

Fig. 1: Known experimental values for heavy particle emission of the odd-Z T_z = +18nuclei.

Last updated 12/14/2023

Table 1

Observed and predicted β -delayed particle emission from the odd-Z, $T_z = +18$ nuclei. J ^{π} values for ¹⁷⁸ I	Lu, ¹⁸² Ta,	¹⁸⁶ Re, ¹⁹⁰ Ir,	¹⁹⁴ Au, ¹⁹	⁹⁸ Tl and ²⁰	² Bi are taken
from ENSDF. Unless otherwise stated, all O-values are taken from [2021Wa16] or deduced from values the	therein.				

Nuclide	J^{π}	Ex.	$T_{1/2}$	Q_{ε}	$Q_{\varepsilon p}$	$Q_{\varepsilon \alpha}$	Experimental
¹⁷⁸ Lu*		$1^{(+)}$	28.4(2) m	-0.661(7)			[1973Or03]
¹⁸² Ta*		3-	114.740(24) d	-0.381(6)			[1973Vi13]
¹⁸⁶ Re		1^{-}	3.7186(5) d	0.581(1)	-7.822(14)	1.697(6)	[2004Sc04]
¹⁹⁰ Ir		4^{-}	11.78(10) d	1.954(1)	-6.063(8)	3.330(2)	[1975Ba35]
¹⁹⁴ Au		1-	38.02(10) h	2.548(2)	-4.965(2)	4.071(2)	[1992Si02]
¹⁹⁸ Tl		2-	5.3(5) h	3.426(8)	-3.678(8)	4.806(8)	[1954Mi16]
²⁰² Bi		5^{+}	1.71(2) h***	5.190(15)	-0.859(20)	7.779(14)	[1970DaZM, 1966KaZY]
²⁰⁶ At		(5^{+})	29.3(4) m	5.749(14)	1.337(14)	11.076(14)	[1977Li16]
²¹⁰ Fr		6+	3.18(6) m	6.261(14)	2.251(14)	12.420(14)	[2005Ku06]
²¹⁴ Ac		5^{+}	8.2(2) s	6.341(15)	2.699(14)	13.613(14)	[1968Va04]
²¹⁸ Pa		(8-)	108(5) µs@	6.283(21)	2.658(21)	16.132(19)	[2020Zh01, 2000He17]
218m Pa	0.080(11)	(1^{-})	$135^{+62}_{-32} \mu s$	6.363(24)	2.738(24)	16.212(22)	[2020Zh01]
²²² Np		. /	380^{+260} ns	7.000(60)	3.611(71)	16.483(39)	[2020Ma27
²²⁶ Am			-110	7.34(36)#	4.06(31)#	16.27(30)#	L · · ·

* 100 β^- emitter.

** 92.5(1)% β^- , 7.5(1)% ε emitter.

*** Weighted average of 1.67(2) h [1966KaZY] and 1.79(3) h [1970DaZM].

[@] Weighted average of 107(5) µs [2020Zh01] and 113(10) µs [2000He17].

Table 2

Particle separation, Q-values, and measured values for direct particle emission of the odd-Z, $T_z = +18$ nuclei. Unless otherwise stated, all S and Q-values are taken from [2021Wa16] or deduced from values therein.

