, J Khuyagbaatar, I Kojouharov, B Kindler, B Lommel, R Mann, R D Page, S Rinta-Antila, P J Sapple, S Saro, P Van Duppen, M Venhart, H V Watkins, Phys Rev C 80, 024302 (2009). https://doi.org/10.1103/PhysRevC.80.024302
- [75] 2018Cu04 J. G. Cubiss, A. E. Barzakh, A. N. Andreyev, M. Al Monthery, N. Althubiti, B. Andel, S. Antalic, D. Atanasov, K. Blaum, T. E. Cocolios, T. Day Goodacre, R. P. de Groote, A. de Roubin, G. J. Farooq-Smith, D. V. Fedorov, V. N. Fedosseev, R. Ferrer, D. A. Fink, L. P. Gaffney, L. Ghys, A. Gredley, R. D. Harding, F. Herfurth, M. Huyse, N. Imai, D. T. Joss, U. Koster, S. Kreim, V. Liberati, D. Lunney, K. M. Lynch, V. Manea, B. A. Marsh, Y. Martinez Palenzuela, P. L. Molkanov, P. Mosat, D. Neidherr, G. G. O'Neill, R. D. Page, T. J. Procter, E. Rapisarda, M. Rosenbusch, S. Rothe, K. Sandhu, L. Schweikhard, M. D. Seliverstov, S. Sels, P. Spagnoletti, V. L. Truesdale, C. Van Beveren, P. Van Duppen, M. Veinhard, M. Venhart, M. Veselsky, F. Wearing, A. Welker, F. Wienholtz, R. N. Wolf, S. G. Zemlyanoy, K. Zuber, Phys. Lett. B 786, 355 (2018). https://doi.org/10.1016/j.physletb.2018.10.005
- [76] 2020Ni06 N. Nica, Nucl. Data Sheets 170, 1 (2020). https://doi.org/10.1016/j.nds.2020.11.001
- [77] 2021Do08 D T Doherty, A N Andreyev, D Seweryniak, P J Woods, M P Carpenter, K Auranen, A D Ayangeakaa, B B Back, S Bottoni, L Canete, J G Cubiss, J Harker, T Haylett, T Huang, R V F Janssens, D G Jenkins, F G Kondev, T Lauritsen, C Lederer-Woods, J Li, C Muller-Gatermann, D Potterveld, W Reviol, G Savard, S Stolze, S Zhu, Phys Rev Lett 127, 202501 (2021). https://doi.org/10.1103/PhysRevLett.127.202501
- [78] 2021Ha32 R. D. Harding, A. N. Andreyev, A. E. Barzakh, J. G. Cubiss, P. Van Duppen, M. Al Monthery, N. A. Althubiti, B. Andel, S. Antalic, T. E. Cocolios, T. Day Goodacre, K. Dockx, G. J. Farooq-Smith, D. V. Fedorov, V. N. Fedosseev, D. A. Fink, L. P. Gaffney, L. Ghys, J. D. Johnson, D. T. Joss, M. Huyse, N. Imai, K. M. Lynch, B. A. Marsh, Y. Martinez Palenzuela, P. L. Molkanov, G. G. O'Neill, R. D. Page, R. E. Rossel, S. Rothe, M. D. Seliverstov, S. Sels, C. Van Beveren, E. Verstraelen, Phys. Rev. C 104, 024326 (2021). https://doi.org/10.1103/PhysRevC.104.024326
- [79] 2021Wa16 M. Wang, W. J. Huang, F. G. Kondev, G. Audi, S. Naimi, Chin. Phys. C 45, 030003 (2021). https://doi.org/ 10.1088/1674-1137/abddaf
- [80] 2022Si28 B. Singh, J. Chen, Nucl. Data Sheets 185, 2 (2022). https://doi.org/10.1016/j.nds.2022.10.001