

Fig. 1: Known experimental values for heavy particle emission of the odd-Z T_z = +17 nuclei.

Last updated 11/1/2023

Table 1

Observed and predicted β -delayed particle emission from the odd-*Z*, $T_z = +17$ nuclei. J^{π} values for ¹⁷²Tm, ¹⁷⁶Lu, ¹⁸⁰Ta, ¹⁸⁴Re, ¹⁸⁸Ir, ¹⁹²Au, ¹⁹⁶Tl and ²⁰⁰Bi are taken from ENSDF. Unless otherwise stated, all Q-values are taken from [2021Wa16] or deduced from values therein.

Nuclide	J^{π}	$T_{1/2}$	Qε	$Q_{\varepsilon p}$	$Q_{arepsilonlpha}$	Experimental
172 T m*	2-	63 6(3) h	0.801(5)			[1056Na08]
¹⁷⁶ Lu*	2 7-	$3.640(35) \times 10^{10} \text{ v}$	0.109(1)	-8.361(50)	0.676(4)	[2013Ko20]
¹⁸⁰ Ta**	, 1+	8.152(6) h	0.846(2)	-7.164(5)	2.132(2)	[1980Rv01]
¹⁸⁴ Re	(3 ⁻)	35.43(16) d	1.486(4)	-6.215(4)	3.135(4)	[2022La12]
¹⁸⁸ Ir	1-	41.5(5) h	2.792(9)	-4.417(9)	4.936(9)	[1950Ch11]
¹⁹² Au	1-	4.94(10) h***	3.516(16)	-3.352(16)	5.940(16)	[1966Ny01, 1962Ma18]
¹⁹⁶ Tl	2^{-}	1.84(3) h	4.329(12)	-2.219(12)	6.367(12)	[1960Ju01]
²⁰⁰ Bi	7^{+}	36.4(5) m	5.880(25)	0.400(36)	9.030(23)	[1970DaZM]
²⁰⁴ At	7^{+}	9.1(1) m [@]	6.466(25)	2.361(26)	11.951(25)	[1963Ho18, 1970DaZM,
						1964Th07]
²⁰⁸ Fr	7^{+}	58.6(3) s ^{@@}	6.990(15)	3.274(17)	13.251(15)	[1974Ho27, 1981Ri04]
²¹² Ac	(7^{+})	896(35) ms ^{@@@}	7.498(24)	4.151(25)	14.530(24)	[1968Va04, 2014Ya19]
²¹⁶ Pa		105(12) ms	7.525(27)	4.504(28)	15.598(27)	[1996An21]
²²⁰ Np		$25^{+14}_{-7} \ \mu s$	7.46(11)#	4.603(76)	17.752(33)#	[2019Zh23]
²²⁴ Am		, ·	7.98(50)#	5.31(41)#	17.82(41)#	

* 100% β^- emitter.

** Decays by 22.1(14)% β^+ , 77.9(14)% β^- emitter [2013Ko20].

*** Weighted average of 4.85(10) h [1966Ny01] and 5.03(10) h [1962Ma18].

[@] Weighted average of 9.3(2) m [1963Ho18], 9.1(2) m [1970DaZM], and 8.9(2) m [1964Th07].

[@] Weighted average of 58.0(3) s [1974Ho27] and 59.1(3) s [1981Ri04].

^{@@@} Weighted average of 880(35) ms [2014Ya19] and 930(50) ms [1968Va04].

Table 2

Particle separation, Q-values, and measured values for direct particle emission of the odd-Z, $T_z = +17$ nuclei. Unless otherwise stated, all S and Q-values are taken from [2021Wa16] or deduced from values therein.

