

Last updated 8/1/2023

Table 1

Observed and predicted β -delayed particle emission from the odd-	$Z, T_z = +14 \text{ nu}$	iclei. J^{π} values fo	or ¹⁶² Ho, ¹	¹⁴⁶⁶ Tm, ¹⁷	⁷⁰ Lu, ¹⁷⁴ Ta,	¹⁷⁸ Re, ¹	182 Ir, and 19	⁹⁰ Tl are taken
from ENSDF. Unless otherwise stated, all Q-values are taken from	[2021Wa16] c	or deduced from v	alues the	rein.				

Nuclide	Ex	J^{π}	$T_{1/2}$	Qε	$Q_{\varepsilon p}$	$Q_{\varepsilon \alpha}$	BR_F	Experimental
¹⁶² Ho		1^{+}	15.0(10) h	0.294(3)	-5.868(3)	2.224(3)		[1965St08]
¹⁶⁶ Tm		2^{+}	7.70(4) h*	3.038(12)	-4.277(12)	3.870(12)		1960Wi12, 1960Gr15]
¹⁷⁰ Lu		0^+	2.03(3) d**	3.458(17)	-3.321(17)	5.193(17)		[1970Ka23, 1960Wi14]
¹⁷⁴ Ta		3+	1.06(4) h	4.104(28)	-2.149(28)	6.598(28)		[1985Sz03]
¹⁷⁸ Re		3+	13.2(2) m	4.750(30)	-1.228(28)	7.766(28)		[1970Go20]
¹⁸² Ir		3+	15(1) m	5.560(30)	0.177(24)	8.930(26)		[1972Ak03]
¹⁸⁶ Au		3-	10.7(5) m	6.150(30)	1.332(35)	10.469(30)		[1970Jo02]
¹⁹⁰ Tl		2^{-}	2.6(3) m	7.004(17)	1.927(21)	11.073(23)		[1976Bi09]
¹⁹⁴ Bi		(3 ⁺)	95(3) s	8.185(18)	4.165(9)	12.923(17)		[1991Va04]
^{194m} Bi	0.161(8)	(10 ⁻)	114(4) s	8.346(20)	4.326(12)	13.084(19)		[2019Gi11, 1991Va04]
¹⁹⁸ At		(3 ⁺)	4.47(5) s	8.765(18)	5.689(10)	15.074(18)		[2019Gi11]
^{198m} At	0.265(3)	(10^{-})	1.25(5) s***	9.028(18)	5.954(10)	15.339(18)		[2019Gi11, 2014Ka23]
²⁰² Fr		(3 ⁺)	372(10) ms	9.376(19)	6.602(10)	16.150(18)	obs	[2014Ka23, 2014Gh09]
^{202m} Fr	0.253(8)	(10 ⁻)	286(13) ms	9.629(21)	6.855(13)	16.403(20)	obs	[2014Ka23, 2014Gh09]
²⁰⁶ Ac		(3 ⁺)	22^{+9}_{-5} ms	9.920(70)	7.506(66)	17.334(67)		[1998Es02]
^{206m} Ac	0.198(30)	(10 ⁻)	33_{-9}^{+22} ms	10.118(76)	7.704(72)	17.532(73)		[1998Es02]

* Weighted average of 7.69(5) h [1960Wi12] and 7.74(8) h [1960Gr15].

** Weighted average of 2.02 d [1970Ka23] and 2.05(5) h [1960Wi14].

*** Weighted average of 1.28(10) s [2019Gh11] and 1.24(6) s [2014Ka23].

Table 2

Particle separation, Q-values, and measured values for direct particle emission of the odd-Z, $T_z = +14$ nuclei. Unless otherwise stated, all S and Q-values are taken from [2021Wa16] or deduced from values therein.

