

Fig. 1: Known experimental values for heavy particle emission of the odd-Z T_z = +16 nuclei.

Table 1

Observed and predicted β -delayed particle emission from the odd-Z, $T_z = +16$ nuclei. J ^{π} values for ¹⁶⁶ Ho, ¹⁷⁰ Tm, ¹⁷⁴ Lu, ¹⁷⁸ Ta, ¹⁸² Re, ¹⁸⁶ Ir, ¹⁹⁰ Au, ¹⁹⁴ Tl ar	d
¹⁹⁸ Bi are taken from ENSDF. Unless otherwise stated, all Q-values are taken from [2021Wa16] or deduced from values therein.	

Nuclide	Ex	J^{π}	$T_{1/2}$	Qε	$Q_{\varepsilon p}$	$Q_{\varepsilon \alpha}$	Experimental
¹⁶⁶ Ho*		0-	26.827(5) h	-1.854(1)			[1989Ab05]
¹⁷⁰ Tm** ¹⁷⁴ Lu		1^{-} (1 ⁻)	128.6(3) d 3 6(4) y	0.312(2) 1 374(2)	-8.288(20) -6.603(5)	2.787(1) 4 535(2)	[1968Re04] [1962Bo12]
¹⁷⁸ Ta		(1') 7 ⁻	2.45(5) h	1.840(50)#	-5.503(52)#	3.921(52)#	[1975Wa24]
¹⁸² Re		7+	64.3(5) h	2.800(100)	-4.296(102)	4.564(102)	[2011Bo01]
¹⁸⁰ Ir ¹⁹⁰ Au		5^+ 1 ⁻	16.64(3) h 42.8(10) m	3.828(17) 4.473(4)	-2.642(17) -1.673(13)	6.649(17) 7.742(4)	[1982AI34] [1973Jo11]
¹⁹⁴ Tl		2-	33.0(5) m	5.246(14)	-0.822(16)	7.944(14)	[2003Su30]
¹⁹⁸ Bi		$(2^+, 3^+)$	10.3(3) m	6.694(29)	1.691(31)	10.385(28)	[1982Hu04]
^{202}At $^{202m1}At$	х	(3^+) (7^+)	184(1) s 182(2) s	7.346(29) 7.346(29)+x	3.545(30) 3.545(30)+x	13.047(29) 13.047(29)+x	[1992Hu04] [1992Hu04]
^{202m2} At	0.3917(2) + x	(10^{-})	3.46(5) s	7.738(29)+x	3.937(30)+x	13.439(29)+x	[1992Hu04]
²⁰⁰ Fr ^{206m1} Fr	x	3(+) 7(+)	15.9(3) s*** 15.9(3) s***	7.886(29) 7.886(29)+x	4.449(30) 4.449(30)+x	14.270(29) 14.270(29)+x	[1981Ri04] [1981Ri04]
^{206m2} Fr	x + 0.531(7)	10(-)	0.7(1) s	8.417(30)+x	4.980(31)+x	14.801(30)+x	[2016Ly01, 1981Ri04]
²¹⁰ Ac ²¹⁴ Pa			350(50) ms 17(3) ms	8.320(60) 8.760(80)	5.257(63) 6.030(82)	15.472(63) 16.592(82)	[1968Va04] [2000He17, 1995Ni05, 1996An21]

* 100% β^- emitter.

*** 99.869(10)% β^- , 0.131(10)% ε emitter [2018Ba41]. *** Combination of T_{1/2} from ^{206gs}Fr and ^{206m1}Fr [1981Ri04].

Table 2

Particle separation, Q-values, and measured values for direct particle emission of the odd-Z, $T_z = +16$ nuclei. Unless otherwise stated, all S and Q-values are taken from [2021Wa16] or deduced from values therein.