Nuclide	S_p	S_{2p}	Qα	BR_{α}	Experimental
172 Tm	6.945(5)	15 714(50)	0.261(30)		
1761	5.076(1)	14.006(45)	1.566(6)		
180 To	5.970(1) 5.760(2)	14.090(43) 12.174(2)	1.500(0)		
184 p.	5.700(2)	13.174(3) 12.2(7(4))	2.024(2)		
188 T	5.145(4)	12.307(4)	2.289(5)		
100 Ir	4.415(9)	10.996(9)	3.450(10)		
¹⁹² Au	4.363(16)	10.597(16)	3.148(18)		
¹⁹⁶ Tl	3.772(26)	9.863(12)	2.851(20)		
²⁰⁰ Bi	2.428(24)	7.420(24)	4.701(26)		
²⁰⁴ At	1.853(23)	5.702(27)	6.070(1)	4.52(4)%	[1981Va27, 1968Go12, 1967Tr06, 1963Ho18, 1961La02,
					2014Ma66, 1981Va29, 1981VaZT, 1975BaYJ, 1974Ho27,
					1970DaZM, 1967Tr04, 1964Th07]
²⁰⁸ Fr	1.319(13)	4.803(18)	6.785(25)	80(3)%*	[1981Ri04, 1974Ho27, 1967Va20, 2019Zh23, 2003At01,
					1971ReZE, 1964Gr04, 1961Gr42]
²¹² Ac	0.821(22)	3.935(26)	7.540(24)	$pprox 100\%^{**}$	[2014Ya19, 2000He17,1968Va04, 2019Zh23, 2015Ma63]
²¹⁶ Pa	0.387(25)	3.187(28)	8.099(11)	$\approx 100\%^{**}$	[2000He17, 2019Zh23, 1998Ik01, 1998MiZW, 1996An21,
		. ,	· · ·		1979Sc09, 1971Su14]
²²⁰ Np	0.110(33)	2.752(36)	10.226(18)	100%	[2019Zh23]
²²⁴ Am	0.15(50)#	2.59(40)#	10.36(40)#		
	· · ·	. /	· · ·		

* Weighted average of 90(4)% [1981Ri04] and 74(3)% [1974Ho27].

