

Fig. 1: Known experimental values for heavy particle emission of the odd-Z T_z = +13 nuclei.

Last updated 4/4/23

Table 1

Observed and predicted β -delayed particle emission from the odd-Z, $T_z = +13$ nuclei. Unless otherwise stated, all Q-values are taken from [2021Wa16] or deduced from values therein.

Nuclide	Ex.	J^{π}	$T_{1/2}$	$Q_{\mathcal{E}}$	$Q_{\varepsilon p}$	$Q_{\varepsilon \alpha}$	$BR_{\beta F}$	Experimental
			/		*		F	
¹⁴⁴ Pr*		0^{-}	17.27(4) m	-0.319(4)				[1957Pe09]
¹⁴⁸ Pm*		1^{-}	5.370(15) d	0.542(6)	-8.711(17)	1.141(6)		[1970Ca09]
¹⁵² Eu**		3-	13.506(8) d	1.874(1)	-6.791(5)	2.095(2)		[2010Sc08]
¹⁵⁶ Tb		3-	5.35(10) d	2.444(4)	-5.562(4)	2.247(4)		[1959He44]
¹⁶⁰ Ho		5^{+}	25.6(3) m	3.290(15)	-4.139(15)	3.728(15)		[1965St08]
¹⁶⁴ Tm		1^{+}	1.9(1) m***	4.034(25)	-2.820(25)	5.339(25)		[1965Ba40, 1963Ra15, 1960Wi17]
¹⁶⁸ Lu		6-	5.5(1) m	4.510(40)	-1.819(38)	6.445(38)		[1972Ch44]
¹⁷² Ta		(3^{+})	36.7(4) m	5.070(40)	-0.790(28)	7.825(28)		[1972Ch45]
¹⁷⁶ Re		(3^+)	5.2(4) m	5.580(40)	0.057(40)	8.914(37)		[1977Ha24]
¹⁸⁰ Ir		(3^+)	1.5(1) m	6.379(27)	1.318(33)	10.239(35)		[1972Ak03]
¹⁸⁴ Au		5+	21(1) s	7.014(27)	2.594(33)	11.613(27)		[1977Za03]
^{184m} Au	0.06846(4)	2+	46.4(10) s@	7.082(27)	2.662(33)	11.681(27)		[1977Za03, 1992Ro21, 1995Bi01]
¹⁸⁸ Tl		(2^{-})	71(2) s	7.860(30)	3.403(37)	12.571(33)		[1984Co17]
¹⁹² Bi		(3^{+})	34.6(7) s	9.020(30)	5.459(31)	14.239(31)		[1991Va04]
^{192m} Bi	0.140(30)	(10^{-})	39.7(4) s ^{@@}	9.160(42)	5.599(43)	14.379(43)		[1988Hu03, 1991Va04, 2017Au03]
¹⁹⁶ At	× /	(3+)	371(5) ms	9.560(30)	6.823(31)	16.214(31)	9(1)×10 ⁻³ %	[2016Tr07]
²⁰⁰ Fr		(3+)	48(4) ms@@@@	10.130(30)	7.668(31)	17.177(31)	> 1.4%	[2014Ka23, 2005De01]
²⁰⁴ Ac		(3+)	75^{+23}_{-15} ms	10.600(34) ^a	8.496(34) ^a	18.237(34) ^a		[2022Hu12]

* 100% β^- emitter.

** 72% β^+ , 23% β^- emitter.

*** Weighted average of 2.0(1) m [1965Ba40], 1.8(1) m [1963Ra15] and 2.04(10) m [1960Wi17].

[@] Weighted average of 48(1) s [1977Za03], 45(1) s [1992Ro21] and 45.8(18) s [1995Bi01].

^{@@} Weighted average of 39.6(4) s [1988Hu03], 40.6(9) s [1991Va04].