Nuclide	S_p	S_{2p}	Qα	BR_{α}	Experimental
16240	5 274(3)	12 782(3)	1.005(3)		
166Tm	3.274(3)	12.782(3) 11.484(12)	1.005(3) 1.720(12)		
1701.	4.034(12)	11.404(12) 10.572(17)	1.729(12) 2.155(20)		
174 To	4.220(17) 2.618(40)	10.372(17) 0.582(28)	2.133(20) 2.141(22)		
178 D a	3.010(40)	9.363(26)	3.141(33)		
1821	3.241(40)	8.800(42)	5.002(40)		
186 A	2.791(33)	7.792(30)	4.177(35)	0(0) 10-40	51000 LL 0.4. 100 CD '01. 1000 D'CV 1000 D'CCI
100Au	2.316(33)	6.682(35)	4.912(14)	8(2)×10 ⁻⁴ %	[1990Ak04 , 1995B101, 1993B1ZY, 1992B1ZZ]
190 TI	2.029(32)	6.573(8)	4.924(22)		
¹⁹⁴ Bi	1.083(12)	4.729(32)	5.918(5)	0.46(25)%	[1991Va04 , 1988Hu03, 1985HuZY]
^{194m} Bi	0.922(14)	4.568(33)	6.079(9)	0.20(7)%	[1991Va04 , 1988Hu03, 1985HuZY, 1974Le02, 1970Ta14]
¹⁹⁸ At	0.605(11)	3.278(25)	6.889(2)	>94%	[2019Gi11, 2014Ka23, 1995BiZZ, 2015We13, 2005Uu02,
					2005Uu03, 1999Ta03, 1998Bo14, 1992Hu04, 1980Ew03,
					1967Tr04, 1967Tr06
^{198m} At	0.340(11)	3.013(25)	7.154(4)	>86%	[2019Gi11, 2014Ka23, 1995BiZZ, 2005Uu02, 2005Uu03,
					1999Ta03, 1998Bo14, 1996En01, 1992Hu04, 1980Ew03,
					1967Tr04, 1967Tr06
²⁰² Fr	0.080(12)	2.489(25)	7.385(4)	97.6(2)%*	[2019Gh11, 2014Ka23, 2014Ly01, 2005Uu02, 1996En01,
	. ,	· /			1995BiZZ, 1992Hu04, 1980Ew03, 1976HaYQ, 1976HoZD
202m Fr	-0.173(14)	2.236(26)	7.638(9)	97.6(2)%*	[2019Gh11, 2014Ka23, 2014Ly01, 1996En01, 1995BiZZ,
			~ /		1992Hu041
²⁰⁶ Ac	-0.392(69)	1.700(70)	7,958(65)	$\approx 100\%^{**}$	[2014Zh03, 1998Es02, 1998LuZV]
206m AC	-0.590(75)	1 502(76)	8 156(71)	~ 100%**	[1998Fs02]
	0.000(10)	1.002(70)	0.100(71)		[1220100]

* [2019Gh11] estimate a β -branching ratio for a combination of the ground state and isomer of 2.4(2)%.

** Based on short half-life.

Table 3

Tuble 5			
direct α emission from	186 Au*, $J_i^{\pi} = 3^-, T_1$	$_{/2} = 10.7(5) \text{ m}^{**},$	$BR_{\alpha} = 8(2) \times 10^{-4} \%.$

$E_{\alpha}(\text{c.m.})$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(abs)$	$\mathbf{J}_f^{\boldsymbol{\pi}}$	$E_{daughter}($ ¹⁸² Ir)	coincident γ -rays	R ₀ (fm)***	HF
4.755(15)	4.653(15)	8(2)×10 ⁻⁴ %	0+	0.0		1.519(23)***	$2.2^{+1.7}_{-1.1}$

* All values from [1990Ak04], except where noted.

** [1970Jo02].

*** Interpolated between 1.542(27) fm (¹⁸⁴Pt) and 1.480(15) fm (¹⁸⁸Hg).

Table 4

direct α emission from	194Bi*, J	$\int_{\pi}^{\pi} = (3^+),$	$T_{1/2} = 95(3)$	b) s, $BR_{\alpha} =$	0.46(25)%
-------------------------------	-----------	-----------------------------	-------------------	-----------------------	-----------

$E_{\alpha}(c.m.)$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(\text{rel})$	$I_{\alpha}(abs)$	\mathbf{J}_f^{π}	$E_{daughter}($ ¹⁹⁰ Tl $)$	coincident γ-rays	R ₀ (fm)**	HF
5.764(5)	5.645(5)	100%	$4.6(25) \times 10^{-3}\%$	(3^+)	0.1513	0.1513	1.5066(90)	$1.4^{+1.8}_{-0.6}$
5.921(5)	5.799(5)	0.59(7)%	$2.7(15) \times 10^{-3}\%$	(2^-)	0.0		1.5066(90)	1200^{+1600}_{-500}

* All values from [1991Va04], except where noted.