** Not measured, based on half-life.

Table 3

direct α emis	ssion from ²⁰⁴ At, J	$\pi_i = 7^+, T_{1/2} = 9$	0.1(1) m*, <i>BR</i>	$\alpha = 4.52(4)$ %	%**.						
$E_{\alpha}(\text{c.m.})$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(abs)$	${ m J}_f^\pi$	E_{daugh}	_{ter} (²⁰⁰ Bi)	coincident	γ-rays	R ₀ (fm)]	HF	
6.070(1)	5.951(1)***	4.52(4)%*	* 7+	0.0				1.4809(34)@		2.02(16)	
* Weigh ** [1961 *** Wei 5.953(3) MeV @ Interp	ted average of 9.3(ILa02]. ghted average of 5 V [1981Va27]. olated between 1.4	2) m [1963Ho13 5.952(2) MeV [1 5720(20) fm (²⁰²	8], 9.1(2) m [968Go12], 5 Po) and 1.49	1970DaZM], .948(3) MeV 17(27) fm (²⁰	, and 8.9(2) n ⁷ (adjusted to ⁹⁶ Rn).	n [1964Th07]. 9 5.951(3) MeV	7 in [199]	1Ry01]) [19	53Ho18], 5	.947(3) M	IeV [1967Tr06] and
Table 4 direct α emis	ssion from ²⁰⁸ Fr, J_i^{π}	$\tau = (7^+), T_{1/2} =$	58.6(3) s*, B	$R_{\alpha} = 80(3)\%$	ó**.						
$E_{\alpha}(\text{c.m.})$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(abs)$	${f J}_f^\pi$	Edaughte	$r(^{204}At)$	coincident)	∕-rays	R ₀ (fm)]	HF	
6.771(5)	6.641(5)***	80(3)%**	7+	0.0				1.4889(40)@		$1.78\substack{+0.20\\-0.18}$	
*** Wei [1974Ho27] a @ Interp Table 5 direct α emis	ighted average of 6 and 6.636(5) MeV iolated between 1.4 ssion from ²¹² Ac, J	(4) π [1361K04 (6.647(5) MeV (a) (adjusted to 6.6 (917(27) fm (²⁰⁶) $\pi_i^{\pi} = (7^+), T_{1/2} =$	adjusted to 6. 37(5) MeV ir Rn) and 1.48	$^{(19741102)}_{647(5) \text{ MeV}}$ $a [1991Ry01]_{61(29) \text{ fm}} (^2)$ $^*, BR_{\alpha} = \approx 1$, in [1991Ry(]) [1981Ri04 ¹⁰ Ra). .00%.	01]) [1967Va20].	0], 6.6366	(5) MeV (ac	justed to 6	.637(5) M	IeV in [1991Ry01]]
$E_{\alpha}(c.m.)$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(abs)$	\mathbf{J}_f^{π}	$E_{daughter}$	²⁰⁸ Fr)	coincident γ-rays		R ₀ (fm)]		HF	
7.517(6)	7.375(6)**	100%	(7 ⁺)	0.0		—		1.4924(63)***		$1.98\substack{+0.32\\-0.28}$	
* Weigh ** Weig *** Inter	ted average of 880 hted average of 7.3 rpolated between 1	(35) ms [2014Y. 373(10) MeV [2 .4861(29) fm (²	a19] and 930(000He17] and ¹⁰ Ra) and 1.4	(50) ms [196) 1 7.377(8) M 1986(56) fm	8Va04]. (eV [1968Va0 (²¹⁴ Th).	04].					
direct α emis	ssion from ²¹⁶ Pa*,	$T_{1/2} = 105(12)$	ms**, BR_{α} =	$\approx 100\%.$							
$E_{\alpha}(\text{c.m.})$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(\text{rel})$	$I_{\alpha}(abs)$	J_f^π	$E_{daughter}(^2$	²¹² Ac) co	oincident	γ-rays	R ₀ (fm)]		HF
7.940(15) 7.962(15) 8.098(15)	7.793(15) 7.815(15) 7.948(15)	8(2)% 88(12)% 100(8)%	4(1)% 45(5)% 51(4)%	(7+)	0.158 0.1336(3) 0.0	0. 0. —	.158 .1336(3)		1.505(15) 1.505(15) 1.505(15)	*** *** ***	$\begin{array}{c} 35^{+22}_{-14} \\ 3.7^{+1.8}_{-1.4} \\ 9^{+4}_{-3} \end{array}$
* All val ** [1996 *** Inte	lues from [2000He 5An21]. rpolated between 1	25], except whe .4986(56) fm (²	re noted. ¹⁴ Th) and 1.5	512(14) fm(²	¹⁸ U).						
Table 7direct α emission	ssion from ²²⁰ Np*,	$T_{1/2} = 25^{+14}_{-7} \mu$	s, $BR_{\alpha} = 100$	%.							
$E_{\alpha}(\text{c.m.})$	$E_{\alpha}(lab)$	$I_{\alpha}(abs)$	${\sf J}_f^{{m \pi}}$	Edaughter	(²¹⁶ Pa)	coincident γ	-rays	R ₀ (fm)]	HF	
10.226(18)	10.040(18)	100%		0.0**				1.512(3	9)***	80^{+100}_{-50}	
* All val ** α is a	lues from [219Zh2] assumed to feed the	3]. e ground state of	²¹⁶ Pa.								