^{@@@} Weighted average of 46(4) ms [2014Ka23] and 49(4) ms [2005De01].

 a Deduced from $^{204}Ac~\alpha$ energy [2022Hu12] and values from [2021Wa16].

Table 2

Particle separation, Q-values, and measured values for direct particle emission of the odd-Z, $T_z = +13$ nuclei. Unless otherwise stated, all S and Q-values are taken from [2021Wa16] or deduced from values therein.

	5 2p	Q_{α}	BR_{α}	Experimental
(122/2)	15.005(7)	1.125(2)		
6.433(3)	15.305(7)	1.137(3)		
6.008(6)	14.770(35)	1.460(6)		
5.601(1)	13.869(20)	1.552(6)		
5.310(4)	12.931(4)	0.373(4)		
4.504(15)	11.489(15)	1.284(15)		
4.031(25)	10.446(25)	2.049(29)		
3.772(38)	9.764(40)	2.411(45)		
3.188(40)	8.602(33)	3.318(47)		
2.719(40)	7.900(40)	3.842(40)		
2.246(27)	6.902(35)	4.660(35)		
1.834(26)	5.845(31)	5.193(5)*		
1.766(26)	5.777(31)	5.305(5)	0.013(3)%	[1995Bi01, 1995BiZZ, 1993BiZY, 1992BiZZ,
				1970Ha18, 1970HaZT]
1.507(33)	5.199(37)	5.557(37)		
0.532(31)	3.746(31)	6.377(4)	12(5)%	[1991Va04, 2016Tr07, 2013Ny01, 1988Hu03,
				1985HuZY, 1974Le02, 1972Ga27, 1970Ta14]
0.393(43)	3.606(43)	6.517(30)	10(3)%	[1991Va04, 1988Hu03, 2016Tr07]
0.085(31)	2.468(31)	7.196(3)	97.5(3)%	[2016Tr07, 2022Hu12, 2019Gh11, 2014Ka23,
	~ /		~ /	2013Nv01, 2005De01, 2004DeZV, 1997Pu01,
				1996En01, 1995Mo14, 1967Tr04, 1967Tr06]
-0.404(31)	1.736(31)	7.622(4)	>97.5%	[2014Ka23, 2022Hu12, 2013Uu01, 2005De01,
. /	. ,			2004DeZV, 1996En01, 1996MoZV, 1995LeZY,
				1995Mo14, 1995NoZW]
-0 771(35)***	1 019(34)***	8.107(15)***	≈100%**	[2022Hu12]
	6.433(3) 6.008(6) 5.601(1) 5.310(4) 4.504(15) 4.031(25) 3.772(38) 3.188(40) 2.719(40) 2.246(27) 1.834(26) 1.766(26) 1.507(33) 0.532(31) 0.393(43) 0.085(31) -0.404(31) -0.771(35)****	6.433(3) 15.305(7) 6.008(6) 14.770(35) 5.601(1) 13.869(20) 5.310(4) 12.931(4) 4.504(15) 11.489(15) 4.031(25) 10.446(25) 3.772(38) 9.764(40) 3.188(40) 8.602(33) 2.719(40) 7.900(40) 2.246(27) 6.902(35) 1.834(26) 5.845(31) 1.766(26) 5.777(31) 1.507(33) 5.199(37) 0.532(31) 3.606(43) 0.085(31) 2.468(31) -0.404(31) 1.736(31)	$6.433(3)$ $15.305(7)$ $1.137(3)$ $6.008(6)$ $14.770(35)$ $1.460(6)$ $5.601(1)$ $13.869(20)$ $1.552(6)$ $5.310(4)$ $12.931(4)$ $0.373(4)$ $4.504(15)$ $11.489(15)$ $1.284(15)$ $4.031(25)$ $10.446(25)$ $2.049(29)$ $3.772(38)$ $9.764(40)$ $2.411(45)$ $3.188(40)$ $8.602(33)$ $3.318(47)$ $2.719(40)$ $7.900(40)$ $3.842(40)$ $2.246(27)$ $6.902(35)$ $4.660(35)$ $1.834(26)$ $5.845(31)$ $5.193(5)^*$ $1.766(26)$ $5.777(31)$ $5.305(5)$ $1.507(33)$ $5.199(37)$ $5.557(37)$ $0.532(31)$ $3.606(43)$ $6.517(30)$ $0.085(31)$ $2.468(31)$ $7.196(3)$ $-0.404(31)$ $1.736(31)$ $7.622(4)$ $-0.771(35)^{***}$ $1.019(34)^{***}$ $8.107(15)^{***}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