** Interpolated between 1.5126(28) fm (¹⁹²Pb) and 1.5005(86) fm (¹⁹⁶Po).

Table 5

direct α emission from ^{194m}Bi*, Ex. = 161(8) keV, $J_i^{\pi} = (10^-)$, $T_{1/2} = 114(4)$ s, $BR_{\alpha} = 0.20(7)\%$.

$E_{\alpha}(c.m.)$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(\text{rel})$	$I_{\alpha}(abs)$	\mathbf{J}_f^{π}	$E_{daughter}($ ¹⁹⁰ Tl)	coincident γ -rays	R ₀ (fm)	HF
5.447(5)	5.335(5)	0.16(3)%	2.9(12)×10 ⁻⁶ %	(11^{-})	0.572	0.069, 0.2724	1.5066(90)	60^{+50}_{-20}
5.717(5)	5.599(5)	100%	$1.8(6) \times 10^{-3}\%$	(10 ⁻)	0.300	0.069	1.5066(90)	$2.3^{+1.5}_{-0.8}$
5.779(5)	5.660(5)	2.2(2)%	$4.0(15) \times 10^{-5}\%$	(9-)	0.236		1.5066(90)	210_{-70}^{+140}
5.903(5)	5.781(5)	3.0(2)%	$5.5(20) \times 10^{-5}\%$	$(6^+, 7^+)$	0.1122	0.1122	1.5066(90)	600^{+400}_{-200}
6.016(5)	5.892(5)	3.9(2)%	$7.1(25) \times 10^{-5}\%$	7+	0.0		1.5066(90)	$1.4_{-0.5}^{+0.9} \times 10^{+3}$

* All values from [1991Va04], except where noted. ** Interpolated between 1.5126(28) fm (192 Pb) and 1.5005(86) fm (196 Po).

Table 6

direct α emission from ¹⁹⁸At*, $J_i^{\pi} = (3^+)$, $T_{1/2} = 4.47(5)$ s, $BR_{\alpha} = >94\%$ **.

$E_{\alpha}(c.m.)$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(\text{rel})$	$I_{\alpha}(abs)$	\mathbf{J}_f^{π}	Edaughter(¹⁹⁴ Bi)	coincident γ -rays	$R_0 \left(fm \right)^@$	HF
6.404(8)	6.275(8)	0.08(1)%	>0.075%		0.486	0.103, 0.218, 0.267, 0.382, 0.486	1.511(13)	<36
6.489(8)	6.358(8)	0.11(1)%	>0.10%		0.400	0.181, 0.218, 0.400	1.511(13)	<59
6.492(9)	6.361(9)	0.008(2)%	>0.0075%		0.382	0.382	1.511(13)	<1000
6.670(8)	6.535(8)	0.020(3)%	>0.019%		0.218	0.218	1.511(13)	<1700
6.886(5)	6.747(5)***	100 %	>94%	(3 ⁺)	0.0		1.511(13)	<2.2

* All values from [2019Gh11], except where noted.

** [1995BiZZ].

*** [2014Ka23].

[@] Interpolated between 1.5005(86) fm (196 Po) and 1.5205(93) fm (200 Rn).

Table 7 direct α emission from ^{198m}At*, Ex.=265(3) keVJ_i^{π} = (10⁻), T_{1/2} = 1.25(5) s**, BR_{α} = >86%***.