*** Interpolated between 1.512(14) fm (²¹⁸U) and 1.511(36) fm (²²²Pu).

References used in the Tables

- [1] 1950Ch11 T. C. Chu, Phys. Rev. 79, 582 (1950). https://doi.org/10.1103/PhysRev.79.582
- [2] 1956Ne08 D. R. Nethaway, M. C. Michel, W. E. Nervik, Phys. Rev. 103, 147 (1956). https://doi.org/10.1103/PhysRev.103.147
- [3] 1960Ju01 B. Jung, G. Andersson, Nuclear Phys.15, 108 (1960). https://doi.org/10.1016/0029-5582(60)90288-1
- [4] 1961Gr42 R. D. Griffioen, R. D. Macfarlane, UCRL-10023, p. 47 (1961).
- [5] 1962Ma18 I. Marklund, E. Karlsson, K. Korkman, Arkiv Fysik 22, 289 (1962).
- [6] 1963Ho18 R. W. Hoff, F. Asaro, I. Perlman, J. Inorg. Nucl. Chem. 25, 1303 (1963). https://doi.org/10.1016/0022-1902(63)80400-5
- [7] 1964Gr04 R. D. Griffioen, R. D. Macfarlane, Phys. Rev. 133, B1373 (1964). https://doi.org/10.1103/PhysRev.133.B1373
- [8] 1964Th07 P. E. Thoresen, F. Asaro, I. Perlman, J. Inorg. Nucl. Chem. 26, 1341 (1964).
- [9] 1966Ny01 B. Nyman, A. Johansson, C. Bergman, G. Backstrom, Nucl. Phys. 88, 63 (1966). https://doi.org/10.1016/0029-5582(66)90453-6
- [10] 1967Tr04 W. J. Treytl, K. Valli, UCRL-17299, p. 32 (1967).
- [11] 1967Tr06 W. Treytl, K. Valli, Nucl. Phys. A97, 405 (1967). https://doi.org/10.1016/0375-9474(67)90495-2
- [12] 1967Va20 K. Valli, E. K. Hyde, W. Treytl, J. Inorg. Nucl. Chem. 29, 2503 (1967). https://doi.org/10.1016/0022-1902(67)80176-3
- [13] 1968Go12 N. A. Golovkov, R. B. Ivanov, Y. V. Norseev, So Ki Kvan, V. A. Khalkin, V. G. Chumin, Contrib. Intern. Conf. Nucl. Struct., Dubna, p. 54 (1968).
- [14] 1968Va04 K. Valli, W. J. Treytl, E. K. Hyde, Phys. Rev. 167, 1094 (1968). https://doi.org/10.1103/PhysRev.167.1094
- [15] 1970DaZM J. M. Dairiki, Thesis, Univ. California (1970); UCRL-20412 (1970).
- [16] 1971ReZE J. -L. Reyss, Thesis, Univ. Paris (1971); FRNC-TH-124 (1971).
- [17] 1971Su14 G. Y. Sung-Ching-Yang, V. A. Druin, A. S. Trofimov, Yad. Fiz. 14, 1297 (1971); Sov. J. Nucl. Phys. 14, 725 (1972).
- [18] 1974Ho27 P. Hornshoj, P. G. Hansen, B. Jonson, Nucl. Phys. A230, 380 (1974). https://doi.org/10.1016/0375-9474(74)90144-4
- [19] 1975BaYJ G. Bastin, C. F. Liang, CSNSM-1973-1975 Prog. Rept., p. 35 (1975).
- [20] 1979Sc09 K. -H. Schmidt, W. Faust, G. Munzenberg, H. -G. Clerc, W. Lang, K. Pielenz, D. Vermeulen, H. Wohlfarth, H. Ewald, K. Guttner, Nucl. Phys. A318, 253 (1979). https://doi.org/10.1016/0375-9474(79)90482-2
- [21] 1980Ry01 T. B. Ryves, J. Phys. (London) G6, 763 (1980) https://doi.org/10.1088/0305-4616/6/012
- [22] 1981Ri04 B. G. Ritchie, K. S. Toth, H. K. Carter, R. L. Mlekodaj, E. H. Spejewski, Phys. Rev. C23, 2342 (1981). https://doi.org/10.1103/PhysRevC.23.2342
- [23] 1981Va27 V. M. Vakhtel, N. A. Golvkov, R. B. Ivanov, M. A. Mikhailova, A. F. Novgorodov, Yu. V. Norseev, V. G. Chumin, Yu. V. Yushkevich, Izv. Akad. Nauk SSSR, Ser. Fiz. 45, 1861 (1981).
- [24] 1981Va29 V. M. Vakhtel, N. A. Golovkov, R. B. Ivanov, M. A. Mikhailova, V. G. Chumin, Izv. Akad. Nauk SSSR, Ser. Fiz. 45, 1966 (1981).
- [25] 1981VaZT A. Vannucci, J. D. T. Arruda Neto, S. B. Herdade, B. L. Berman, I. C. Nascimento, M. F. B. M. Vannucci, INDC(BZL)-5/G, p. 6 (1981).
- [26] 1996An21 A. N. Andreev, A. G. Popeko, A. V. Eremin, S. Hofmann, F. Hessberger, H. Folger, V. Ninov, S. Saro, Bull. Rus. Acad. Sci. Phys. 60, 119 (1996).
- [27] 1998Ik01 T. Ikuta, H. Ikezoe, S. Mitsuoka, I. Nishinaka, K. Tsukada, Y. Nagame, J. Lu, T. Kuzumaki, Phys. Rev. C57, R2804 (1998). https://doi.org/10.1103/PhysRevC.57.R2804
- [28] 1998MiZW S. Mitsuoka, T. Ikuta, H. Ikezoe, Y. Nagame, K. Tsukada, I. Nishinaka, J. Lu, T. Kuzumaki, Japan Atomic Energy Res. Inst. Tandem VDG Ann. Rept., 1997, p. 19 (1998); JAERI-Review 98-017 (1998).
- [29] 2000He17 F. P. Hessberger, S. Hofmann, D. Ackermann, V. Ninov, M. Leino, S. Saro, A. Andreyev, A. Lavrentev, A. G. Popeko, A. V. Yeremin, Eur. Phys. J. A 8, 521 (2000); Erratum Eur. Phys. J. A 9, 433 (2000). https://doi.org/10.1007/s100500070075
- [30] 2003At01 S. N. Atutov, V. Biancalana, A. Burchianti, R. Calabrese, L. Corradi, A. Dainelli, V. Guidi, B. Mai,