* Deduced from α energy, 5.234(5) in [2021Wa16].

** Based on short half-life.

*** Deduced from 204 Ac α energy [2022Hu12] and values from [2021Wa16].

Table 3 direct α emission from ^{184m}Au*, $J_i^{\pi} = 2^+$, Ex = 68.46(4) keV**, $T_{1/2} = 46.4(10)$ s***, $BR_{\alpha} = 0.013(3)\%$.

$E_{\alpha}(\text{c.m.})$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(\text{rel})$	$I_{\alpha}(abs)$	\mathbf{J}_f^{π}	$E_{daughter}(^{180}\mathrm{Ir})$	coincident γ -rays	$R_0 (fm)^@$	HF
5.051(5)	4 980(5)	23(1)%	$14(3) \times 10^{-3}\%$		0.212	0 0897 0 1304 0 1717 0 1838 0 1979 0 2124	1 527(18)	4 7+2.7
5.096(5)	5.024(5)	22(1)% 22(1)%	$1.3(3) \times 10^{-3}\%$		0.167	0.0502, 0.1426	1.527(18)	9^{+5}_{-3}
5.137(15)	5.065(15)	14(1)%	$9(2) \times 10^{-4}\%$		0.114	0.1135	1.527(18)	26^{+16}_{-10}
5.182(5)	5.109(5)	100(1)%	$6.1(14) \times 10^{-3}\%$		0.0804	0.0553, 0.0804	1.527(18)	$5.5^{+3.1}_{-2.1}$
5.261(5)	5.187(5)	55(1)%	$3.3(8) \times 10^{-3}\%$	(3+)	0.0		1.527(18)	27^{+15}_{-19}

* All values from [1995Bi01], except where noted.

** [2005Sa40].

*** Weighted average of 48(1) s [1977Za03], 45(1) s [1992Ro21] and 45.8(18) s [1995Bi01].

[@] Interpolated between 1.5539(68) fm ¹⁸²Pt and 1.500(17) ¹⁸⁶Hg.

Table 4

direct α emission from	192 Bi*, $J_i^{\pi} = (3^+)$,	$T_{1/2} = 34.6(7) s$,	$BR_{\alpha} = 12(5)\%$
-------------------------------	-------------------------------------	-------------------------	-------------------------

$E_{\alpha}(\text{c.m.})$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(\text{rel})$	$I_{\alpha}(abs)$	J_f^{π}	$E_{daughter}(^{188}\mathrm{Tl})$	coincident γ -rays	R ₀ (fm)**	HF
6.189(5) 6.378(5)	6.060(5) 6.245(5)	100% 3.1(6)%	11.6(5)% 0.36(17)%	(3 ⁺) (2 ⁻)	0.1846 0.0	0.1846	1.608(14) 1.608(14)	${}^{11^{+9}_{-5}}_{2.1^{+20}_{-9}\times10^3}$

* All values from [1991Va04], except where noted.

** Interpolated between 1.4923(55) fm ¹⁹⁰Pb and 1.724(13) ¹⁹⁴Po.

Table 5

direct α emission from ^{192m}Bi*, $J_i^{\pi} = (10^-)$, Ex = 140(30) keV**, $T_{1/2} = 39.7(4)$ s***, $BR_{\alpha} = 120(3)\%$.