Nuclide	\mathbf{S}_p	S_{2p}	Qα	BRα	Experimental
178 J. II	6 640(2)	15 55(10)	1 102(45)		
182 Ta	6.317(2)	14.332(71)	1.102(43) 1.482(3)		
186 Re	5.828(1)	13 666(26)	2.078(2)		
190 Jr	5.056(1)	12.315(1)	2.078(2) 2.749(1)		
¹⁹⁴ Au	5.030(1)	12.313(1) 11.954(2)	2.147(1) 2.117(2)		
¹⁹⁸ Tl	4 277(8)	10.968(8)	2.117(2)		
²⁰² Bi	2 769(20)	8 282(15)	4 353(16)		
²⁰⁶ At	2.707(17)	6 371(16)	5 887(5)	0.87(8)%*	[1981Va27, 1981Va29, 1977VaZT, 1961La02
710	2.207(17)	0.571(10)	5.007(5)	0.07(0)/0	1970DaZM, 1969Ba69, 1969BaZM, 1968Go12,
					1964Th07. 1963Ho18. 1961Fo041
²¹⁰ Fr	1.691(17)	5.452(16)	6.671(5)	71(4)%	[2005Ku06 , 2022Ha06, 2014Ma66, 2000RuZZ,
				(.) , -	1972KeYY, 1971ReZE, 1967Va20, 1964Gr04,
					1961Gr42]
²¹⁴ Ac	1.201(17)	4.629(16)	7.352(2)	89(3)%	[2004Ku24, 1968Va04, 2000He17, 1961Gr42]
²¹⁸ Pa	0.845(21)	4.078(20)	9.791(12)	100%	[2020Zh01, 2000He17, 1996An21, 1979Sc09,
					1995AnZY, 1995NiZS, 1978ReZZ]
218m Pa	0.765(24)	3.998(23)	9.871(16)	100%	[2020Zh01]
²²² Np	0.534(82)	3.582(41)	10.200(34)	100%	[2020Ma27
²²⁶ Am	0.62(42)#	3.64(30)#	9.27(30)#		

* A value of 0.88(8)% was reported in [1961La02]. This value was deduced using an α branching ratio of 5(1)% [1955M008] for the decay of ²⁰⁶Po. [1981Va27] report a value of 0.70(14)% for the α branching of ²⁰⁶At, using using an α branching ratio of 5.2(4)% [1971Go35] for the decay of ²⁰⁶Po. Adjusting the value of [1961La02] using the ²⁰⁶Po α branching ratio of [1971Go35] results in a value of 0.92(8)%. The weighted average of 0.70(14)% and 0.92(8)% is adopted here. In addition, note that [1967Le08] list an α branching ratio of 5.45% for ²⁰⁶Po with no uncertainty reported.

Table 3	
direct α emission from ²⁰⁶ At, Ex. = 2.045(9) MeV, $J_i^{\pi} = (5^+)$, T	$T_{1/2} = 29.3(4) \text{ m}^{**}, BR_{\alpha} = 0.87(8)\%^{**}$

$E_{\alpha}(\text{c.m.})$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(\text{rel})$	$I_{\alpha}(abs)$	$J_f^{\pi@}$	$E_{daughter}(^{202}\mathrm{Bi})$	coincident γ-rays [@]	$R_0 (fm)^{@@}$	HF
5.816(2)	5.703(2)	100%	0.83(8)%	(5+)	0.072(4)		1.4690(56)	2.0^{+4}_{-3}
5.848(3) 5.881(3)	5.734(3)	1.2(3)%	$9.6(28) \times 10^{-3}\%$	(4^+)	0.041(5)	.041	1.4690(56)	240^{+110}_{-70} 170^{+50}
5.888(4)	5.774(4)	2.4(4)% 0.9(3)%	$7.8(27) \times 10^{-3}\%$	(7^{+}) 5 ⁺	0.007(3)		1.4690(56)	460^{+260}_{-140}

* All values from [1981Va27], except where noted.

** [1977Li16].

*** A value of 0.88(8)% was reported in [1961La02]. This value was deduced using an α branching ratio of 5(1)% [1955Mo08] for the decay of ²⁰⁶Po. [1981Va27] report a value of 0.70(14)% for the α branching of ²⁰⁶At, using using an α branching ratio of 5.2(4)% [1971Go35] for the decay of ²⁰⁶Po. Adjusting the value of [1961La02] using the ²⁰⁶Po α branching ratio of [1971Go35] results in a value of 0.92(8)%. The weighted average of 0.70(14)% and 0.92(8)% is adopted here. In addition, note that [1967Le08] list an α branching ratio of 5.45% for ²⁰⁶Po with no uncertainty reported.

