

Fig. 1: Known experimental values for heavy particle emission of the odd-Z T_z = +17/2 nuclei. Unless otherwise stated, all Q-values are taken from [2021Wa16] or deduced from values therein. J^{|pi} values for ¹²⁷Cs, ¹³¹La, ¹³⁵Pr, ¹³⁹Pm, ¹⁴³Eu, ¹⁴⁷Tb, are taken from ENSDF.

Last updated 3/23/23

Table 1
Observed and predicted β -delayed particle emission from the odd-Z, $T_z = +17/2$ nucle

Nuclide	Ex	J^{π}	$T_{1/2}$	Qε	$Q_{\varepsilon p}$	$Q_{\epsilon 2p}$	$Q_{\varepsilon \alpha}$	Experimental
			-/-			1		
¹²⁷ Cs		$1/2^{+}$	6.25(10) h	2.081(6)	-5.619(6)	-11.796(6)	0.506(6)	[1954Ma54]
¹³¹ La		3/2+	61(2) m	2.910(28)	-4.158(29)	-9.651(28)	2.127(28)	[1960Cr01]
¹³⁵ Pr		$3/2^{+}$	25.4(5) m	3.680(16)	-3.006(23)	-7.960(12)	3.318(12)	[1970Ab07]
¹³⁹ Pm		$(5/2^+)$	4.15(5) m	4.516(26)	-1.661(17)	-6.160(14)	4.690(17)	[1977De06]
¹⁴³ Eu		5/2+	2.57(3) m	5.276(11)	-0.389(26)	-4.628(11)	5.351(30)	[1993Al03]
¹⁴⁷ Tb		$(1/2^+)$	1.64(3) h	4.614(8)	-0.914(10)	-4.669(8)	6.350(9)	[1997Wa04]
¹⁵¹ Ho		$(11/2^{-})$	35.1(2) s	5.130(9)	0.194(11)	-3.074(9)	9.309(9)	[1982Bo04]
^{151m} Ho	0.0411(2)	$(1/2^+)$	47.6(13) s*	5.171(9)	0.265(11)	-3.071(9)	9.350(9)	[1991To08, 1982Bo04, 1982Ba75]
¹⁵⁵ Tm		$(11/2^{-})$	21.6(2) s	5.583(12)	0.724(13)	-2.061(11)	9.702(10)	[1991To08]
^{155m} Tm	0.041(6)	$(1/2^+)$	44(4) s	5.624(13)	0.765(14)	-2.020(12)	9.743(11)	[1991To08, 1990Po13]
¹⁵⁹ Lu		. ,	12.1(10) s**	6.120(40)	1.706(45)	-0.873(46)	10.076(38)	[1992Ha10, 1980Al04]
¹⁶³ Ta			10.9(12) s***	6.730(50)	3.008(84)	0.722(41)	10.874(42)	[1992Ha10, 1985Li14]
¹⁶⁷ Re			3.4(4) s	7.260(40)#	3.975(49)#	2.223(49)#	12.010(48)#	[1992Me10]
^{167m} Re	x@		6.1(2) s	7.260(40)#+x	3.975(49)#+x	2.223(49)#+x	12.010(48)#+x	[1992Me10, 1984Sc06]
¹⁷¹ Ir		$(1/2^+)$	$3.2^{+1.7}$ s	7.890(40)	5.203(40)	3.928(41)	13.256(43)	[2013An01]
171m Ir	х	$(11/2^{-})$	$1.24(4) s^{@@}$	7.890(40)+x	5.203(40)+x	3.928(41) + x	13.256(43)+x	[2023Zh03, 2014Pe02, 2013An01]
¹⁷⁵ Au		$(1/2^+)$	200(3) ms	8.300(40)	6.093(40)	5.457(41)	14,469(43)	[2017Ba46]
^{175m} Au	х	$(11/2^{-})$	137(1) ms ^{@@@}	8.300(40)+x	6.093(40)+x	5.457(41)+x	14.469(43)+x	[2017Ba46, 2011Wa37]
¹⁷⁹ Tl		$(1/2^+)$	426(10) ms	8.660(50)	6.744(40)	6.523(41)	15.014(43)	[2017Ba46]
179mTl ^a		$(11/2^{-})$	$1.42(3) \text{ ms}^{a}$	8.660(50)	6.744(40)	6.523(41)	15.014(43)	[2017Ba46, 2010An01]
		<pre> /</pre>						· · · · · · · · · · · · · · · · · · ·

* Weighted average of 47.9(13) s [1982Bo14], 47(2) s [1982Ba75].

*** Weighted average of 12.3(10)s [1980Al14] and 9.2(35) s [1992Ha10].

^a Weighted average of 1.0.5(10)s [1202214, 1.4.1]
^a Weighted average of 1.14(5) s [2014Pe02], 1.4(1) s [2013An01], and 1.28(4) [2023Zh03].
^a Weighted average of 1.36(1) ms [2017Ba46] and 139(2) ms [2011Wa37].
^a Weighted average of 1.40(3) ms [2017Ba46], and 1.46(4) ms [2010An01].

Table 2

Particle separation and emission from the odd-Z, $T_z = +17/2$ nuclei. Unless otherwise stated, all Q-values and separation energies are taken from [2021Wa16] or deduced from values therein.