C. Marinelli, E. Mariotti, L. Moi, E. Scansani, G. Stancari, L. Tomassetti, S. Veronesi, Phys. Scr. T105, 15 (2003). https://doi.org/10.1238/Physica.Topical.105a00015

- [31] **2013Ko20** K. Kossert, G. Jorg, C. Lierse v. Gostomski, Appl. Radiat. Isot. **81**, 140 (2013). https://doi.org/10.1016/j.apradiso.2013.03.033
- [32] 2014Ya19 H. Yang, L. Ma, Z. Zhang, L. Yu, G. Jia, M. Huang, Z. Gan, T. Huang, G. Li, X. Wu, Y. Fang, Z. Wang, B. Gao, W. Hua, J. Phys. (London) G41, 105104 (2014). https://doi.org/10.1088/0954-3899/41/10/105104
- [33] 2015Ma63 D. A. Mayorov, T. A. Werke, M. C. Alfonso, E. E. Tereshatov, M. E. Bennett, M. M. Frey, C. M. Folden, Phys. Rev. C 92, 054601 (2015). https://doi.org/10.1103/PhysRevC.92.054601
- [34] 2019Zh23 Z. Y. Zhang, Z. G. Gan, H. B. Yang, L. Ma, M. H. Huang, C. L. Yang, M. M. Zhang, Y. L. Tian, Y. S. Wang, M. D. Sun, H. Y. Lu, W. Q. Zhang, H. B. Zhou, X. Wang, C. G. Wu, L. M. Duan, W. X. Huang, Z. Liu, Z. Z. Ren, S. G. Zhou, X. H. Zhou, H. S. Xu, Yu. S. Tsyganov, A. A. Voinov, A. N. Polyakov, Phys. Rev. Lett. 122, 192503 (2019). https://doi.org/10.1103/PhysRevLett.122.192503
- [35] 2021Wa16 M. Wang, W. J. Huang, F. G. Kondev, G. Audi, S. Naimi, Chin. Phys. C 45, 030003 (2021). https://doi.org/10.1088/1674-1137/abddaf
- [36] 2022La12 C. Lan, Y. Wei, J. Wang, X. Yang, G. Jiang, Y. Ge, C. Xu, L. Feng, X. Li, Chin. Phys. C46, 114001 (2022). https://doi.org/10.1088/1674-1137/ac7f88