[@] [2008Zh05].

[@] Interpolated between 1.4625(22) fm (204 Po) and 1.4755(52) fm (208 Rn).

Table 4

direct α emission from ²¹⁰Fr, $J_i^{\pi} = 6^+$, $T_{1/2} = 3.18(6)$ m*, $BR_{\alpha} = 71(4)\%$.

$E_{\alpha}(c.m.)$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(\text{rel})$	$I_{\alpha}(abs)$	\mathbf{J}_f^{π}	$E_{daughter}(^{206}\mathrm{Ra})$	coincident γ -rays	R ₀ (fm)***	HF
6.015(5)**	5 900(5)**	>0.010(5)%	>0.0071(36)%		0 6573(2)**	0.6263(3)** 0.6515(3)**	1 4737(61)	<32+34
6.231(7)	6.112(7)	>0.0017(9)%	>0.0012(6)%		0.4442(5)	0.442(5)	1.4737(61)	$< 1.8(3) \times 10^3$
6.333(4)	6.212(4)	>0.022(3)%	>0.016(2)%		0.3404(1)	0.3404(1)	1.4737(61)	$<380^{+100}_{-80}$
6.348(5)**	6.227(5)**	>0.010(2)%	>0.0071(15)%		0.3223(1)**	0.3223(1)**	1.4737(61)	$<1.0^{+0.3}_{-0.2}\times10^{3}$
6.471(5)**	6.348(5)**	>0.0041(13)%	>0.0029(9)%		0.2009(5)**	0.1953(2)**	1.4737(61)	$<1.1_{-0.3}^{+0.6} \times 10^{4}$
6.524(4)	6.400(4)	>0.034(7)%	>0.024(5)%		0.1480(1)	0.1169(3)**, 0.1480(1)	1.4737(61)	$<1.6^{+0.5}_{-0.4} \times 10^{3}$
6.533(4)**	6.409(4)**	>0.014(4)%	>0.010(3)%		0.1376(3)**	0.1065(2)**, 0.1376(3)**	1.4737(61)	$<4.3^{+2.0}_{-1.2}\times10^{3}$
6.545(4)	6.420(4)	>0.030(5)%	>0.021(4)%		0.1263(1)	0.1207(3)**, 0.1263(1)	1.4737(61)	$<2.2^{+0.6}_{-0.5} \times 10^{3}$
6.672(5)	6.545(5)	100%	70.9(40)%	(5 ⁺)	0.0		1.4737(61)	$2.13_{-0.31}^{+0.35}$

* All values from [2005Ku06].

** Tentatively assigned.

*** Interpolated between 1.4755(52) fm (²⁰⁸Rn) and 1.4718(31) fm (²¹²Ra).

Table 5

direct α emission from ²¹⁴Ac*, $J_i^{\pi} = 5^+$, $T_{1/2} = 8.2(2) \text{ s**}$, $BR_{\alpha} = 89(3)\%^{**}$.