Nuclide	S.,	BR.	See	0 _a	BRa	Experimental
	~ <i>p</i>	<i>p</i>	~2p	χü	u	
¹²⁷ Cs	4.383(6)		11.982(6)	-0.722(7)		
¹³¹ La	3.801(28)		10.848(28)	0.046(28)		
¹³⁵ Pr	3.392(24)		10.019(30)	0.408(30)		
¹³⁹ Pm	2.773(18)		8.877(16)	1.010(18)		
¹⁴³ Eu	2.548(11)		8.296(18)	0.835(17)		
¹⁴⁷ Tb	1.946(9)		7.329(9)	1.074(14)		
¹⁵¹ Ho	1.602(9)		6.712(9)	4.695(2)	21(2)%	[1987Li09, 1990Po13, 1991To08, 1982Ba75, 1982Bo04, 1982De11,
						1979Ho10, 1974Sc19, 1963Ma17, 1996Pa01, 1995Wa31, 1995WaZO,
						1995WaZS, 1991VaZY, 1990KaZM, 1990VaZO, 1989KaYU, 1989KaZK,
						1989KaZI, 1989PoZR, 1973BoXL, 1973BoXW, 1970Ma23, 1961Ma40,
						1960Ma47]
^{151m} Ho*	1.561(9)		6.671(9)	4.736(2)	$80^{+15}_{-20}\%$	[1987Li09, 1991To08, 1982Ba75, 1982Bo04, 1981De22, 1979Ho10,
						1963Ma17 1995Wa31, 1995WaZO, 1995WaZS, 1991VaZY, 1990Po13,
						1990KaZM, 1990VaZO, 1989KaYU, 1989KaZK, 1989KaZI, 1989PoZR,
						1974Sc19, 1974ToZN, 1974ToZQ, 1973BoXL, 1973BoXV, 1970Ma23,
155						1970To16, 1961Ma40, 1960Ma47]
¹⁵⁵ Tm	1.310(11)		6.192(11)	4.572(5)	0.84(20)%	[1991To08, 1992Ha10, 1990Po13, 1971To10 , 1991VaZT, 1990KaZM,
						1990PoZU, 1989KaYU, 1988KaZK, 1987KaZI, 1988KaZK, 1978AfZZ,
155	1.0(0)(10)		<	1 (12 (2))		1977Ag01]
^{135m} Tm	1.269(12)		6.151(12)	4.613(8)	obs	[1991To08, 1992Ha10, 1990Po13, 1971To10 , 1991VaZY, 1990KaZM,
						1990PoZU, 1989KaYU, 1988KaZK, 1989KaZI, 1988KaZK, 1978AfZZ,
159+	0.000/20)		5 577 (A7)	4.402(20)	0.15(0).0	19//Ag01]
163 T	0.988(38)		5.577(47)	4.492(39)	<0.15(3)%	[1992Ha10, 1980A104, 1980A1ZN]
167 D	0.655(39)		4.550(47)	4.749(5)	<0.28(4)%	[1992Ha10, 1986Ku05, 1988MeZY, 1987HaZO, 1983Sc18]
¹⁶⁷ Re	0.235(41)#		3.564(42)#	5.276(13)#	obs	[1992Me10, 1992Me2.w]
171 r	0.235(41)#-x		3.564(42)#-X	5.2/6(13)#+x	≈1% 15(2)%	[1992Me10, 1992Me2.w, 1984Sc06]
171m m	-0.225(40)		2.581(40)	5.997(12)	15(2)%	[2013AN01] [2023221.02.2014D.02.2012A.01.2010A.01.2002D.17.100(D.01
i, imfre	-0.225(40)-x		2.581(40)-x	5.997(12)+x	62(6)%	[20232.n03, 2014Pe02, 2013An01, 2010An01, 2002K017, 1996Pa01, 1002Se14, 1002De11, 1001De7L, 1079Ce11, 1079Se261
175	0 625(40)		1 712(40)	6 592(2)	00(7)0	[9925C10, 1982De11, 1981De2L, 1978Ca11, 19785C20]
175m A.u.@	-0.023(40)		1./13(40) 1.712(40) =	0.383(3)	90(7)% 00(2)%	[2017 Da40, 2013A110, 2010A101, 2002K017, 1990Pa01, 1983SC24]
Au	-0.023(40)-X		1./13(40)-X	0.383(3)+X	90(3)%	[2017Ba40, 2011Wa57, 2010An01, 2013An10, 2004G0ZZ, 2002K017, 1996Pa01, 1983Sc24]
¹⁷⁹ Tl	-0.757(40)		1.302(40)	6,709(3)	60(20)%	[2017Ba46, 2013An10, 2002Ro17, 1998To14, 1996Pa01, 1983Sc241
^{179m} Tl [@]	-0.757(40)		1.302(40)	6,709(3)	100%	[2017Ba46, 2010An01, 2002Ro17, 1998To14, 1996Pa01, 1983Sc24]
					2.5070	[,,,,,,,

* Excitation energy = 41.1(2) keV [1991To08].

** Excitation energy = 41(6) keV [1990Po13].

*** Excitation is unknown, may be the ground state.

[@] Excitation is unknown.

Table 3

Table 5			
direct α emission from	151 Ho, J $^{\pi} = (11/2^{-}),$	$T_{1/2} = 35.1(2) s^*,$	$BR_{\alpha} = 21(2)\%^{**}$

$E_{\alpha}(c.m.)$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(\text{rel})$	$I_{\alpha}(abs)$	$J_{f}^{\pi@@@}$	$E_{daughter}(^{147}\mathrm{Tb})$	coincident γ -rays	R ₀ (fm)	HF
4.335(6)	$4.220(6)^{@}$	$0.36(4)\%^{@}$	0.076(8)%	$(5/2^+)$ $(3/2^+)$	0.354 [@]	0.101, 0.253	1.5642(20)	$9.3^{+1.7}_{-1.3}$
4.645(2) 4.689	4.522(2)*** 4.565 ^{@@}	< 0.01% $100\%^{@}$ $< 0.7\%^{@}$	< 0.002% 21(2)% < 0.15%	$(3/2^+)$ $(1/2^+)$	0.254 0.0506(9) [@] 0.0	(11/2 ⁻)	1.5642(20)	1.60(17)

* [1982Bo04].

* [1982Bo04]. ** Weighted average of 28(7)% [1991To08], 22(3)% [1990Po13], 22(3)% [1982Bo75], 18(5)% [1979Ho10], 18(5)% [1974Sc19], and 20(5)% [1963Ma17]. *** Weighted average of 4.523(3) MeV [1982Bo04] (adjusted to 4.529(3) MeV in [1999Ry01]), 4.524(5) MeV [1979Ho10] (adjusted to 4.524(5) MeV in [1999Ry01]), and 4.521(3) MeV [1981De22]. [@] [1987Li09] ^{@@} Transition not observed. ^{@@@@} [2022Ni03].

Table 4

$E_{\alpha}(c.m.)$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(\text{rel})$	$I_{\alpha}(abs)$	$J_{f}^{\pi@@@}$	$E_{daughter}(^{147}\mathrm{Tb})$	coincident γ -rays	R ₀ (fm)	HF
4.376(6)	4.260(6)@	0.26(4)%@	0.076(8)%	(5/2+)	0.354@	0.101, 0.253	1.5642(20)	$7.9^{+2.8}_{-1.8}$
4.478	4.359	< 0.05% [@]	< 0.01%	$(3/2^+)$	0.254			
4.682	4.558 ^{@@}	$< 1.1\%^{@}$	< 0.2%	$(11/2^{-})$	0.0506(9)			_
4.736(2)	4.611(2)***	100%@	$80^{+15}_{-20}\%$	$(1/2^+)$	0.0		1.5642(20)	1.7^{+5}_{-3}

direct α emission from ^{151m}Ho, Ex = 41.1(2) keV**, J^{π} = (1/2⁺), T_{1/2} = 47.6(13) s*, BR_{α} = 80⁺¹⁵₋₂₀%**.

** Weighted average of 47.9(13) s [1982Bo14], 47(2) s [1982Ba75].

** [1991To08].

*** Weighted average of 4.523(3) MeV [1982Bo04] (adjusted to 4.529(3) MeV in [1999Ry01]), 4.524(5) MeV [1979Ho10] (adjusted to 4.524(5) MeV in [1999Ry01]), and 4.521(3) MeV [1981De22].