$E_{\alpha}(c.m.)$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(\text{rel})$	$I_{\alpha}(abs)$	J_f^π	$E_{daughter}(^{188}\text{Tl})$	coincident γ -rays	$R_0 (fm)^@$	HF
6.181(5)	6.052(5)	100%	9.(3)%	10-	0.337(30)	0.0336, 0.1031, 0.2688	1.608(14)	15^{+9}_{-5}
6.210(10)	6.081(10)	7.2(7)%	0.65(21)%	9-	0.304(30)	0.1031, 0.2688	1.608(14)	280^{+100}_{-100}
6.386(5)	6.253(5)	0.6(2)%	0.05(2)%	6^{+}	0.138(30)	0.1031	1.608(14)	$1.8^{+1.9}_{-0.7} \times 10^4$
6.483(5)	6.348(5)	2.5(2)%	0.23(7)%	7^{+}	0.035(30)		1.608(14)	$1.0^{+0.6}_{-0.4} imes 10^4$

* All values from [1991Va04], except where noted.

** [2017Au03].

*** Weighted average of 39.6(4) s [1988Hu03], 40.6(9) s [1991Va04].

^(a) Interpolated between 1.4923(55) fm ¹⁹⁰Pb and 1.724(13) fm ¹⁹⁴Po.

Table 6

Table 0	
direct α emission from ¹⁹⁶ At*, $J_i^{\pi} = (3^+)$, $T_{1/2} = 371(5)$ ms, $BR_{\alpha} = 97.5(3)\%$.	

$E_{\alpha}(c.m.)$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(\text{rel})$	$I_{\alpha}(abs)$	\mathbf{J}_f^{π}	$E_{daughter}(^{192}\mathrm{Bi})$	coincident γ -rays	R ₀ (fm)**	HF
6.782(8)	6 644(8)	0.14(3)%	0.14(3)%		0.409(8)	0 200, 0 221	1.743(13)	$5.5^{+2.3} \times 10^{3}$
6.887(5)	6.746(5)	1.84(6)%	1.79(6)%		0.316	0.116, 0.200, 0.316	1.743(13)	940^{+270}_{-5210}
6.997(6)	6.854(6)	0.27(3)%	0.26(3)%		0.200	0.200	1.743(13)	$1.7^{+0.5}_{-0.4} \times 10^{4}$
7.200(5)	7.053(5)	100.0(1)%	97.5(3)%	(3+)	0.0		1.743(13)	220_{-50}^{+60}

* All values from [2016Tr07].

7.470(5)

** Interpolated between 1.724(13) fm 194 Po and 1.7622(23) fm 198 Rn.

Table 7

7.622(5)

direct α emis	irect α emission from ²⁰⁰ Fr*, $J_i^{\pi} = (3^+)$, $T_{1/2} = 48(4)$ ms**, $BR_{\alpha} = \approx 100\%$.											
$E_{\alpha}(c.m.)$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(abs)$	${ m J}_f^{\pi}$	$E_{daughter}(^{196}\mathrm{At})$	coincident γ -rays	R ₀ (fm)***	HF					

0.0

* All values from [2014Ka23], except where noted.

** Weighted average of 46(4) ms [2014Ka23] and 49(4) ms [2005De01]. *** Interpolated between 1.7622(23) fm ¹⁹⁸Rn and 1.794(23) fm ²⁰²Ra.

 (3^+)

 $\approx 100\%$

 250^{+140}_{-90}

1.778(23)

Table 8 direct α emission from ²⁰⁴Ac*, T_{1/2} = 75⁺²³₋₁₅ ms, $BR_{\alpha} = >97.5\%$.

$E_{\alpha}(c.m.)$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(abs)$	$E_{daughter}(^{200}\mathrm{Fr})$	coincident γ-rays	R_0 (fm)	HF
8107(15)	7.948(15)	$\approx 100\%$	0.0			

* All values from [2014Ka23].