$E_{\alpha}(c.m.)$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(\text{rel})$	$I_{\alpha}(abs)$	\mathbf{J}_f^{π}	Edaughter(¹⁹⁴ Bi)	coincident γ -rays	$R_0 (fm)^{@@}$	HF
6.452(12) 6.469(8) 6.892(8) 6.990(5)	6.322(12) 6.338(8) 6.753(8) 6.849(5) [@]	0.005(3)% 0.09-0.13% 0.05-0.34% 100%	>0.0043% >0.08-0.11% >0.04-0.29% >86%	(10 ⁻)	0.699(8) 0.686(8) 0.266(8) 0.161(8)	0.538 0.525 0.105	1.511(13) 1.511(13) 1.511(13) 1.511(13)	<340 <15-20 < 230-1700 <1.5

* All values from [2019Gh11], except where noted.

** Weighted average of 1.28(10) s [2019Gh11] and 1.24(6) s [2014Ka23].

*** [1995BiZZ].

@ [2014Ka23].

@@ Interpolated between 1.5005(86) fm (¹⁹⁶Po) and 1.5205(93) fm (²⁰⁰Rn).

Table 8

direct α emission from ²⁰²Fr*, $J_i^{\pi} = (3^+)$, $T_{1/2} = 372(10)$ ms**, $BR_{\alpha} = 97.6(2)\%$ ***.

$E_{\alpha}(c.m.)$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(\text{rel})$	$I_{\alpha}(abs)$	${ m J}_f^\pi$	$E_{daughter}(^{198}\mathrm{At})$	coincident γ -rays	$R_0 (fm)^@$	HF
7.229(8) 7.249(8) 7.384(5)	7.086(8) 7.105(8) 7.238(5)**	0.03-0.11% 0.09(2)% 100%	0.03-0.11% 0.09(2)% 97.6(2)%	(3+)	0.154 0.130 0.0	0.154 0.130	1.523(17) 1.523(17) 1.523(17)	$\begin{array}{c} 620\text{-}2300\\ 900_{300}^{+500}\\ 2.4_{-0.7}^{+1.0}\end{array}$

* All values from [2019Gh11], except where noted.

** [2014Ka23].

*** [2019Gh11] estimate a β -branching ratio for a combination of the ground state and isomer of 2.4(2)%. ^(a) Interpolated between 1.5205(93) fm (²⁰⁰Rn) and 1.525(14) fm (²⁰⁴Ra).

Table 9 direct α emission from ^{202m}Fr*, Ex. = 253(8) keV, $J_i^{\pi} = (10^-)$, $T_{1/2} = 286(13)$ ms**, $BR_{\alpha} = 97.6(2)\%$ ***.

$E_{\alpha}(c.m.)$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(\text{rel})$	$I_{\alpha}(abs)$	J_f^π	$E_{daughter}(^{198}\text{At})$	coincident γ -rays	$R_0 \left(fm \right)^@$	HF
6.860(8)	6.724(8)	0.06(1)%	0.06(1)%	(8-)	0.792(3)	0.130, 0.151, 0.511(3), 0.527	1.523(17)	34^{+18}_{-12}
7.253(8)	7.109(8)	0.28-0.53%	0.27-0.52%	(8-, 9-)	0.391(3)	0.126	1.523(17)	110-220
7.311(8)	7.166(8)	0.06(1)%	0.06(1)%		0.334(7)	0.053(7), 0.130, 0.151	1.523(17)	$1.5^{+0.8}_{-0.6} \times 10^3$
7.363(8)	7.217(8)	0.23(5)%	0.22(5)%	(6 ⁻)	0.281	0.130, 0.151	1.523(17)	600_{-300}^{+400}
7.372(5)	7.226(5)**	100%	97.6(2)%	(10 ⁻)	0.265(3)		1.523(17)	$1.6^{+0.7}_{-0.5}$
7.530(26)	7.381(26)	0.014(6)%	0.014(6)%	(5 ⁺)	0.130	0.130	1.523(17)	$3.2^{+3.0}_{-1.4} \times 10^3$
7.635(32)	7.484(32)	< 0.008	< 0.008	(3 ⁺)	0.0		1.523(17)	$>1.5 \times 10^{5}$

* All values from [2019Gh11], except where noted.

** [2014Ka23].

*** [2019Gh11] estimate a β -branching ratio for a combination of the ground state and isomer of 2.4(2)%.

[@] Interpolated between 1.5205(93) fm (²⁰⁰Rn) and 1.525(14) fm (²⁰⁴Ra).