@ [1987Li09]

@ @ Transition not observed.

@@@ [2022Ni03].

Table 5

$E_{\alpha}(\text{c.m.})$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(abs)$	$\mathbf{J}_{f}^{\pmb{\pi}}$	$E_{daughter}(^{151}\mathrm{Ho})$	coincident γ-rays	R_0 (fm)	HF
4.570(8)	4.452(8)***	0.84(20)%**	(11/2 ⁻)	0.0	1.573(14)	$1.2^{+0.5}_{-0.4}$	

* [1991To08].

** Weighted average of 1.2(6)% [1990Po13] and 2.1(3)% (adjusted to 0.80(21)% by evaluator in 2009Si01).

*** From [1992Ha10]. [1991To08] report that the ground state and isomer have nearly identical α energies. Their measured T_{1/2} value of 26(3) s indicates that this value is mostly from the $11/2^{-}$ ground state decay.

$E_{\alpha}(\text{c.m.})$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(abs)$	$\mathbf{J}_f^{\boldsymbol{\pi}}$	$E_{daughter}(^{151}\mathrm{Ho})$	coincident γ -rays	R ₀ (fm)	HF
4.568(10)	4.450(10)***			0.0411(2)		1.573(14)	

blet from [19917608] who report that the ground state and isomer have nearly identical α energy

Table 7

direct α emission from ¹⁵⁹ Lu, J ^{π} =	$T_{1/2} = 12.1(10) \text{ s}^*, BR_{\alpha} = <0.15(3)\%^{**}.$
--	--

$E_{\alpha}(c.m.)$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(abs)$	$\mathbf{J}_f^{\boldsymbol{\pi}}$	$E_{daughter}(^{155}\mathrm{Tm})$	coincident γ -rays	R ₀ (fm)	HF
4.533(10)	4.419(10)***	<0.15(3)%**		?		1,539(29)	

* Weighted average of 12.3(10)s [1980A114] and 9.2(35) s [1992Ha10].

** [1992Ha10], based on comparison of the α intensity to the reported [1980A114] intensities of the 151 keV γ -ray.

*** Weighted average of 4.420(10) MeV [1980A114] and 4.417(10) MeV [1992Ha10].

Table 8

4.750(10)

direct α emission	n from ¹⁶³ Ta, J ^{π}	$=, T_{1/2} = 10.9(12) s^*, E$	$R_{\alpha} = <0.28($	4)%**.				
$E_{\alpha}(c.m.)$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(abs)$	${ m J}_f^\pi$	$E_{daughter}(^{159}Lu)$	coincident γ -rays	R_0 (fm)	HF	

1.575(13)

 $0.17^{+0.07\,@}_{-0.05}$

0.0

* Weighted average of 10.5(18)s [1985Li14] and 11.2(16) s [1992Ha10].

4.633(10)***

** [1992Ha10], based on comparison of the α intensity to the reported [1985Li14] intensities of the 449 and 451 keV γ doublet.

*** Weighted average of 4.630(10) MeV [1986Ru05] and 4.635(7) MeV [1992Ha10].

< 0.28(4)%**

[@] This unphysical result likely indicaties that the absolute γ -ray intensities are much weaker than the reported relative ones.