References used in the Tables

- [1] 1957Pe09 D. F. Peppard, G. W. Mason, S. W. Moline, J. Inorg. Nuclear Chem. 5, 141 (1957). https://doi.org/10.1016/0022-1902(57)80055-4
- [2] 1959He44 R. W. Henry, L. T. Dillman, N. B. Gove, R. A. Becker, Phys. Rev. 113, 1090 (1959). https://doi.org/10.1103/PhysRev.113.1090
- [3] 1960Wi17 R. G. Wilson, M. L. Pool, Phys. Rev. 120, 1827 (1960). https://doi.org/10.1103/PhysRev.120.1827
- [4] 1963Ra15 G. V. S. Rayudu, L. Yaffe, Can. J. Chem. 41, 2544 (1963). https://doi.org/10.1139/v63-374
- [5] 1965Ba40 A. S. Basina, T. Bedike, K. Y. Gromov, B. S. Dzhelepov, V. A. Morozov, A. F. Novgorodov, Yad. Fiz. 2, 204 (1965); Soviet J. Nucl. Phys. 2, 146 (1966).
- [6] 1965St08 T. Stenstrom, B. Jung, Nucl. Phys. 64, 209 (1965). https://doi.org/10.1016/0029-5582(65)90352-4
- [7] 1967Tr04 W. J. Treytl, K. Valli, UCRL-17299, p. 32 (1967).
- [8] 1967Tr06 W. Treytl, K. Valli, Nucl. Phys. A97, 405 (1967). https://doi.org/10.1016/0375-9474(67)90495-2
- [9] 1970Ca09 M. J. Cabell, M. Wilkins, J. Inorg. Nucl. Chem. 32, 1409 (1970). https://doi.org/10.1016/0022-1902(70)80626-1
- [10] 1970Ha18 P. G. Hansen, H. L. Nielsen, K. Wilsky, M. Alpsten, M. Finger, A. Lindahl, R. A. Naumann, O. B. Nielsen, Nucl. Phys. A148, 249 (1970). oi: 10.1016/0375-9474(70)90622-6. https://doi.org/10.1016/0375-9474(70)90622-6
- [11] 1970HaZT P. G. Hansen,, REPT PR-P-87 P20, AECL-3742
- [12] 1970Ta14 N. I. Tarantin, A. P. Kabachenko, A. V. Demyanov, Yad. Fiz. 12, 455 (1970); Sov. J. Nucl. Phys. 12, 248 (1971)
- [13] 1972Ak03 A. I. Akhmadzhanov, B. Bayar, R. Broda, V. Valyus, N. G. Zaitseva, H. W. Siebert, S. M. Kamalkhodzhaev, G. Muziol, A. F. Novgorodov, W. Neubert, M. Finger, U. Hagemann, H. Shtrusnyi, Izv. Akad. Nauk SSSR, Ser. Fiz. 36, 2066 (1972); Bull. Acad. Sci. USSR, Phys. Ser. 36, 1820 (1973).
- [14] 1972Ch44 A. Charvet, R. Chery, Do Huu Phuoc, R. Duffait, A. Emsallem, G. Marguier, Nucl. Phys. A197, 490 (1972). https://doi.org/10.1016/0375-9474(72)91024-X
- [15] 1972Ch45 S. K. Chang, M. C. Cheney, Phys. Rev. C 6, 1898 (1972). https://doi.org/10.1103/PhysRevC.6.1898
- [16] 1972Ga27 H Gauvin, Y Le Beyec, M Lefort, N T Porile, Phys Rev Lett 29, 958 (1972). https://doi.org/10.1103/PhysRevLett.29.958
- [17] 1974Le02 Y Le Beyec, M Lefort, J Livet, N T Porile, A Siivola, Phys Rev C 9, 1091 (1974). https://doi.org/10.1103/PhysRevC.9.1091
- [18] 1977Ha24 A. Hardt, J. Bisplinghoff, J. Ernst, R. Lohr, H. Machner, T. Mayer-Kuckuk, Nucl.Instrum.Methods 143, 519 (1977). https://doi.org/10.1016/0029-554X(77)90241-5
- [19] 1977Za03 P. P. Zarubin, R. Mikhu, Izv. Akad. Nauk SSSR, Ser. Fiz. 41, 104 (1977); Bull. Acad. Sci. USSR, Phys. Ser. 41, No. 1, 85 (1977).
- [20] 1984Co17 J. D. Cole, J. H. Hamilton, A. V. Ramayya, W. Lourens, B. van Nooijen, H. Kawakami, L. A. Mink, E. H. Spejewski, H. K. Carter, R. L. Mlekodaj, G. A. Leander, L. L. Riedinger, C. R. Bingham, E. F. Zganjar, J. L. Wood, R. W. Fink, K. S. Toth, B. D. Kern, K. S. R. Sastry, Phys. Rev. C30, 1267 (1984). https://doi.org/10.1103/PhysRevC.30.1267
- [21] 1985HuZY L. Huyse, E. Coenen, K. Deneffe, P. Van Duppen, J. L. Wood, Amer. Chem. Soc. Symposium Ser. 324 on Nuclei Off the Line of Stability, Chicago, p. 258 (1985); R. A. Meyer, D. S. Brenner Eds., ACS, Washington, p. 258 (1986).
- [22] 1988Hu03 M. Huyse, E. Coenen, K. Deneffe, P. van Duppen, K. Heyde, J. van Maldeghem, Phys. Lett. 201B, 293 (1988). https://doi.org/10.1016/0370-2693(88)91142-2
- [23] 1991Va04 P. Van Duppen, P. Decrock, P. Dendooven, M. Huyse, G. Reusen, J. Wauters, Nucl. Phys. A529, 268 (1991). https://doi.org/10.1016/0375-9474(91)90796-9