Table 10

10010 10									
direct α emission from ²⁰⁶ Ac*, J ^{π} _{<i>i</i>} = (3 ⁺), T _{1/2} = 22 ⁺⁹ ₋₅ ms , <i>BR</i> _{α} = \approx 100%.									
\mathbf{F} ()	F (1.1.)	T (1)	τ <i>π</i>		202 E \				

$E_{\alpha}(c.m.)$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(abs)$	\mathbf{J}_f^{π}	$E_{daughter}(^{202}\mathrm{Fr})$	coincident γ -rays	R ₀ (fm)***	HF
7.958(21)	7.804(21)**	100%	(3+)	0.0	_	1.540(23)	$2.6^{+2.0}_{-1.5}$

* All values from [1998Es02], except where noted.

** Weighted average of 7.817(30) MeV [2014Zh03] and 7.790(30) MeV [1998Es02].

*** Interpolated between 1.555(18) fm (208 Th) and 1.525(14) fm (204 Ra).

Table 11

direct α emission from ²⁰	06m Ac*, Ex. = 1	198(30) keV, J_i^{π}	$T = (10^{-}), T_{1}$	$_{1/2} = 33^{+22}_{-9} \text{ ms}$	$BR_{\alpha} = \approx 100\%.$
---	-----------------------	--------------------------	-----------------------	-------------------------------------	--------------------------------

$E_{\alpha}(c.m.)$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(abs)$	$\mathbf{J}_f^{\boldsymbol{\pi}}$	$E_{daughter}(^{202}\mathrm{Fr})$	coincident γ-rays	R ₀ (fm)**	HF
7.903(20)	7.750(20)	100%	(10 ⁻)	0.253(8)		1.540(23)	$2.6^{+2.4}_{-2.0}$

* All values from [1998Es02].