Table 9

$E_{\alpha}(\text{c.m.})$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(abs)$	J_f^π	$E_{daughter}(^{163}\mathrm{Ta})$	coincident γ -rays	R ₀ (fm)	HF		
5.138(10)	5.015(10)			?		1.540(14)		
* All val	ues from [1992Me]	10].							
Table 10 direct α emission	sion from ^{167m} Re*,	$Ex = unk., J^{\pi} = , T$	$\Gamma_{1/2} = 6.1(2) \text{ s}^{**}$	$, BR_{\alpha} = \approx 1\%.$					
$E_{\alpha}(\text{c.m.})$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(abs)$	\mathbf{J}_f^{π}	$E_{daughter}(^{163}\mathrm{Ta})$	coincident γ -rays	R ₀ (fm)	HF		
5.392(10)	5.263(12)		e.	0.0?		1.540(14)	$2.9^{+3.2}_{-1.3}$		
* All val ** [1984	ues from [1992Me] Sc06].	10], except where r	noted.						
Table 11 direct α emis	sion from ¹⁷¹ Ir*, J ⁷	$T = (1/2^+), T_{1/2} = 3$	$3.2^{+1.7}_{-0.7}$ s, $BR_{\alpha} = 1$	5(2)%.					
$E_{\alpha}(c.m.)$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(abs)$	${ m J}_f^\pi$	$E_{daughter}(^{167}\mathrm{Re})$	coincident γ -rays	R ₀ (fm)	HF		
5.871(7)	5.734(7)	15(2)%		x		1.5595(50)			
* All val	ues from [2013An0	01].							
* All val Table 12 direct α emis	ues from [2013An0 sion from ^{171m} Ir, E	1]. x = unk., $J^{\pi} = (11/2)$	2 ⁻), T _{1/2} =1.24(4	4) s**, $BR_{\alpha} = 62(6)\%^{**}$	167				
* All value Table 12 direct α emis $E_{\alpha}(c.m.)$ 6.061(4) 6.155(5)	ues from [2013An0 sion from 171m Ir, E E_{α} (lab) 5.919(4) 6.011(5)	1]. $x = unk., J^{\pi} = (11/2)$ $I_{\alpha}(rel)$ 100% 15(2)%	2 ⁻), $T_{1/2} = 1.24(4)$ $I_{\alpha}(abs)$ 53(5)%*** 9(1)%	4) s**, $BR_{\alpha} = 62(6)\%^{**}$. $J_f^{\pi} = E_{dat}$ 0.09 (11/2 ⁻) = 0.0	_{ighter} (¹⁶⁷ Re) coin 221(2) <u>0.09</u>	cident γ-rays 21(2)	R ₀ (fm) 1.5595(50) 1.5595(50)	HF	
* All value Table 12 direct α emission $E_{\alpha}(c.m.)$ 6.061(4) 6.155(5) * All value ** Weighted *** [2012) Table 13 direct α emission	ues from [2013An0 sion from ^{171m} Ir, E $E_{\alpha}(lab)$ 5.919(4) 6.011(5) ues from [2023Zh0 hted average of 1.14 4Pe02]. sion from ¹⁷⁵ Au*, 5	b)1]. $x = unk., J^{\pi} = (11/2)^{\pi}$ $I_{\alpha}(rel)$ 100% 15(2)% 3]. except where n 4(5) s [2014Pe02], J^{\pi} = (1/2^+), T_{1/2} = 10^{2}	2 ⁻), $T_{1/2} = 1.24(4)$ $I_{\alpha}(abs)$ 53(5)%*** 9(1)% oted. 1.4(1) s [2013An = 200(3) ms, BR_{\alpha}	4) s**, $BR_{\alpha} = 62(6)\%^{**}$ $J_f^{\pi} E_{dat}$ 0.09 (11/2 ⁻) 0.0 h01], and 1.28(4) [2023Z1 =90(7)%**.	<u>ughter</u> (¹⁶⁷ Re) coin 221(2) 0.09 	cident γ-rays 21(2)	R ₀ (fm) 1.5595(50) 1.5595(50)	HF	
* All value Table 12 direct α emission $E_{\alpha}(c.m.)$ 6.061(4) 6.155(5) * All value ** Weighted *** Weighted *** [201] Table 13 direct α emission $E_{\alpha}(c.m.)$	ues from [2013And sion from ^{171m} Ir, E $E_{\alpha}(lab)$ 5.919(4) 6.011(5) ues from [2023Zh0 hted average of 1.14 4Pe02]. sion from ¹⁷⁵ Au*, 2 $E_{\alpha}(lab)$	b)1]. $x = unk., J^{\pi} = (11/2)^{\pi}$ $I_{\alpha}(rel)$ 100% 15(2)% 3]. except where n 4(5) s [2014Pe02], J^{\pi} = (1/2^+), T_{1/2} = I_{\alpha}(abs)	$\frac{2^{-}}{I_{\alpha}(abs)}, T_{1/2} = 1.24(4)$ $\frac{I_{\alpha}(abs)}{53(5)\%^{***}}$ $\frac{9(1)\%}{9(1)\%}$ oted. $1.4(1) \text{ s } [2013\text{ Arr}]$ $= 200(3) \text{ ms, } BR_{\alpha}$ J_{f}^{π}	4) s**, $BR_{\alpha} = 62(6)\%^{**}$ $J_f^{\pi} E_{dat}$ 0.09 (11/2 ⁻) 0.0 101], and 1.28(4) [2023ZI =90(7)%**. $E_{daughter}(^{171}\text{Ir})$	ughter(¹⁶⁷ Re) coin 221(2) 0.09 	cident γ-rays 21(2) s R ₀ (fm)	R ₀ (fm) 1.5595(50) 1.5595(50) HF	HF	
* All value Table 12 direct α emission $E_{\alpha}(c.m.)$ 6.061(4) 6.155(5) * All value ** Weighter ** (2011) ** (2011) *	ues from [2013An0 sion from ^{171m} Ir, E $E_{\alpha}(lab)$ 5.919(4) 6.011(5) ues from [2023Zh0 hted average of 1.14 4Pe02]. sion from ¹⁷⁵ Au*, . $E_{\alpha}(lab)$ 6.433(4)	p1]. $x = unk., J^{\pi} = (11/2)^{\pi}$ $I_{\alpha}(rel)$ 100% 15(2)% 3]. except where n 4(5) s [2014Pe02], $J^{\pi} = (1/2^{+}), T_{1/2} =$ $I_{\alpha}(abs)$ 90(7)%**	$\frac{2^{-}), T_{1/2} = 1.24(4)}{I_{\alpha}(abs)}$ $\frac{53(5)\%^{***}}{9(1)\%}$ oted. $1.4(1) \text{ s } [2013\text{ Am}]$ $= 200(3) \text{ ms}, BR_{\alpha}$ J_{f}^{π} $(11/2^{-})$	4) s**, $BR_{\alpha} = 62(6)\%^{**}$. $J_f^{\pi} E_{dat}$ 0.09 (11/2 ⁻) 0.0 101],and 1.28(4) [2023ZI =90(7)%**. $E_{daughter}(^{171} Ir)$ X	^{1ghter} (¹⁶⁷ Re) coin 21(2) 0.09 	cident γ-rays 21(2) s R ₀ (fm) 1.5504(5	R ₀ (fm) 1.5595(50) 1.5595(50) HF 4)	HF	
* All values Table 12 direct α emiss $E_{\alpha}(c.m.)$ 6.061(4) 6.155(5) * All values ** Weight *** [2013] Table 13 direct α emiss $E_{\alpha}(c.m.)$ 6.583(4) * All values * [2013]	ues from [2013An0 sion from ^{171m} Ir, E $E_{\alpha}(lab)$ 5.919(4) 6.011(5) ues from [2023Zh0 hted average of 1.14 4Pe02]. sion from ¹⁷⁵ Au*, . $E_{\alpha}(lab)$ 6.433(4) ues from [2017Ba4 An10].	p1]. $x = unk., J^{\pi} = (11/2)^{\pi}$ $I_{\alpha}(rel)$ 100% 15(2)% 3]. except where n 4(5) s [2014Pe02], J^{\pi} = (1/2^{+}), T_{1/2} = \frac{I_{\alpha}(abs)}{90(7)\%^{**}} 6], except where n	2 ⁻⁾ , $T_{1/2} = 1.24(4)$ $I_{\alpha}(abs)$ 53(5)%*** 9(1)% oted. 1.4(1) s [2013An = 200(3) ms, BR_{α} J_{f}^{π} (11/2 ⁻) oted.	$\frac{J_{f}^{\pi}}{(11/2^{-})} = 62(6)\%^{**}$ $\frac{J_{f}^{\pi}}{(11/2^{-})} = 62(6)\%^{**}$ $\frac{0.09}{(11/2^{-})} = 0.0$ $\frac{11/2^{-}}{0.0}$ $\frac{11/2^{-}}{0.0} = 0.0$	nghter(¹⁶⁷ Re) coin 21(2) 0.09 	cident γ-rays 21(2) <u>s R₀ (fm) 1.5504(5</u>	R ₀ (fm) 1.5595(50) 1.5595(50) HF 4)	HF	
* All value Table 12 direct α emission $E_{\alpha}(c.m.)$ 6.061(4) 6.155(5) * All value *** Weight *** [2013) Table 13 direct α emission $E_{\alpha}(c.m.)$ 6.583(4) * All value *** [2013] Table 14 direct α emission Control	ues from [2013An0 sion from ^{171m} Ir, E $E_{\alpha}(lab)$ 5.919(4) 6.011(5) ues from [2023Zh0 hted average of 1.14 4Pe02]. sion from ¹⁷⁵ Au*, . $E_{\alpha}(lab)$ 6.433(4) ues from [2017Ba4 An10]. sion from ^{175m} Au, .	b1]. $x = unk., J^{\pi} = (11/2)^{\pi}$ $I_{\alpha}(rel)$ $I00\%$ $I5(2)\%$ 3]. except where n $I(5) \text{ s } [2014Pe02],$ $J^{\pi} = (1/2^{+}), T_{1/2} =$ $I_{\alpha}(abs)$ $90(7)\%^{**}$ 6], except where n Ex = unk., J^{\pi} = (11)^{\pi}	$\frac{2^{-})}{I_{\alpha}(abs)}$ $\frac{J_{\alpha}(abs)}{53(5)\%^{***}}$ $\frac{9(1)\%}{9(1)\%}$ oted. $\frac{1.4(1) \text{ s } [2013\text{ Arr}]}{1.4(1) \text{ s } [2013\text{ Arr}]}$ $\frac{J_{f}^{\pi}}{(11/2^{-})}$ oted. $\frac{1/2^{-})}{1/2}, T_{1/2} = 1.19$	4) s**, $BR_{\alpha} = 62(6)\%^{**}$ $J_f^{\pi} E_{dat}$ (11/2 ⁻) 0.0 101], and 1.28(4) [2023ZI =90(7)%**. E_{daughter}(^{171}Ir) x (5) s*, $BR_{\alpha} = 90(3)\%^{**}$	nghter(¹⁶⁷ Re) coin 21(2) 0.09 	cident γ-rays 21(2) <u>s R₀ (fm) 1.5504(5</u>	R ₀ (fm) 1.5595(50) 1.5595(50) HF 4)		
* All value Table 12 direct α emiss $E_{\alpha}(c.m.)$ 6.061(4) 6.155(5) * All value ** Weigh *** [2013 Table 13 direct α emiss $E_{\alpha}(c.m.)$ 6.583(4) * All value ** [2013 Table 14 direct α emiss $E_{\alpha}(c.m.)$	ues from [2013An0 sion from ^{171m} Ir, E $E_{\alpha}(lab)$ 5.919(4) 6.011(5) ues from [2023Zh0 hted average of 1.14 4Pe02]. sion from ¹⁷⁵ Au*, . $E_{\alpha}(lab)$ 6.433(4) ues from [2017Ba4 An10]. sion from ^{175m} Au, . $E_{\alpha}(lab)$	1]. $x = unk., J^{\pi} = (11/2)^{\pi}$ $I_{\alpha}(rel)$ 100% 15(2)% 3]. except where n 4(5) s [2014Pe02], J^{\pi} = (1/2^{+}), T_{1/2} = $I_{\alpha}(abs)$ 90(7)%** 6], except where n Ex = unk., J^{\pi} = (11) $I_{\alpha}(abs)$	2 ⁻⁾ , $T_{1/2} = 1.24(4)$ $I_{\alpha}(abs)$ 53(5)%*** 9(1)% oted. 1.4(1) s [2013Ar = 200(3) ms, BR_{α} J_{f}^{π} (11/2 ⁻) oted. $I/2^{-}$, $T_{1/2} = 1.19$ J_{f}^{π}	4) s**, $BR_{\alpha} = 62(6)\%^{**}$. J _f E _{dat} 0.09 (11/2 ⁻) 0.0 h01],and 1.28(4) [2023ZI =90(7)%**. E _{daughter} (¹⁷¹ Ir) x (5) s*, $BR_{\alpha} = 90(3)\%^{**}$ E _{daughter} (¹⁷¹ Ir)	<u>ighter</u> (¹⁶⁷ Re) coin 221(2) 0.09 	cident γ-rays 21(2) s R ₀ (fm) 1.5504(5 ys R ₀ (fm)	R ₀ (fm) 1.5595(50) 1.5595(50) HF 4) HF		