Nuclide	\mathbf{S}_p	S_{2p}	Qα	BR_{α}	Experimental
166110	6747(1)	15 542(2)	0.284(2)		
170	0.747(1)	13.343(2) 14.214(20)	0.364(2)		
174 T M	0.103(1)	14.314(30)	0.850(1)		
174Lu	5.308(2)	12.775(6)	1.800(2)		
178'Ta	5.007(52)#	11.794(52)#	2.547(52)#		
¹⁸² Re	4.50(10)	11.09(10)	2.73(12)#		
¹⁸⁶ Ir	3.655(17)	9.530(17)	3.850(10)		
¹⁹⁰ Au	3.653(11)	9.067(10)	3.914(17)	$< 1 imes 10^{-6}\%$	[1963Ka17]
¹⁹⁴ Tl	3.164(21)	8.743(21)	3.471(14)	$< 1 imes 10^{-7}\%$	[1963Ka17]
¹⁹⁸ Bi	1.917(28)	6.455(30)	5.139(31)		
²⁰² At	1.363(28)	4.802(36)	6.354(1)	9(1)%	[1992Hu04, 1975BaYJ, 1974Ho27, 2016Ly01, 1996Ta18,
					1970DaZM, 1967Tr04, 1967Tr06, 1963Ho18, 1961Fo04,
					1961La02]
^{202m1} At	1.363(28)	4.802(36)	6.354(1)	8.6(11)%*	[2016Lv01, 1996Ta18, 1992Hu04, 1975BaYJ, 1974Ho27,
		× /			1970DaZM, 1967Tr04, 1967Tr06, 1963Ho18, 1961Fo04,
					1961La02]
^{202m2} At	1.363(28)	4.802(36)	6.354(1)	4.6(11)%	[2016Ly01, 1992Hu04]
²⁰⁶ Fr	0.826(28)	3.950(36)	6.923(3)	88.4(33)%	[2016Ly01, 1992Hu04, 1981Ri04, 2015Ma63, 2012Ly01
					1974Ho27, 1967Va20, 1964Gr04, 1961Gr42]
^{206m1} Fr	0.826(28)-x	3.950(36)-x	6.923(3)+x	84.7(15)%	[2016Lv01, 1992Hu04, 1981Ri04, 2015Ma63, 2012Lv01
		× /			1974Ho27, 1967Va20, 1964Gr04, 1961Gr421
^{206m2} Fr	0.295(29)-x	3.419(37)-x	7.436(8)+x	13(2)%	[2016Ly01, 1992Hu04, 1981Ri04, 2012Ly01]
²¹⁰ Ac	0.383(62)	3.149(63)	7.586(57)	$\approx 100\%^{**}$	[2000He17, 1968Va04, 2014Ya19, 1967Tr03]
²¹⁴ Pa	-0.051(82)	2.418(84)	8.271(52)	$pprox 100\%^{**}$	[2000He17, 1995Ni05, 1996An21, 1995NiZR, 1995NiZS]

* Weighted average of 8.5(15)% [2016Ly01] and 8.7(15)% [1992Hu04].

** Based on short half-life.

Table 3

Table 5	
direct α emission from ²⁰² At, $J_i^{\pi} = (3^+)$, T	$T_{1/2} = 184(1) \text{ s}^*, BR_{\alpha} = 9(1)\%^{**}.$

$E_{\alpha}(c.m.)$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(\text{rel})$	$I_{\alpha}(abs)$	$\mathbf{J}_f^{\boldsymbol{\pi}}$	Edaughter(¹⁹⁸ Bi)	coincident γ -rays	$R_0 \; (fm)^@$	HF
6.049(10) 6.193(10) 6.354(2)	5.929(10)* 6.070(10)* 6.228(2)***	$\approx 0.04\%$ $\approx 0.2\%$ 100%	$\approx 0.004\%$ $\approx 0.02\%$ 9(1)%	(3 ⁺)	0.425(10) 0.161(10) 0.0 2	_	1.4915(23) 1.4915(23) 1.4915(23)	$pprox 220 \ pprox 670 \ 6.5^{+0.9}_{-0.8}$

* [1992Hu04]. ** [1974Ho27]. ***[1975BaYJ]. ** Interpolated between 1.4803(16) fm (²⁰⁰Po) and 1.5026(16) fm (²⁰⁴Rn).