- [24] 1992BiZZ C. R. Bingham, Y. A. Akovali, H. K. Carter, W. D. Hamilton, M. M. Jarrio, M. B. Kassim, J. Kormicki, J. Schwarzenberg, K. S. Toth, M. Zhang, Contrib. 6th Intern. Conf. on Nuclei Far from Stability + 9th Intern. Conf. on Atomic Masses and Fundamental Constants, Bernkastel-Kues, Germany, PE47 (1992).
- [25] 1992Ro21 I. Romanski, I. Berkes, D. E. Brown, M. De Jesus, R. Eder, I. S. Grant, E. Hagn, P. Harding, P. Herzog, B. Hinfurtner, B. Kastelein, H. Postma, J. Prinz, P. Richards, K. Schlosser, N. J. Stone, L. Vanneste, E. Zech, and the NICOLE and ISOLDE Collaborations, Hyperfine Interactions 75, 457 (1992). https://doi.org/10.1007/BF02399003
- [26] 1993BiZY C. R. Bingham, Y. A. Akovali, H. K. Carter, W. D. Hamilton, M. M. Jarrio, M. B. Kassim, J. Kormicki, J. Schwarzenberg, K. S. Toth, M. Zhang, Proc. 6th Intern. Conf. on Nuclei Far from Stability + 9th Intern. Conf. on Atomic Masses and Fundamental Constants, Bernkastel-Kues, Germany, 19-24 July, 1992, R. Neugart, A. Wohr, Eds., p. 735 (1993).
- [27] 1995Bi01 C. R. Bingham, M. B. Kassim, M. Zhang, Y. A. Akovali, K. S. Toth, W. D. Hamilton, H. K. Carter, J. Kormicki, J. von Schwarzenberg, M. M. Jarrio, Phys. Rev. C51, 125 (1995). https://doi.org/10.1103/PhysRevC.51.125
- [28] 1995BiZZ C. R. Bingham, J. D. Richards, B. E. Zimmerman, Y. A. Akovali, W. B. Walters, J. Rikovska, P. Joshi, E. F. Zganjar, Proc. Intern. Conf on Exotic Nuclei and Atomic Masses, Arles, France, June 19-23, 1995, p. 545 (1995).
- [29] 1995LeZY M. Leino, T. Enqvist, W. H. Trzaska, J. Uusitalo, K. Eskola, P. Armbruster, V. Ninov, Proc. Intern. Conf on Exotic Nuclei and Atomic Masses, Arles, France, June 19-23, 1995, p. 505 (1995).
- [30] 1995Mo14 K. Morita, Y. H. Pu, J. Feng, M. G. Hies, K. O. Lee, A. Yoshida, S. C. Jeong, S. Kubono, T. Nomura, Y. Tagaya, M. Wada, M. Kurokawa, T. Motobayashi, H. Ogawa, T. Uchibori, K. Sueki, T. Ishizuka, K. Uchiyama, Y. Fujita, H. Miyatake, T. Shinozuka, H. Kudo, Y. Nagai, S. A. Shin, Z. Phys. A352, 7 (1995). https://doi.org/10.1007/BF01292753
- [31] 1995NoZW T. Nomura, Proc. Intern. Conf on Exotic Nuclei and Atomic Masses, Arles, France, June 19-23, 1995, p. 363 (1995).
- [32] 1996En01 T. Enqvist, K. Eskola, A. Jokinen, M. Leino, W. H. Trzaska, J. Uusitalo, V. Ninov, P. Armbruster, Z. Phys. A354, 1 (1996). https://doi.org/10.1007/s002180050001
- [33] 1996MoZV K. Morita, Y. Pu, T. Nomura, Y. Tagaya, T. Uchibori, K. Lee, K. Uchiyama, M. Kurokawa, T. Motobayashi, H. Ogawa, M. Hies, J. Feng, A. Yoshida, S. Jeong, S. Kubono, M. Wada, K. Sueki, T. Ishizuka, Y. Fujita, H. Miyatake, T. Shimoda, T. Shinozuka, H. Kudo, Y. Nagai, S. Shin, RIKEN-95, p. 42 (1996).