$E_{\alpha}(c.m.)$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(\text{rel})$	$I_{\alpha}(abs)$	\mathbf{J}_f^{π}	<i>E</i> _{daughter} (²¹⁰ Fr)	coincident γ -rays	R ₀ (fm) [@]	HF
6.601(15)	6.478(15)	> 0.0043(15)%	>0.0020(7)%		0.7537(7)	0.7537(7)	1.4707(34)	$<\!270^{+1460}_{-80}$
6.639(15)	6.515(15)	> 0.0041(15)%	>0.0020(7)%		0.7134(7)	0.7134(7)	1.4707(34)	$<390^{+230}_{-110}$
6.732(7)	6.606(7)	>0.0122(24)%	>0.0059(12)%		0.6225(2)	0.6225(2)	1.4707(34)	$<310^{+90}_{-60}$
6.752(7)	6.626(7)	>0.0087(22)%	>0.0042(11)%		0.6014(2)	0.6014(2)	1.4707(34)	$<530^{+210}_{-130}$
6.829(5)	6.701(5)	0.26(4)%	0.125(18)%		0.5259(1)	0.2814(1), 0.3166(2), 0.3301(1),	1.4707(34)	35^{+8}_{-6}
						0.3867(2), 0.4630(2), 0.5259(1)		0
6.912(7)	6.783(7)	>0.028(8)%	>0.013(4)%		0.4442(2)	0.4442(2)	1.4707(34)	$< 680^{+280}_{-170}$
6.992(6)	6.861(6)	>0.167(4)%	>0.080(18)%		0.3639(2)	0.1546(1), 0.2247(1), 0.3639(2)	1.4707(34)	$<\!230^{+80}_{-50}$
7.009(5)	6.878(5)	>0.24(9)%	>0.116(18)%		0.3464(1)	0.3464(1)	1.4707(34)	$<180_{-30}^{+40}$
7.010(6)	6.879(6)	>0.057(15)%	>0.027(7)%		0.3395(1)	0.3395(1)	1.4707(34)	$< 810^{+310}_{-190}$
7.020(6)	6.889(6)	>0.100(19)%	>0.048(9)%		0.3330(1)	0.3330(1)	1.4707(34)	$< 500^{+140}_{-100}$
7.111(5)	6.978(5)	2.04(56)%	0.98(27)%		0.2442(1)	0.1814(1), 0.2442(1)	1.4707(34)	52^{+22}_{-13}
7131(7)***	6998(7)***	>0.074(37)%***	>0.036(18)%		0.2551(2)***	0.1625(1)***, 0.2551(2)***	1.4707(34)	$<1.7^{+1.8}_{-0.6} \times 10^{3}$
7.145(5)	7.011(5)	>0.81(8)%	>0.39(4)%		0.2090(1)	0.14640(1), 0.2090(1)	1.4707(34)	$< 176^{+29}_{-24}$
7.157(5)	7.023(5)	>0.65(10)%	>0.312(5)%		0.1955(1)	0.1331(1), 0.1955(1)	1.4707(34)	$<250^{+60}_{-40}$
7.216(4)	7.081(4)	77.8(45)%	37.4(22)%		0.1390(1)	0.0763(1), 0.1390(1)	1.4707(34)	3.3(4)
7.289(6)	7.153(6)	?	?		0.0626(1)	0.0626(1)	1.4707(34)	
7.352(3)	7.215(3)	100(5)%	48(2)%		0.0		1.4707(34)	7.9(8)

* All values from [2004Ku24], except where noted.

** [1968Va04], the I_{α} value is reported as a lower limit.

*** Tentatively assigned.

^(a) Interpolated between 1.4718(31) fm (2128 Ra) and 1.4695(14) 216 Th

Table 6

$E_{\alpha}(c.m.)$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(\text{rel})$	$I_{\alpha}(abs)$	J_f^{π}	$E_{daughter}(^{214}\mathrm{Ac})$	coincident γ-rays	$R_0 \ (fm)^@$	HF
9.712(8) 9.792(8)	9.534(8)** 9.612(8)***	40(3)%** 100%	29(2)% 71(4)%	(4 ⁺) (5 ⁺)	0.092 0.0	0.092	1.495(21) 1.495(21)	$220^{+130}_{-80}\\150^{+180}_{-50}$

direct α emission from ²¹⁸Pa, $J_i^{\pi} = (8^-)$, $T_{1/2} = 108(5) \ \mu s^*$, $BR_{\alpha} = 100\%$.

* Weighted average of 107(5) µs [2020Zh01] and 113(10) µs [2000He17].

** Weighted average of 9.524(16) MeV; 26(2)% [2020Zh01], 9.544(15) MeV; 35(5)% [2000He17], 9.530(15) MeV; 31(4)% [1996An21] and 9.535(15) MeV; 35(10)% [1979Sc09].