** Interpolated between 1.555(18) fm (208 Th) and 1.525(14) fm (204 Ra).

References used in the Tables

- **1960Gr15** E. P. Grigorev, O. V. Larionov, M. K. Nikitin, S. L. Sakharov, V. O. Sergeev, Izvest. Akad. Nauk SSSR, Ser. Fiz. 24, 841 (1960); Columbia Tech. Transl. 24, 846 (1961).
- [2] 1960Wi12 R. G. Wilson, M. L. Pool, Phys. Rev. 119, 262 (1960). https://doi.org/10.1103/PhysRev.119.262
- [3] 1960Wi14 R. G. Wilson, M. L. Pool, Phys. Rev. 120, 980 (1960). https://doi.org/10. 1103/PhysRev.120.980
- [4] 1965St08 T. Stenstrom, B. Jung, Nucl. Phys. 64, 209 (1965). https://doi.org/10.1016/0029-5582(65)90352-4
- [5] **1967Tr04** W. J. Treytl, K. Valli, UCRL-17299, p. 32 (1967).
- [6] 1967Tr06 W. Treytl, K. Valli, Nucl. Phys. A97, 405 (1967). https://doi.org/10.1016/0375-9474(67)90495-2
- [7] 1970Go20 P. F. A. Goudsmit, J. Konijn, F. W. N. de Boer, Nucl. Phys. A151, 513 (1970). https://doi.org/10.1016/0375-9474(70)90394-5
- [8] 1970Jo02 A. Johansson, B. Svahn, B. Nyman, S. Antman, Z. Phys. 230, 291 (1970). https://doi.org/10.1007/BF01403119
- [9] 1970Ka23 P. J. Karol, J. Inorg. Nucl. Chem. 32, 2817 (1970). https://doi.org/10.1016/0022-1902(70)80343-8
- [10] 1970Ta14 N. I. Tarantin, A. P. Kabachenko, A. V. Demyanov, Yad. Fiz. 12, 455 (1970); Sov. J. Nucl. Phys. 12, 248 (1971)
- [11] 1972Ak03 A. I. Akhmadzhanov, B. Bayar, R. Broda, V. Valyus, N. G. Zaitseva, H. W. Siebert, S. M. Kamalkhodzhaev, G. Muziol, A. F. Novgorodov, W. Neubert, M. Finger, U. Hagemann, H. Shtrusnyi, Izv. Akad. Nauk SSSR, Ser. Fiz. 36, 2066 (1972); Bull. Acad. Sci. USSR, Phys. Ser. 36, 1820 (1973).
- [12] 1974Le02 Y Le Beyec, M Lefort, J Livet, N T Porile, A Siivola, Phys Rev C 9, 1091 (1974). https://doi.org/10.1103/PhysRevC.9.1091
- [13] 1976Bi09 C. R. Bingham, L. L. Riedinger, F. E. Turner, B. D. Kern, J. L. Weil, K. J. Hofstetter, J. Lin, E. F. Zganjar, A. V. Ramayya, J. H. Hamilton, J. L. Wood, G. M. Gowdy, R. W. Fink, E. H. Spejewski, W. D. Schmidt-Ott, R. L. Mlekodaj, H. K. Carter, K. S. R. Sastry, Phys. Rev. C14, 1586 (1976). https://doi.org/10.1103/PhysRevC.14.1586
- [14] 1976HaYQ E. Hagberg, P. G. Hansen, P. Hornshoj, B. Jonson, S. Mattsson, P. Tidemand-Petersson for the ISOLDE Collaboration, Contrib. Int. Conf. Nuclei Far from Stability, Cargese, Corsica, p. A55 (1976); CERN 76-13 (1976).
- [15] 1976HoZD P. Hornshoj, P. G. Hansen, E. Hagberg, B. Jonson, S. Mattsson, O. B. Nielsen, H. L. Ravn, P. Tidemand-Petersson, L. Westgaard, Proc. Int. Conf. Nuclei Far from Stability, 3rd, Cargese, France, R. Klapisch, Ed., CERN-76-13, p. 171 (1976).
- [16] 1980Ew03 G. T. Ewan, E. Hagberg, B. Jonson, S. Mattsson, P. Tidemand-Petersson, Z. Phys. A296, 223 (1980). https://doi.org/10.1007/BF01415836
- [17] 1985HuZY L. Huyse, E. Coenen, K. Deneffe, P. Van Duppen, J. L. Wood, Amer. Chem. Soc. Symposium Ser. 324 on Nuclei Off the Line of Stability, Chicago, p. 258 (1985); R. A. Meyer, D. S. Brenner Eds., ACS, Washington, p. 258 (1986).
- [18] 1985Sz03 A. Szymanski, G. W. A. Newton, V. J. Robinson, H. E. Sims, Radiochim. Acta 38, 113 (1985).
- [19] 1988Hu03 M. Huyse, E. Coenen, K. Deneffe, P. van Duppen, K. Heyde, J. van Maldeghem, Phys. Lett. 201B, 293 (1988). https://doi.org/10.1016/0370-2693(88)91142-2
- [20] 1990Ak04 Y. A. Akovali, K. S. Toth, C. R. Bingham, M. B. Kassim, M. Zhang, H. K. Carter, W. D. Hamilton, J. Kormicki, Phys.Rev. C42, 1130 (1990). https://doi.org/10.1103/PhysRevC.42.1130
- [21] 1991Va04 P. Van Duppen, P. Decrock, P. Dendooven, M. Huyse, G. Reusen, J. Wauters, Nucl. Phys. A529, 268 (1991). https://doi.org/10.1016/0375-9474(91)90796-9
- [22] 1992BiZZ C. R. Bingham, Y. A. Akovali, H. K. Carter, W. D. Hamilton, M. M. Jarrio, M. B. Kassim, J. Kormicki, J. Schwarzenberg, K. S. Toth, M. Zhang, Contrib. 6th Intern. Conf. on Nuclei Far from Stability + 9th Intern. Conf. on Atomic Masses and Fundamental Constants, Bernkastel-Kues, Germany, PE47 (1992).