- [34] 1997Pu01 Y. H. Pu, K. Morita, M. G. Hies, K. O. Lee, A. Yoshida, T. Nomura, Y. Tagaya, T. Motobayashi, M. Kurokawa, H. Minemura, T. Uchibori, T. Ariga, K. Sueki, S. A. Shin, Z. Phys. A357, 1 (1997). https://doi.org/ 10.1007/s002180050203
- [35] 2004DeZV H. De Witte, Thesis, Leuven Univ. Belgium (2004).
- [36] 2005De01 H. De Witte, A. N. Andreyev, S. Dean, S. Franchoo, M. Huyse, O. Ivanov, U. Koster, W. Kurcewicz, J. Kurpeta, A. Plochocki, K. Van de Vel, J. Van de Walle, P. Van Duppen, Eur. Phys. J. A 23, 243 (2005). https://doi.org/10.1140/epja/i2004-10077-9
- [37] 2010Sc08 H. Schrader, Appl. Radiat. Isot. 68, 1583 (2010). https://doi.org/10.1016/j. apradiso. 2009. 11. 033
- [38] 2013Ny01 M. Nyman, S. Juutinen, I. Darby, S. Eeckhaudt, T. Grahn, P. T. Greenlees, U. Jakobsson, P. Jones, R. Julin, S. Ketelhut, H. Kettunen, M. Leino, P. Nieminen, P. Peura, P. Rahkila, J. Saren, C. Scholey, J. Sorri, J. Uusitalo, T. Enqvist, Phys. Rev. C 88, 054320 (2013). https://doi.org/10.1103/PhysRevC. 88. 054320
- [39] 2013Uu01 J. Uusitalo, J. Saren, S. Juutinen, M. Leino, S. Eeckhaudt, T. Grahn, P. T. Greenlees, U. Jakobsson, P. Jones, R. Julin, S. Ketelhut, A. -P. Leppanen, M. Nyman, J. Pakarinen, P. Rahkila, C. Scholey, A. Semchenkov, J. Sorri, A. Steer, M. Venhart, Phys. Rev. C 87, 064304 (2013). https://doi.org/10.1103/PhysRevC.87.064304
- [40] 2014Ka23 Z. Kalaninova, S. Antalic, A. N. Andreyev, F. P. Hessberger, D. Ackermann, B. Andel, L. Bianco, S. Hofmann, M. Huyse, B. Kindler, B. Lommel, R. Mann, R. D. Page, P. J. Sapple, J. Thomson, P. Van Duppen, M. Venhart, Phys. Rev. C 89, 054312 (2014). https://doi.org/10.1103/PhysRevC.89.054312
- [41] 2016Tr07 V. L. Truesdale, A. N. Andreyev, L. Ghys, M. Huyse, P. Van Duppen, S. Sels, B. Andel, S. Antalic, A. Barzakh, L. Capponi, T. E. Cocolios, X. Derkx, H. De Witte, J. Elseviers, D. V. Fedorov, V. N. Fedosseev, F. P. Hessberger, Z. Kalaninova, U. Koster, J. F. W. Lane, V. Liberati, K. M. Lynch, B. A. Marsh, S. Mitsuoka, Y. Nagame, K. Nishio, S. Ota, D. Pauwels, L. Popescu, D. Radulov, E. Rapisarda, S. Rothe, K. Sandhu, M. D. Seliverstov, A. M. Sjodin, C. Van Beveren, P. Van den Bergh, Y. Wakabayashi, Phys. Rev. C 94, 034308 (2016). https://doi.org/10.1103/PhysRevC. 94. 034308
- [42] 2017Au03 G. Audi, F. G. Kondev, M. Wang, W. J. Huang, S. Naimi, Chin. Phys. C 41, 030001 (2017). https://doi.org/10.1088/1674-1137/41/3/030001
- [43] 2019Gh11 L. Ghys, A. N. Andreyev, M. Huyse, P. Van Duppen, S. Antalic, A. Barzakh, L. Capponi, T. E. Cocolios, J. Cubiss, X. Derkx, H. De Witte, J. Elseviers, F. P. Hessberger, Z. Kalaninova, U. Koster, J. F. W. Lane, V. Liberati, S. Mitsuoka, Y.