*** Weighted average of 9.610(14) MeV; 74(5)% [2020Zh01], 9.616(15) MeV; 65(7)% [2000He17], 9.610(15) MeV; 69(4)% [1996An21] and 9.614(15) MeV; 365(10)% [1979Sc09].

[@] Interpolated between 1.4695(14) fm 216 Th and 1.521(15) fm 220 U.

Table 7

direct α emission from ^{218m} Pa*, Ex. = 80(11) keV, J	$I_i^{\pi} = (1^-), T_{1/2} = 135^{+62}_{-32} \ \mu s, BR_{\alpha} = 100\%$
--	---

$E_{\alpha}(\text{c.m.})$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(\text{rel})$	$I_{\alpha}(abs)$	J_f^π	$E_{daughter}(^{214}\mathrm{Ac})$	coincident γ -rays	R ₀ (fm)***	HF
9.775(21) 9.872(15)	9.596(21)** 9.691(15)***	100%	≈100%	(4 ⁺) (5 ⁺)	0.092 0.0	0.092	1.495(21) 1.495(21)	200^{+140}_{-120}

* All values from [2020Zh01].

** Tentatively assigned.

*** Interpolated between 1.4695(14) fm ²¹⁶Th and 1.521(15) fm ²²⁰U.

Table 8

direct α emission from ²²²Np*, T_{1/2} = 380⁺²⁶⁰₋₁₁₀ ns, BR_{α} = 100%.

$E_{\alpha}(c.m.)$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(\text{rel})$	$I_{\alpha}(abs)$	\mathbf{J}_f^{π}	$E_{daughter}(^{218}\mathrm{Pa})$	coincident γ -rays	R ₀ (fm)**	HF
10.200(33)	10.016(33)	100%	29(2)%	(8 ⁻)	0.0		1.503(50)	$0.9^{+1.8}_{-0.7}$

* All values from [2020Ma27].

** Interpolated between 1.521(15) fm ²²⁰U and 1.484(48) fm ²²⁴Pu,

References used in the Tables

- [1] 1954Mi16 M. C. Michel, D. H. Templeton, Phys. Rev. 93, 1422 (1954). https://doi.org/10.1103/PhysRev.93.1422
- [2] 1961Fo04 W. Forsling, T. Alvager, L. W. Holm, O. Melin, J. Uhler, B. Astrom, Ark. Fys. 19, 83 (1961).
- [3] 1961Gr42 R. D. Griffioen, R. D. Macfarlane, UCRL-10023, p. 47 (1961).
- [4] 1961La02 R. M. Latimer, G. E. Gordon, T. D. Thomas, J. Inorg. Nuclear Chem. 17, 1 (1961). https://doi.org/10.1016/0022-1902(61)80177-2
- [5] 1963Ho18 R. W. Hoff, F. Asaro, I. Perlman, J. Inorg. Nucl. Chem. 25, 1303 (1963). https://doi.org/10.1016/0022-1902(63)80400-5
- [6] 1964Gr04 R. D. Griffioen, R. D. Macfarlane, Phys. Rev. 133, B1373 (1964). https://doi.org/10.1103/PhysRev.133.B1373
- [7] 1964Th07 P. E. Thoresen, F. Asaro, I. Perlman, J. Inorg. Nucl. Chem. 26, 1341 (1964).
- [8] 1966KaZY P. Karol, C. Stearns, CU-1019-51, p. 8 (1966)
- [9] 1967Va20 K. Valli, E. K. Hyde, W. Treytl, J. Inorg. Nucl. Chem. 29, 2503 (1967). https://doi.org/10.1016/0022-1902(67)80176-3
- [10] 1968Go12 N. A. Golovkov, R. B. Ivanov, Y. V. Norseev, So Ki Kvan, V. A. Khalkin, V. G. Chumin, Contrib. Intern. Conf. Nucl. Struct., Dubna, p. 54 (1968).
- [11] 1968Va04 K. Valli, W. J. Treytl, E. K. Hyde, Phys. Rev. 167, 1094 (1968). https://doi.org/10.1103/PhysRev.167.1094
- [12] 1969Ba69 G. Bastin, Centre Spectrometrie Nucl. Spectrometrie Masse, Ann. 1968-69, Centre Natl. Recherche Sci., Orsay, p. 3 (1969).
- [13] 1969BaZM G. Bastin, NP-18837, p. 3 (1969).