* Weighted average of 136(1) ms [2017Ba46] and 139(2) ms [2011Wa37].
*** [2010An01].
*** Weighted average of 6.433(4) MeV [2017Ba46], 6.430(6) MeV [2011Wa37], and 6.432(5) MeV [2010An01].

Table	15
-------	----

$E_{\alpha}(c.m.)$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(abs)$	${\rm J}_f^{\pi}$	Edaughter(¹⁷⁵ Au)) coincident γ-ray	rs R_0 (fm)	HF	
6.709(4)	6.559(4)	60(2)%**	(1/2 ⁺)	0.0		1.5297(36)	2.16(19)	
* [2017E ** [2013 Table 16 direct α emis	3a46]. An10]. sion from ^{179m} Tl, E	$\mathbf{x} = \mathbf{unk.}, \mathbf{J}^{\pi} = (11)$	/2 ⁻), T _{1/2} =1.42(3) ms*, $BR_{\alpha} = 100\%$	6.			
$E_{\alpha}(c.m.)$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(\text{rel})$	$I_{\alpha}(abs)$	${\sf J}_f^\pi$	E _{daughter} (¹⁷⁵ Au)	coincident γ-rays	R ₀ (fm)	HF
7.258(10)	7.096(10) @	25(11)%	20(9)% [@]		x + 0.113		1.5297(36)	

 $(11/2^{-})$

х

1.5297(36)

direct α emission from ¹⁷⁹Tl, $J^{\pi} = (1/2^+)$, $T_{1/2} = 426(10)$ ms*, $BR_{\alpha} = 60(2)\%$ **.

* Weighted average of 1.40(3) ms [2017Ba46], and 1.46(4) ms [2010An01].

100(25)%

** [2010An01].

7.371(4)

*** Weighted average of 7.206(4) MeV [2017Ba46], and 7.207(5) MeV [2010An01].

80(20)%[@]

[@] [1998To14].