Nagame, K. Nishio, S. Ota, D. Pauwels, R. D. Page, L. Popescu, D. Radulov, M. M. Rajabali, E. Rapisarda, K. Sandhu, V. L. Truesdale, P. Van den Bergh, Y. Wakabayashi, Phys. Rev. C **100**, 054310 (2019). https://doi.org/10.1103/PhysRevC.100.054310

- [44] 2021Wa16 M. Wang, W. J. Huang, F. G. Kondev, G. Audi, S. Naimi, Chin. Phys. C 45, 030003 (2021). https://doi.org/10.1088/1674-1137/abddaf
- [45] 2022Hu12 M. H. Huang, Z. G. Gan, Z. Y. Zhang, L. Ma, J. G. Wang, M. M. Zhang, H. B. Yang, C. L. Yang, X. Y. Huang, Z. Zhao, S. Y. Xu, L. X. Chen, X. J. Wen, Y. F. Niu, C. X. Yuan, Y. L. Tian, Y. S. Wang, J. Y. Wang, M. L. Liu, Y. H. Qiang, W. Q. Yang, H. B. Zhang, Z. W. Lu, S. Guo, W. X. Huang, Y. He, Z. Z. Ren, S. G. Zhou, X. H. Zhou, H. S. Xu, V. K. Utyonkov, A. A. Voinov, Yu. S. Tsyganov, A. N. Polyakov, Phys. Lett. B 834, 137484 (2022). https://doi.org/10.1016/j.physletb.2022.137484