- [23] 1992Hu04 M. Huyse, P. Decrock, P. Dendooven, G. Reusen, P. Van Duppen, J. Wauters, Phys. Rev. C46, 1209 (1992). https://doi.org/10.1103/PhysRevC.46.1209
- [24] 1993BiZY C. R. Bingham, Y. A. Akovali, H. K. Carter, W. D. Hamilton, M. M. Jarrio, M. B. Kassim, J. Kormicki, J. Schwarzenberg, K. S. Toth, M. Zhang, Proc. 6th Intern. Conf. on Nuclei Far from Stability + 9th Intern. Conf. on Atomic Masses and Fundamental Constants, Bernkastel-Kues, Germany, 19-24 July, 1992, R. Neugart, A. Wohr, Eds., p. 735 (1993).
- [25] 1995Bi01 C. R. Bingham, M. B. Kassim, M. Zhang, Y. A. Akovali, K. S. Toth, W. D. Hamilton, H. K. Carter, J. Kormicki, J. von Schwarzenberg, M. M. Jarrio, Phys. Rev. C51, 125 (1995). https://doi.org/10.1103/PhysRevC.51.125
- [26] 1995BiZZ C. R. Bingham, J. D. Richards, B. E. Zimmerman, Y. A. Akovali, W. B. Walters, J. Rikovska, P. Joshi, E. F. Zganjar, Proc. Intern. Conf on Exotic Nuclei and Atomic Masses, Arles, France, June 19-23, 1995, p. 545 (1995).
- [27] 1996En01 T. Enqvist, K. Eskola, A. Jokinen, M. Leino, W. H. Trzaska, J. Uusitalo, V. Ninov, P. Armbruster, Z. Phys. A354, 1 (1996). https://doi.org/10.1007/s002180050001
- [28] 1998Bo14 D. D. Bogdanov, V. I. Chepigin, A. P. Kabachenko, Yu. A. Muzichka, A. G. Popeko, B. I. Pustylnik, J. Rohac, R. N. Sagaidak, G. M. Ter-Akopian, A. V. Yeremin, Yad. Fiz. 61, No 5, 808 (1998); Phys. Atomic Nuclei 61, 727 (1998).
- [29] 1998Es02 K. Eskola, P. Kuusiniemi, M. Leino, J. F. C. Cocks, T. Enqvist, S. Hurskanen, H. Kettunen, W. H. Trzaska, J. Uusitalo, R. G. Allatt, P. T. Greenlees, R. D. Page, Phys. Rev. C57, 417 (1998). https://doi.org/10.1103/PhysRevC.57.417
- [30] 1998LuZV J. Lu, H. Ikezoe, T. Ikuta, S. Mitsuoka, T. Kuzumaki, Y. Nagame, I. Nishinaka, K. Tsukada, T. Ohtsuki, Japan Atomic Energy Res. Inst. Tandem VDG Ann. Rept., 1997, p. 17 (1998); JAERI-Review 98-017 (1998).
- [31] 1999Ta03 R. B. E. Taylor, S. J. Freeman, J. L. Durell, M. J. Leddy, S. D. Robinson, B. J. Varley, J. F. C. Cocks, K. Helariutta, P. Jones, R. Julin, S. Juutinen, H. Kankaanpaa, A. Kanto, H. Kettunen, P. Kuusiniemi, M. Leino, M. Muikku, P. Rahkila, A. Savelius, P. T. Greenlees, Phys. Rev. C59, 673 (1999). https://doi.org/10.1103/PhysRevC.59.673
- [32] 2005Uu02 J. Uusitalo, M. Leino, T. Enqvist, K. Eskola, T. Grahn, P. T. Greenlees, P. Jones, R. Julin, S. Juutinen, A. Keenan, H. Kettunen, H. Koivisto, P. Kuusiniemi, A. -P. Leppanen, P. Nieminen, J. Pakarinen, P. Rahkila, C. Scholey, Phys. Rev. C 71, 024306 (2005). https://doi.org/10.1103/PhysRevC.71.024306