References used in the Tables

7.206(4)***

- [1] 1960Cr01 C. B. Creager, C. W. Kocher, A. C. G. Mitchell, Nucl. Phys. 14, 578 (1960). https://doi.org/10. 1016/0029-5582(60)90003-1
- [2] 1960Ma47 R. D. Macfarlane, UCRL-9566, p. 46 (1960).
- [3] 1961Ma40 R. D. Macfarlane, R. D. Griffioen, UCRL-10023, p. 45 (1961).
- [4] 1963Ma17 R. D. Macfarlane, R. D. Griffioen, Phys. Rev. 130, 1491 (1963). https://doi.org/10.1103/PhysRev.130.1491
- [5] 1970Ab07 A. A. Abdurazakov, R. Arlt, R. Babadzhanov, G. Baier, V. A. Morozov, G. Musiol, K. Tyrroff, H. Strusny, Izv. Akad. Nauk SSSR, Ser. Fiz. 34, 796 (1970); Bull. Acad. Sci. USSR, Phys. Ser. 34, 706 (1971).
- [6] 1970Ma23 I. Mahunka, Acta Phys. 28, 229 (1970); BNL-TR-356 (1970).
- [7] 1970To16 K S Toth, R L Hahn, M A Ijaz, W M Sample, Phys Rev C2, 1480 (1970). https://doi.org/10.1103/PhysRevC.2.1480
- [8] 1971To10 K. S. Toth, R. L. Hahn, M. A. Ijaz, Phys. Rev. C4, 2223 (1971). https://doi.org/10.1103/PhysRevC.4.2223
- [9] 1973BoXL J. D. Bowman, E. K. Hyde, R. E. Eppley, LBL-1666, p. 4 (1973).
- [10] 1973BoXW J. D. Bowman, E. K. Hyde, R. E. Eppley, LBL-1666, p. 4 (1973).
- [11] 1974Sc19 W-D. Schmidt-Ott, K. S. Toth, E. Newman, C. R. Bingham, Phys. Rev. C10, 296 (1974). https://doi.org/10.1103/PhysRevC.10.296
- [12] 1974ToZN K. S. Toth, R. L. Hahn, E. Newman, C. R. Bingham, W. -D. Schmidt-Ott, ORNL-4937, p. 53 (1974).
- [13] 1974ToZQ K. S. Toth, CONF Nashville(Reactions Between Complex Nuclei), Vol1 P156 (1974).
- [14] 1977Ag01 P. Aguer, G. Bastin, C. F. Liang, J. Libert, P. Paris, A. Peghaire, J. Phys. (Paris) 38, 435 (1977). https://doi.org/10.1051/jphys:01977003805043500
- [15] 1977De06 J. Deslauriers, S. C. Gujrathi, S. K. Mark, Phys. Rev. C15, 800 (1977). https://doi.org/10.1103/PhysRevC.15.800
- [16] 1978AfZZ V.P.Afanasev, L.Kh.Batist, E.E.Berlovich, K.Ya.Gromov, V.G.Kalinnikov, T.Kozlovski, Ya.Kormitski, K.A.Mezilev, F.V.Moroz, Yu.N.Novikov, V.N.Panteleev, A.G.Polyakov, V.I.Raiko, E.Rurarz, V.K.Tarasov, Yu.V.Yushkevich, Program and Theses, Proc.28th Ann.Conf.Nucl.Spectrosc.Struct.At.Nuclei, Alma-Ata, p.70 (1978).
- [17] 1978Ca11 C. Cabot, S. Della Negra, C. Deprun, H. Gauvin, Y. Le Beyec, Z. Phys. A287, 71 (1978). https://doi.org/10.1007/BF01408363
- [18] 1978Sc26 U. J. Schrewe, W. -D. Schmidt-Ott, R. -D. v. Dincklage, E. Georg, P. Lemmertz, H. Jungclas, D. Hirdes, Z. Phys. A288, 189 (1978). https://doi.org/10.1007/BF01408649
- [19] 1979Ho10 S. Hofmann, W. Faust, G. Munzenberg, W. Reisdorf, P. Armbruster, K. Guttner, H. Ewald, Z. Phys. A291, 53 (1979). https://doi.org/10.1007/BF01415817

- [20] 1980Al04 R. Altemus, A. Cafolla, D. Day, J. S. McCarthy, R. R. Whitney, J. E. Wise, Phys. Rev. Lett. 44, 965 (1980). https://doi.org/10.1103/PhysRevLett. 44. 965
- [21] 1980AIZN G. D. Alkhazov, E. E. Berlovich, K. Ya. Gromov, V. G. Kalinnikov, Ya. Kormitski, K. A. Mezilev, Yu. N. Novikov, A. Potempa, V. N. Panteleev, A. G. Polyakov, F. Tarkanyi, E. Rurarz, Program and Theses, Proc. 30th Ann. Conf. Nucl. Spectrosc. Struct. At. Nuclei, Leningard, p. 115 (1980).
- [22] 1981De11 R. De Leo, G. D'Erasmo, A. Pantaleo, M. N. Harakeh, S. Micheletti, M. Pignanelli, Phys. Rev. C23, 1355 (1981). https://doi.org/10.1103/PhysRevC.23.1355
- [23] 1981DeZL Della Negra, REPT IPNO-RC-81-07.
- [24] 1982Ba75 L. Kh. Batist, Yu. S. Blinnikov, N. Ganbaatar, Yu. V. Elkin, Ya. Kormicki, K. A. Mezilev, Yu. N. Novikov, A. M. Nurmukhamedov, A. G. Polyakov, A. Potempa, E. Senyavski, V. K. Tarasov, F. Tarkani, Izv. Akad. Nauk SSSR, Ser. Fiz. 46, 2200 (1982); Bull. Acad. Sci. USSR, Phys. Ser. 46, No. 11, 136 (1982).
- [25] 1982Bo04 J. D. Bowman, R. E. Eppley, E. K. Hyde, Phys. Rev. C25, 941 (1982). https://doi.org/10.1103/PhysRevC.25.941
- [26] 1982De11 S. Della Negra, C. Deprun, D. Jacquet, Y. Le Beyec, Ann. Phys. (Paris) 7, 149 (1982).
- [27] 1983Sc18 U. J. Schrewe, E. Hagberg, H. Schmeing, J. C. Hardy, V. T. Koslowsky, K. S. Sharma, Z. Phys. A310, 295 (1983). https://doi.org/10.1007/BF01419515
- [28] 1983Sc24 J. R. H. Schneider, S. Hofmann, F. P. Hessberger, G. Munzenberg, W. Reisdorf, P. Armbruster, Z. Phys. A312, 21 (1983). https://doi.org/10.1007/BF01411657
- [29] 1984Sc06 U. J. Schrewe, E. Hagberg, H. Schmeing, J. C. Hardy, V. T. Koslowsky, K. S. Sharma, Z. Phys. A315, 49 (1984). https://doi.org/10.1007/BF01436208
- [30] **1985Li14** C. F. Liang, P. Paris, M. G. Porquet, J. Obert, J. C. Putaux, Z. Phys. A**321**, 695 (1985). https://doi.org/10.1007/BF01432448
- [31] 1986Ru05 E. Runte, T. Hild, W. -D. Schmidt-Ott, U. J. Schrewe, P. Tidemand-Petersson, R. Michaelsen, Z. Phys. A324, 119 (1986).
- [32] **1987HaZO** E. Hagberg, X. J. Sun, V. T. Koslowsky, H. Schmeing, J. C. Hardy, Contrib. Proc. 5th Int. Conf. Nuclei Far from Stability, Rosseau Lake, Canada, A4 (1987).
- [33] 1987KaZI K. Katori, H. Miyatake, A. Higashi, A. Shinohara, N. Ikeda, I. Katayama, S. Morinobu, RCNP (Osaka), Ann. Rept., 1986, p. 86 (1987).
- [34] 1987Li09 C. F. Liang, P. Paris, P. Kleinheinz, B. Rubio, M. Piiparinen, D. Schardt, A. Plochocki, R. Barden, Phys. Lett. 191B, 245 (1987). https://doi.org/10.1016/0370-2693(87)90248-6
- [35] 1988KaZK K.Katori, H.Miyatake, A.Shinohara, A.Higashi, T.Ohshima, N.Ikeda, S.Hatori, I.Katayama, S.Morinobu, RCNP (Osaka), Ann.Rept., 1987, p.84 (1988).
- [36] 1988MeZY F. Meissner, T. Hild, W. -D. Schmidt-Ott, E. Runte, H. Salewski, V. Freystein, R. Michaelsen, Proc. 5th Int. Conf. Nuclei Far from Stability, Rosseau Lake, Canada 1987, Ed., I. S. Towner, p. 509 (1988).
- [37] 1989KaYU K. Katori, T. Ohshima, H. Miyatake, A. Shinohara, S. Hatori, I. Katayama, S. Morinobu, RCNP (Osaka), Ann. Rept., 1988, p. 92 (1989).
- [38] 1989KaZI S. G. Kadmensky, I. V. Kudryavtseva, P. A. Lukyanovich, Program and Thesis, Proc. 39th Ann. Conf. Nucl. Spectrosc. Struct. At. Nuclei, Tashkent, p. 171 (1989).
- [39] 1989KaZK N. Kalantar-Nayestanaki, H. Baghaei, W. Bertozzi, S. Dixit, J. M. Finn, C. E. Hyde-Wright, S. Kowalski, R. W. Lourie, C. P. Sargent, P. E. Ulmer, L. Weinstein, M. V. Hynes, B. L. Berman, J. J. Kelly, MIT-LNS 1987-1988 Ann. Rept., p. 30 (1989).
- [40] 1989KaZL H. Kameyama, M. Kamimura, Y. Fukushima, Contrib. 12th Int. Conf. on Few Body Problems in Physics, Vancouver, B. C., Canada, July 2-8, 1989, B. K. Jennings, Ed., p. D34 (1989); TRI-89-2 (1989).
- [41] 1990KaZM V. G. Kalinnikov, K. Ya. Gromov, M. Yanitski, Yu. V. Yushkevich, V. P. Afanasev, V. G. Egorov, M. Yakhim, V. A. Bystrov, N. Yu. Kotovsky, S. V. Evtisov, JINR-D13-90-183 (1990).
- [42] 1989PoZR A. V. Potempa, V. P. Afanasev, Ya. Vavryshchuk, K. Ya. Gromov, V. G. Kalinnikov, N. Yu. Kotovsky, V. V. Kuznetsov, M. Levandovsky, Ya. A. Saidimov, Zh. Sereeter, V. I. Fominykh, V. Charnatsky, Yu. V. Yushkevich, M. Yanitski, A. Yasinski, M. Yakhim, JINR-P6-89-881 (1989).
- [43] 1990Po13 A. V. Potempa, V. P. Afanasev, Ya. Vavryshchuk, K. Ya. Gromov, V. G. Kalinnikov, N. Yu. Kotovsky, V. V. Kuznetsov, M. Lewandowski, Ya. A. Saidimov, M. Yakhim, Zh. Sereter, V. I. Fominykh, V. Charnatski, Yu. V. Yushkevich,