Table 4

direct α emi	ssion from ^{202m1} At	t, Ex = unk., $J_i^{\pi} = (7)$	$(7^+), T_{1/2} = 1$	$82(2) \text{ s}^*, BR_{\alpha} = 8.6(11)$	%**.		
$E_{\alpha}(\text{c.m.})$	$E_{\alpha}(lab)$	$I_{\alpha}(abs)$	${ m J}_f^\pi$	E _{daughter} (¹⁹⁸ Bi)	coincident γ -rays	$R_0 (fm)^@$	HF
6.258(2)	6.134(2)***	8.6(11)%**	(7 ⁺)	x		1.4915(23)	$2.7^{+0.5}_{-0.4}$
* [1992 ** Weig *** Wei ** Inter	Hu04]. ghted average of 8. ighted average of 6 polated between 1.	5(15)% [2016Ly01] 5.133(3) MeV [1990 4803(16) fm (²⁰⁰ Pc] and 8.7(15) 5Ta18] and 6 5) and 1.5026	% [1992Hu04]. .135(2) MeV [1975BaY 5(16) fm (²⁰⁴ Rn).	J].		
Table 5 direct α emi	ssion from ^{202m2} At	t*, Ex = 391.7 keV	+ x, $J_i^{\pi} = (10)$	$(0^-), T_{1/2} = 3.46(5) \text{ s}, BH$	$R_{\alpha} = 4.6(11)\%.$		
$E_{\alpha}(\text{c.m.})$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(abs)$	\mathbf{J}_{f}^{π}	E _{daughter} (¹⁹⁸ Bi)	coincident γ-rays	R ₀ (fm)**	HF
6.404(5)	6.277(5)	4.6(11)%	(10 ⁻)	0.249 + x		1.4915(23)	$0.39\substack{+0.13\\-0.08}$
* All va ** Inter	llues from [1992Hu polated between 1.	104]. 4803(16) fm (²⁰⁰ Pc	o) and 1.5026	6(16) fm (²⁰⁴ Rn).			
Table 6 direct α emi	ssion from ²⁰⁶ Fr, J	$T_i^{\pi} = 3(^+), T_{1/2} = 15$.9(3) s*, <i>BR</i>	<i>α</i> = 88.4(33)%**.			
$E_{\alpha}(c.m.)$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(abs)$	${ m J}_f^\pi$	$E_{daughter}(^{202}\mathrm{At})$	coincident γ-rays	$R_0 (fm)^@$	HF
6.926(5)	6.792(5)***	88.4(33)%**	(3+)	0.0	_	1.5028(38)	$2.05^{+0.22}_{-0.20}$
* Comb ** [201 *** Uni @ Interp	bination of $T_{1/2}$ from 6Ly01]. resolved doublet depolated between 1.3	m ^{206gs} Fr and ^{206m1} e-exciting the 3(⁺) = 5026(16) fm (²⁰⁴ Rr	Fr [1981Ri0 and 7(⁺) isor and 1.5029	4]. ners in ²⁰⁶ Fr [1992Hu04 ((36) fm (²⁰⁸ Ra).	4].		
Table 7 direct α emi	ssion from ^{206m1} Fr	$J_{i}^{\pi} = unk., J_{i}^{\pi} = 7($	$(^+), T_{1/2} = 1$	$5.9(3) \text{ s}^*, BR_{\alpha} = 84.7(1)$	5)%**.		
$E_{\alpha}(\text{c.m.})$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(abs)$	${ m J}_f^\pi$	$E_{daughter}(^{202}\text{At})$	coincident γ-rays	$R_0 (fm)^@$	HF
6.926(5)	6.792(5)***	84.7(15)%**	(7 ⁺)	x		1.5028(38)	$2.16^{+0.22}_{-0.20}$
* Comb ** [201 *** Uni @ Interp	bination of $T_{1/2}$ fro 6Ly01]. resolved doublet de polated between 1.3	m 206gs Fr and 206m1 e-exciting the 3(⁺) : 5026(16) fm (204 Rr	Fr [1981Ri0 and 7(⁺) isor and 1.5029	4]. ners in ²⁰⁶ Fr [1992Hu04 (36) fm (²⁰⁸ Ra).	4].		
Table 8 direct α emi	ssion from ^{206m2} Fr	$E_{x} = 531(7) \text{ keV}$	+ x, $J_i^{\pi} = 100$	⁻), $T_{1/2} = 0.7(1) \text{ s*}, BR$	$\alpha = 13(2)\%^{**}.$		
$E_{\alpha}(\text{c.m.})$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(abs)$	\mathbf{J}_f^{π}	$E_{daughter}(^{202}\mathrm{At})$	coincident γ-rays	$R_0 (fm)^@$	HF
7.067(5)	6.930(5)	13(2)%**	(10 ⁻)	0.531(7) + x	0.531	1.5028(38)	$2.0^{+0.8}_{-0.6}$
* [1981] ** [201 *** [19	Ri04]. 6Ly01]. 92Hu04].						

^(a) Interpolated between 1.5026(16) fm (204 Rn) and 1.5029(36) fm (208 Ra).