- [14] 1970DaZM J. M. Dairiki, Thesis, Univ. California (1970); UCRL-20412 (1970).
- [15] 1971ReZE J. -L. Reyss, Thesis, Univ. Paris (1971); FRNC-TH-124 (1971).
- [16] **1972KeYY** T. Kempisty, A. Korman, T. Morek, L. K. Peker, Z. Haratym, S. Chojnacki, JINR-P6-6725 (1972).
- [17] 1973Or03 C. J. Orth, W. R. Daniels, D. C. Hoffman, F. O. Lawrence, Phys. Rev. C8, 718 (1973). https://doi.org/10.1103/PhysRevC.8.718
- [18] 1973Vi13 C. J. Visser, J. H. M. Karsten, F. J. Haasbroek, P. G. Marais, Agrochemophysica 5, 15 (1973).
- [19] 1975Ba35 B. P. Bayhurst, J. S. Gilmore, R. J. Prestwood, J. B. Wilhelmy, N. Jarmie, B. H. Erkkila, R. A. Hardekopf, Phys. Rev. C12, 451 (1975). https://doi.org/10.1103/PhysRevC.12.451
- [20] 1977Li16 E. W. A. Lingeman, Phys. Scr. 15, 205 (1977). https://doi.org/10.1088/0031-8949/15/3/008
- [21] 1977VaZT V. M. Vakhtel, L. Vasharosh, N. A. Golovkov, R. B. Ivanov, Y. Y. Lobanov, A. F. Novgorodov, Y. V. Norseev, V. G. Chumin, Program and Theses, Proc. 27th Ann. Conf. Nucl. Spectrosc. Struct. At. Nuclei, Tashkent, p. 117 (1977).
- [22] 1978ReZZ W. Reisdorf, GSI-M-2-78 (1978).
- [23] 1979Sc09 K. -H. Schmidt, W. Faust, G. Munzenberg, H. -G. Clerc, W. Lang, K. Pielenz, D. Vermeulen, H. Wohlfarth, H. Ewald, K. Guttner, Nucl. Phys. A318, 253 (1979). https://doi.org/10.1016/0375-9474(79)90482-2
- [24] 1981Va27 V. M. Vakhtel, N. A. Golvkov, R. B. Ivanov, M. A. Mikhailova, A. F. Novgorodov, Yu. V. Norseev, V. G. Chumin, Yu. V. Yushkevich, Izv. Akad. Nauk SSSR, Ser. Fiz. 45, 1861 (1981).
- [25] 1981Va29 V. M. Vakhtel, N. A. Golovkov, R. B. Ivanov, M. A. Mikhailova, V. G. Chumin, Izv. Akad. Nauk SSSR, Ser. Fiz. 45, 1966 (1981).
- [26] 1992Si02 B. Singh, H. W. Taylor, Appl. Radiat. Isot. 43, 647 (1992).
- [27] 1995AnZY A. N. Andreev, D. D. Bogdanov, A. V. Eremin, A. P. Kabachenko, O. N. Malyshev, G. M. Ter-Akopyan, V. I. Chepigin, Program and Thesis, Proc. 45th Ann. Conf. Nucl. Spectrosc. Struct. At. Nuclei, St. Petersburg, p. 109 (1995).
- [28] 1995NiZS V. Ninov, S. Hofmann, F. P. Hessberger, H. Folger, A. N. Andreev, A. V. Eremin, A. G. Popeko, S. Saro, Program and Thesis, Proc. 45th Ann. Conf. Nucl. Spectrosc. Struct. At. Nuclei, St. Petersburg, p. 108 (1995).
- [29] 1996An21 A. N. Andreev, A. G. Popeko, A. V. Eremin, S. Hofmann, F. Hessberger, H. Folger, V. Ninov, S. Saro, Bull. Rus. Acad. Sci. Phys. 60, 119 (1996).