M. Yanitski, A. Yasinski, Izv. Akad. Nauk SSSR, Ser. Fiz. 54, 852 (1990); Bull. Acad. Sci. Ussr, Phys. Ser. 54, No. 5, 35 (1990).

- [44] 1990PoZU A. V. Potempa, Ya. Vavryshchuk, K. Ya. Gromov, V. G. Kalinnikov, V. V. Kuznetsov, M. Levandovsky, Ya. A. Saidimov, Zh. Sehrehehtehr, V. I. Fominykh, A. Yasinski, V. P. Afanasev, N. Yu. Kotovsky, Yu. V. Yushkevich, M. Yanitski, M. Yakhim, V. Charnatski, Program and Thesis, Proc. 40th Ann. Conf. Nucl. Spectrosc. Struct. At. Nuclei, Leningrad, p. 99 (1990).
- [45] 1990VaZO Ya. Vavryshchuk, K. Ya. Gromov, V. G. Kalinnikov, V. V. Kuznetsov, M. Levandovsky, A. V. Potempa, Ya. Saidimov, Zh. Sehrehehtehr, V. I. Fominykh, A. Yasinski, V. P. Afanasev, N. Yu. Kotovsky, Yu. V. Yushkevich, M. Yanitski, M. Yakhim, M. Yuldashev, V. Charnatski, Program and Thesis, Proc. 40th Ann. Conf. Nucl. Spectrosc. Struct. At. Nuclei, Leningrad, p. 91 (1990).
- [46] 1991To08 K. S. Toth, K. S. Vierinen, M. O. Kortelahti, D. C. Sousa, J. M. Nitschke, P. A. Wilmarth, Phys. Rev. C44, 1868 (1991). https://doi.org/10.1103/PhysRevC.44.1868
- [47] 1991VaZY Ya. Vavryshchuk, K. Ya. Gromov, V. G. Kalinnikov, M. Levandovsky, A. V. Potempa, N. Rashkova, Ya. A. Saidimov, A. A. Solnyshkin, Yu. V. Yushkevich, M. Yanitski, Program and Thesis, Proc. 41st Ann. Conf. Nucl. Spectrosc. Struct. At. Nuclei, Minsk, p. 84 (1991).
- [48] 1992Ha10 E. Hagberg, X. J. Sun, V. T. Koslowsky, H. Schmeing, J. C. Hardy, Phys. Rev. C45, 1609 (1992). https://doi.org/10.1103/PhysRevC.45.1609
- [49] 1992Me10 F. Meissner, H. Salewski, W. -D. Schmidt-Ott, U. Bosch-Wicke, R. Michaelsen, Z. Phys. A343, 283 (1992). https://doi.org/10.1007/BF01291527
- [50] 1992MeZW F. Meissner, W. -D. Schmidt-Ott, H. Salewski, U. Bosch-Wicke, R. Michaelsen, Contrib. 6th Intern. Conf. on Nuclei Far from Stability + 9th Intern. Conf. on Atomic Masses and Fundamental Constants, Bernkastel-Kues, Germany, PE42 (1992).
- [51] 1992Sc16 W. -D. Schmidt-Ott, H. Salewski, F. Meissner, U. Bosch-Wicke, P. Koschel, V. Kunze, R. Michaelsen, Nucl. Phys. A545, 646 (1992). https://doi.org/10.1016/0375-9474(92)90297-W
- [52] 1993Al03 G. D. Alkhazov, L. H. Batist, A. A. Bykov, F. V. Moroz, S. Yu. Orlov, V. K. Tarasov, V. D. Wittmann, Z. Phys. A344, 425 (1993). https://doi.org/10.1007/BF01283198
- [53] 1995Wa31 J. Wawryszczuk, K. Ya. Gromov, V. I. Fominykh, V. G. Chumin, M. B. Yuldashev, Bull. Rus. Acad. Sci. Phys. 59, 1883 (1995).
- [54] 1995WaZO J. Wawryszczuk, K. Ya. Gromov, V. I. Fominykh, V. G. Chumin, M. B. Yuldashev, JINR-P6-95-300 (1995).
- [55] 1995WaZS J. Wawryszczuk, K. Ya. Gromov, V. I. Fominykh, V. G. Chumin, M. B. Yuldashev, Program and Thesis, Proc. 45th Ann. Conf. Nucl. Spectrosc. Struct. At. Nuclei, St. Petersburg, p. 70 (1995).
- [56] 1996Pa01 R. D. Page, P. J. Wood, R. A. Cunningham, T. Davinson, N. J. Davis, A. N. James, K. Livingston, P. J. Sellin, A. C. Shotter, Phys. Rev. C53, 660 (1996). https://doi.org/10.1103/PhysRevC.53.660
- [57] 1997Wa04 J. Wawryszczuk, M. B. Yuldashev, K. Ya. Gromov, V. I. Fominykh, Zh. Sereeter, V. G. Kalinnikov, N. Yu. Kotovsky, K. V. Kalyapkin, A. W. Potempa, I. N. Izosimov, M. Yu. Myakushin, A. A. Rimsky-Korsakov, T. M. Muminov, Z. Phys. A357, 39 (1997). https://doi.org/10.1007/s002180050211
- [58] 1998To14 K. S. Toth, X. -J. Xu, C. R. Bingham, J. C. Batchelder, L. F. Conticchio, W. B. Walters, L. T. Brown, C. N. Davids, R. J. Irvine, D. Seweryniak, J. Wauters, E. F. Zganjar, Phys. Rev. C58, 1310 (1998). https://doi.org/10.1103/PhysRevC.58.1310
- [59] 2002Ro17 M. W. Rowe, J. C. Batchelder, T. N. Ginter, K. E. Gregorich, F. Q. Guo, F. P. Hessberger, V. Ninov, J. Powell, K. S. Toth, X. J. Xu, J. Cerny, Phys. Rev. C 65, 054310 (2002). https://doi.org/10.1103/PhysRevC.65.054310
- [60] 2004GoZZ J. T. M. Goon, Thesis, University of Tennessee, Knoxville (2004).
- [61] 2010An01 A. N. Andreyev, S. Antalic, D. Ackermann, T. E. Cocolios, V. F. Comas, J. Elseviers, S. Franchoo, S. Heinz, J. A. Heredia, F. P. Hessberger, S. Hofmann, M. Huyse, J. Khuyagbaatar, I. Kojouharov, B. Kindler, B. Lommel, R. Mann, R. D. Page, S. Rinta-Antila, P. J. Sapple, S. Saro, P. Van Duppen, M. Venhart, H. V. Watkins, J. Phys. (London) G37, 035102 (2010).
- [62] 2011Wa37 H. Watkins, D. T. Joss, T. Grahn, R. D. Page, R. J. Carroll, A. Dewald, P. T. Greenlees, M. Hackstein, R. -D. Herzberg, U. Jakobsson, P. M. Jones, R. Julin, S. Juutinen, S. Ketelhut, T. Kroll, R. Krucken, M. Labiche, M. Leino, N. Lumley, P. Maierbeck, M. Nyman, P. Nieminen, D. O'Donnell, J. Ollier, J. Pakarinen, P. Peura, T. Pissulla, P. Rahkila, J. P. Revill, W. Rother, P. Ruotsalainen, S. V. Rigby, J. Saren, P. J. Sapple, M. Scheck, C. Scholey, J. Simpson, J. Sorri, J. Uusitalo, M. Venhart, Phys. Rev. C 84, 051302 (2011). https://doi.org/10.1103/PhysRevC.84.051302
- [63] **2013An01** V. A. Andreev, for the MuCap Collaboration, Phys. Rev. Lett. **110**, 012504 (2013). https://doi.org/10.1103/PhysRevLett.110.012504
- [64] 2013An10 A. N. Andreyev, V. Liberati, S. Antalic, D. Ackermann, A. Barzakh, N. Bree, T. E. Cocolios, J. Diriken, J.