- [33] 2005Uu03 J. Uusitalo, S. Eeckhaudt, T. Enqvist, K. Eskola, T. Grahn, P. T. Greenlees, P. Jones, R. Julin, S. Juutinen, H. Kettunen, P. Kuusiniemi, M. Leino, A. -P. Leppanen, P. Nieminen, M. Nyman, J. Pakarinen, P. Rahkila, C. Scholey, Eur. Phys. J. A 25, Supplement 1, 179 (2005). https://doi.org/ 10.1140/epjad/i2005-06-089-9
- [34] 2014Gh09 L. Ghys, A. N. Andreyev, M. Huyse, P. Van Duppen, S. Sels, B. Andel, S. Antalic, A. Barzakh, L. Capponi, T. E. Cocolios, X. Derkx, H. De Witte, J. Elseviers, D. V. Fedorov, V. N. Fedosseev, F. P. Hessberger, Z. Kalaninova, U. Koster, J. F. W. Lane, V. Liberati, K. M. Lynch, B. A. Marsh, S. Mitsuoka, P. Moller, Y. Nagame, K. Nishio, S. Ota, D. Pauwels, R. D. Page, L. Popescu, D. Radulov, M. M. Rajabali, J. Randrup, E. Rapisarda, S. Rothe, K. Sandhu, M. D. Seliverstov, A. M. Sjodin, V. L. Truesdale, C. Van Beveren, P. Van den Bergh, Y. Wakabayashi, M. Warda, Phys. Rev. C 90, 041301 (2014). https://doi.org/10.1103/PhysRevC.90.041301
- [35] 2014Ka23 Z. Kalaninova, S. Antalic, A. N. Andreyev, F. P. Hessberger, D. Ackermann, B. Andel, L. Bianco, S. Hofmann, M. Huyse, B. Kindler, B. Lommel, R. Mann, R. D. Page, P. J. Sapple, J. Thomson, P. Van Duppen, M. Venhart, Phys. Rev. C 89, 054312 (2014). https://doi.org/10.1103/PhysRevC.89.054312
- [36] 2014Ly01 K. M. Lynch, J. Billowes, M. L. Bissell, I. Budincevic, T. E. Cocolios, R. P. De Groote, S. De Schepper, V. N. Fedosseev, K. T. Flanagan, S. Franchoo, R. F. Garcia Ruiz, H. Heylen, B. A. Marsh, G. Neyens, T. J. Procter, R. E. Rossel, S. Rothe, I. Strashnov, H. H. Stroke, K. D. A. Wendt, Phys. Rev. X 4, 011055 (2014). https://doi.org/10.1103/PhysRevX. 4. 011055
- [37] 2014Zh03 Z. Y. Zhang, Z. G. Gan, L. Ma, L. Yu, H. B. Yang, T. H. Huang, G. S. Li, Y. L. Tian, Y. S. Wang, X. X. Xu, X. L. Wu, M. H. Huang, C. Luo, Z. Z. Ren, S. G. Zhou, X. H. Zhou, H. S. Xu, G. Q. Xiao, Phys. Rev. C 89, 014308 (2014). https://doi.org/10.1103/PhysRevC.89.014308
- [38] 2015We13 T. A. Werke, D. A. Mayorov, M. C. Alfonso, M. E. Bennett, M. J. DeVanzo, M. M. Frey, E. E. Tereshatov, C. M. Folden, Phys. Rev. C 92, 034613 (2015). https://doi.org/10.1103/PhysRevC.92.034613
- [39] 2019Gi11 S. A. Gillespie, A. N. Andreyev, M. Al Monthery, C. J. Barton, S. Antalic, K. Auranen, H. Badran, D. Cox, J. G. Cubiss, D. O'Donnell, T. Grahn, P. T. Greenlees, A. Herzan, E. Higgins, R. Julin, S. Juutinen, J. Klimo, J. Konki, M. Leino, M. Mallaburn, J. Pakarinen, P. Papadakis, J. Partanen, P. M. Prajapati, P. Rahkila, M. Sandzelius, C. Scholey, J. Sorri, S. Stolze, R. Urban, J. Uusitalo, M. Venhart, F. Weaving, Phys. Rev. C 99, 064310 (2019). https://doi.org/10.1103/PhysRevC.99.064310
- [40] 2021Wa16 M. Wang, W. J. Huang, F. G. Kondev, G. Audi, S. Naimi, Chin. Phys. C 45, 030003 (2021). https://doi.org/10.1103/10.1088/1674-1137/abddaf