- [30] 2000He17 F. P. Hessberger, S. Hofmann, D. Ackermann, V. Ninov, M. Leino, S. Saro, A. Andreyev, A. Lavrentev, A. G. Popeko, A. V. Yeremin, Eur. Phys. J. A 8, 521 (2000); Erratum Eur. Phys. J. A 9, 433 (2000). https://doi.org/10.1007/s100500070075
- [31] 2000RuZZ M. Rupp, G. Langrock, N. Wiehl, H. O. Kling, M. Mendel, U. Tharun, J. V. Kratz, A. Turler, Univ Mainz, Institut fur Kernchemie, Ann. Rept., A1 (2000).
- [32] **2004Ku24** P. Kuusiniemi, F. P. Hessberger, D. Ackermann, S. Hofmann, I. Kojouharov, Eur. Phys. J. A **22**, 429 (2004). https://doi.org/10.1140/epja/i2004-10101-2
- [33] 2004Sc04 H. Schrader, Appl. Radiat. Isot. —bf60, 317 (2004). https://doi.org/10.1016/j.apradiso.2003.11.039
- [34] **2005Ku06** P. Kuusiniemi, F. P. Hessberger, D. Ackermann, S. Hofmann, I. Kojouharov, Eur. Phys. J. A **23**, 417 (2005). https://doi.org/10.1140/epja/i2004-10104-y
- [35] 2008Zh05 S. Zhu, F. G. Kondev, Nucl.Data Sheets 109, 699 (2008). https://doi.org/10.1016/j.nds.2008.02.002
- [36] 2014Ma66 D. A. Mayorov, T. A. Werke, M. C. Alfonso, M. E. Bennett, C. M. Folden, Phys. Rev. C 90, 024602 (2014). https://doi.org/10.1103/PhysRevC.90.024602
- [37] 2020Ma27 L. Ma, Z. Y. Zhang, Z. G. Gan, X. H. Zhou, H. B. Yang, M. H. Huang, C. L. Yang, M. M. Zhang, Y. L. Tian, Y. S. Wang, H. B. Zhou, X. T. He, Y. C. Mao, W. Hua, L. M. Duan, W. X. Huang, Z. Liu, X. X. Xu, Z. Z. Ren, S. G. Zhou, H. S. Xu, Phys. Rev. Lett. 125, 032502 (2020). https://doi.org/10.1103/PhysRevLett.125.032502
- [38] 2020Zh01 M. M. Zhang, H. B. Yang, Z. G. Gan, Z. Y. Zhang, M. H. Huang, L. Ma, C. L. Yang, C. X. Yuan, Y. S. Wang, Y. L. Tian, H. B. Zhou, S. Huang, X. T. He, S. Y. Wang, W. Z. Xu, H. W. Li, X. X. Xu, J. G. Wang, H. R. Yang, L. M. Duan, W. Q. Yang, S. G. Zhou, Z. Z. Ren, X. H. Zhou, H. S. Xu, A. A. Voinov, Yu. S. Tsyganov, A. N. Polyakov, M. V. Shumeiko, Phys. Lett. B 800, 135102 (2020). https://doi.org/10.1016/j.physletb.2019.135102
- [39] 2021Wa16 M. Wang, W. J. Huang, F. G. Kondev, G. Audi, S. Naimi, Chin. Phys. C 45, 030003 (2021). https://doi.org/10.1088/1674-1137/abddaf
- [40] 2022Ha06 T. Hayamizu, H. Haba, K. Nakamura, T. Aoki, H. Nagahama, K. S. Tanaka, N. Ozawa, M. Ohtsuka, Y. Sakemi,

Few-Body Systems 63, 11 (2022). https://doi.org/10.1007/s00601-021-01710-4