Elseviers, D. Fedorov, V. N. Fedosseev, D. Fink, S. Franchoo, S. Heinz, F. P. Hessberger, S. Hofmann, M. Huyse, O. Ivanov, J. Khuyagbaatar, B. Kindler, U. Koster, J. F. W. Lane, B. Lommel, R. Mann, B. Marsh, P. Molkanov, K. Nishio, R. D. Page, N. Patronis, D. Pauwels, D. Radulov, S. Saro, M. Seliverstov, M. Sjodin, I. Tsekhanovich, P. Van den Bergh, P. Van Duppen, M. Venhart, M. Veselsky, Phys. Rev. C **87**, 054311 (2013). https://doi.org/10.1103/PhysRevC.87.054311

- [65] 2014Pe02 P. Peura, C. Scholey, D. T. Joss, S. Juutinen, R. Julin, T. Back, B. Cederwall, P. T. Greenlees, U. Jakobsson, P. Jones, D. S. Judson, S. Ketelhut, M. Labiche, M. Leino, M. Nyman, D. O'Donnell, R. D. Page, P. Rahkila, P. Ruotsalainen, M. Sandzelius, P. J. Sapple, J. Saren, J. Simpson, J. Thomson, J. Uusitalo, H. V. Watkins, Phys. Rev. C 89, 024316 (2014). https://doi.org/10.1103/PhysRevC.89.024316
- [66] 2017Ba46 H. Badran, C. Scholey, J. Uusitalo, K. Auranen, T. Grahn, P. T. Greenlees, A. Herzan, U. Jakobsson, R. Julin, S. Juutinen, J. Konki, M. Leino, M. J. Mallaburn, J. Pakarinen, P. Papadakis, J. Partanen, P. Peura, P. Rahkila, M. Sandzelius, J. Saren, J. Sorri, S. Stolze, Phys. Rev. C 96, 064314 (2017). https://doi.org/10.1103/PhysRevC.96.064314
- [67] 2021Wa16 M. Wang, W. J. Huang, F. G. Kondev, G. Audi, S. Naimi, Chin. Phys. C 45, 030003 (2021). https://doi.org/10.1088/1674-1137/abddaf
- [68] 2022NI03 N. Nica, B. Singh, Nucl.Data Sheets 181, 1 (2022). https://doi.org/10.1016/j.nds.2022.03.001
- [69] 2023Zh03 W. Zhang, B. Cederwall M. Doncelo, Ö. Aktas, A. Ertoprak, C. Qi, T. Grahn, B. S. Nara Singh, D. M. Cullen, D. Hodge, M. Giles, S. Stolze, K. Auranen, H. Badran, T. Braunroth, T. Calverley, D. M. Cox, Y. D. Fang, P. T. Greenlees, J. Hilton, E. Ideguchi, R. Julin, S. Juutinen, M. Kumar Raju8, M. Leino, H. Li, H. Liu, S. Matta, P. Subramaniam, V. Modamio, J. Pakarinen, P. Papadakis, J. Partanen, C. M. Petrache, P. Rahkila, P. Ruotsalainen, M. Sandzelius, J. Sarén, C. Scholey, J. Sorri, M. J. Taylor, J. Uusitalo, J. J. Valiente-Dobón, Phys. Rev. C 107 014308. https://doi.org/10.1103/PhysRevC.107.014308