Table 9

direct α emission from ²¹⁰ Ac*, T _{1/2} = 350(50) ms, $BR_{\alpha} = \approx 100\%$.										
$E_{\alpha}(\text{c.m.})$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(abs)$	${ m J}_f^\pi$	$E_{daughter}(^{206}\mathrm{Fr})$	coincident γ-rays	$R_0 (fm)^@$	HF			
7.607(8)	7.462(8)	pprox 100%			_	1.5044(44)	1.81(33)			
* All Val ** Interp Table 10 direct α emise	* All Values from [1968Va04]. ** Interpolated between 1.5029(36) fm (²⁰⁸ Ra) and 1.5058(26) fm (²¹² Th). Table 10 direct α emission from ²¹⁴ Pa*. T _{1/2} = 17(3) ms. <i>BR</i> _{α} = \approx 100%.									
$E_{\alpha}(\text{c.m.})$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(abs)$	$\mathbf{J}_f^{\boldsymbol{\pi}}$	$E_{daughter}(^{210}\mathrm{Ac})$	coincident γ-rays	R ₀ (fm)@	HF			
8.271(15)	8.116(15)	pprox 100%				1.496(33)	$1.4^{+1.5}_{-0.8}$			

* All values from [2000He17, 1996An21, 1995Ni02]. ** Interpolated between 1.5058(26) fm (²¹²Th) and 1.486(33) fm (²¹⁶U).

References used in the Tables

- [1] 1961Fo04 W. Forsling, T. Alvager, L. W. Holm, O. Melin, J. Uhler, B. Astrom, Ark. Fys. 19, 83 (1961).
- [2] 1961Gr42 R. D. Griffioen, R. D. Macfarlane, UCRL-10023, p. 47 (1961).
- [3] 1961La02 R. M. Latimer, G. E. Gordon, T. D. Thomas, J. Inorg. Nuclear Chem. 17, 1 (1961). https://doi.org/10.1016/0022-1902(61)80177-2
- [4] 1962Bo12 N. A. Bonner, W. Goishi, W. H. Hutchin, G. M. Iddings, H. A. Tewes, Phys. Rev. 127, 217 (1962). https://doi.org/10.1103/PhysRev.127.217
- [5] 1963Ho18 R. W. Hoff, F. Asaro, I. Perlman, J. Inorg. Nucl. Chem. 25, 1303 (1963). https://doi.org/10.1016/0022-1902(63)80400-5
- [6] 1963Ka17 M. Karras, G. Andersson, M. Nurmia, Arkiv Fysik 23, 57 (1963).
- [7] 1964Gr04 R. D. Griffioen, R. D. Macfarlane, Phys. Rev. 133, B1373 (1964). https://doi.org/10.1103/PhysRev.133.B1373
- [8] 1967Tr03 W. J. Treytl, E. K. Hyde, K. Valli, UCRL-17299, p. 23 (1967).
- [9] 1967Tr04 W. J. Treytl, K. Valli, UCRL-17299, p. 32 (1967).
- [10] **1967Tr06** W. Treytl, K. Valli, Nucl. Phys. A**97**, 405 (1967). https://doi.org/10.1016/0375-9474(67)90495-2
- [11] 1967Va20 K. Valli, E. K. Hyde, W. Treytl, J. Inorg. Nucl. Chem. 29, 2503 (1967). https://doi.org/10.1016/0022-1902(67)80176-3
- [12] 1968Re04 S. A. Reynolds, J. F. Emery, E. I. Wyatt, Nucl. Sci. Eng. 32, 46 (1968). https://doi.org/10.13182/NSE68-A18822
- [13] 1968Va04 K. Valli, W. J. Treytl, E. K. Hyde, Phys. Rev. 167, 1094 (1968). https://doi.org/10.1103/PhysRev.167.1094
- [14] **1970DaZM** J. M. Dairiki, Thesis, Univ. California (1970); UCRL-20412 (1970).
- [15] 1973Jo11 A. Johansson, B. Nyman, Phys. Scr. 8, 99 (1973). https://doi.org/10.1088/0031-8949/8/3/005
- [16] 1974Ho27 P. Hornshoj, P. G. Hansen, B. Jonson, Nucl. Phys. A230, 380 (1974). https://doi.org/10.1016/0375-9474(74)90144-4
- [17] 1975BaYJ G. Bastin, C. F. Liang, CSNSM-1973-1975 Prog. Rept., p. 35 (1975).
- [18] 1975Wa24 T. E. Ward, Y. Y. Chu, Phys. Rev. C12, 1632 (1975). https://doi.org/10.1103/PhysRevC.12.1632
- [19] 1981Ri04 B. G. Ritchie, K. S. Toth, H. K. Carter, R. L. Mlekodaj, E. H. Spejewski, Phys. Rev. C23, 2342 (1981). https://doi.org/10.1103/PhysRevC.23.2342
- [20] 1982Al34 A. L. Allsop, V. R. Green, N. J. Stone, Hyperfine Interactions 12, 289 (1982). https://doi.org/10.1007/BF01026377
- [21] 1989Ab05 A. Abzouzi, M. S. Antony, V. B. Ndocko Ndongue, J. Radioanal. Nucl. Chem. 135, 1 (1989). https://doi.org/10.1007/BF02165454
- [22] 1992Hu04 M. Huyse, P. Decrock, P. Dendooven, G. Reusen, P. Van Duppen, J. Wauters, Phys. Rev. C46, 1209 (1992). https://doi.org/10.1103/PhysRevC.46.1209

- [23] 1995NI05 V. Ninov, F. P. Hessberger, S. Hofmann, H. Folger, A. V. Yeremin, A. G. Popeko, A. N. Andreyev, S. Saro, Z. Phys. A351, 125 (1995). https://doi.org/10.1007/BF01289518
- [24] 1995NiZR V. Ninov, F. P. Hessberger, H. Folger, S. Hofmann, A. G. Popeko, A. V. Yeremin, A. N. Andreyev, S. Saro, Proc. Intern. Conf on Exotic Nuclei and Atomic Masses, Arles, France, June 19-23, 1995, p. 571 (1995).
- [25] 1995NiZS V. Ninov, S. Hofmann, F. P. Hessberger, H. Folger, A. N. Andreev, A. V. Eremin, A. G. Popeko, S. Saro, Program and Thesis, Proc. 45th Ann. Conf. Nucl. Spectrosc. Struct. At. Nuclei, St. Petersburg, p. 108 (1995).
- [26] 1996An21 A. N. Andreev, A. G. Popeko, A. V. Eremin, S. Hofmann, F. Hessberger, H. Folger, V. Ninov, S. Saro, Bull. Rus. Acad. Sci. Phys. 60, 119 (1996).
- [27] 1996Ta18 R. B. E. Taylor, S. J. Freeman, J. L. Durell, M. J. Leddy, A. G. Smith, D. J. Blumenthal, M. P. Carpenter, C. N. Davids, C. J. Lister, R. V. F. Janssens, D. Seweryniak, Phys. Rev. C54, 2926 (1996). https://doi.org/10.1103/PhysRevC.54.2926
- [28] 2000He17 F. P. Hessberger, S. Hofmann, D. Ackermann, V. Ninov, M. Leino, S. Saro, A. Andreyev, A. Lavrentev, A. G. Popeko, A. V. Yeremin, Eur. Phys. J. A 8, 521 (2000); Erratum Eur. Phys. J. A 9, 433 (2000). https://doi.org/10.1007/s100500070075
- [29] 2003Su30 K. Sudarshan, S. Sodaye, R. Tripathi, A. Goswami, B. S. Tomar, A. V. R. Reddy, Radiochim. Acta 91, 1 (2003). https://doi.org/10.1524/ract.91.1.1.19014
- [30] 2011Bo01 M. Bonardi, F. Groppi, E. Persico, S. Manenti, K. Abbas, U. Holzwarth, F. Simonelli, Z. B. Alfassi, Radiochim. Acta 99, 1 (2011). https://doi.org/10.1524/ract.2011.1789
- [31] 2012Ly01 J. E. Lynn, K. E. Schmidt, Phys. Rev. C 86, 014324 (2012). https://doi.org/10.1103/PhysRevC.86.014324
- [32] 2014Ya19 H. Yang, L. Ma, Z. Zhang, L. Yu, G. Jia, M. Huang, Z. Gan, T. Huang, G. Li, X. Wu, Y. Fang, Z. Wang, B. Gao, W. Hua, J. Phys. (London) G41, 105104 (2014). https://doi.org/10.1088/0954-3899/41/10/105104
- [33] 2015Ma63 D. A. Mayorov, T. A. Werke, M. C. Alfonso, E. E. Tereshatov, M. E. Bennett, M. M. Frey, C. M. Folden, Phys. Rev. C 92, 054601 (2015). https://doi.org/10.1103/PhysRevC.92.054601
- [34] 2016Ly01 K. M. Lynch, T. E. Cocolios, J. Billowes, M. L. Bissell, I. Budincevic, T. Day Goodacre, R. P. de Groote, G. J. Farooq-Smith, V. N. Fedosseev, K. T. Flanagan, S. Franchoo, R. F. Garcia Ruiz, H. Heylen, R. Li, B. A. Marsh, G. Neyens, R. E. Rossel, S. Rothe, H. H. Stroke, K. D. A. Wendt, S. G. Wilkins, X. Yang, Phys. Rev. C 93, 014319 (2016). https://doi.org/10.1103/PhysRevC.93.014319
- [35] 2021Wa16 M. Wang, W. J. Huang, F. G. Kondev, G. Audi, S. Naimi, Chin. Phys. C 45, 030003 (2021). https://doi.org/10.1088/1674-1137/abddaf