

Fig. 1: Known experimental values for heavy particle emission of the odd-Z T_z = +13/2 nuclei.

Last updated 3/22/23

Observed and predicted β -delayed particle emission from the odd-*Z*, $T_z = +13/2$ nuclei. Unless otherwise stated, all Q-values are taken from [2021Wa16] or deduced from values therein. J^{|pi} values for ¹¹⁹I, ¹²³Cs, ¹²⁷La, ¹³¹Pr, ¹³⁵Pm, ¹³⁹Eu, ¹⁴³Tb, ¹⁴⁷Ho, ¹⁵¹Tm are taken from ENSDF

Nuclide	Ex	J^{π}	$T_{1/2}$	Q _ε	$Q_{\varepsilon p}$	$BR_{\beta p}$	$Q_{\epsilon 2p}$	$Q_{\varepsilon \alpha}$	Experimental
110									
1 ¹⁹ I		$5/2^{+}$	19.0(2) m*	3.405(23)	-3.070(22)		-7.958(22)	3.831(22)	[1968Se05, 1969La33]
¹²³ Cs		$1/2^{+}$	5.87(5) m	4.205(15)	-2.253(13)		-7.078(29)	3.714(14)	[1993Al03]
¹²⁷ La		$(11/2^{-})$	5.1(1) m	4.922(28)	-0.834(28)		-5.275(26)	4.927(28)	[1992Ic02]
¹³¹ Pr		$(3/2^+)$	1.48(2) m	5.410(60)	0.038(54)		-3.818(48)	6.092(48)	[1983AkZZ]
¹³⁵ Pm			49(3) s	6.150(90)	1.177(85)		-2.222(85)	7.221(89)	[1989Ko07]
¹³⁹ Eu		$(11/2^{-})$	17.9(6) s	6.982(17)	2.227(18)		-0.392(18)	8.391(23)	[1986De35]
¹⁴³ Tb		$(11/2^{-})$	12(1) s	7.81(21)	3.601(59)		0.937(52)	9.536(52)	[1986Re11]
¹⁴⁷ Ho		$(11/2^{-})$	5.8(4) s	8.439(10)	4.718(45)		2.592(20)	10.05(20)	[1982No08]
¹⁵¹ Tm		$(11/2^{-})$	4.13(11) s	7.495(25)	3.885(16)		2.344(21)	11.000(21)	[1988Ba02]
¹⁵⁵ Lu		$(11/2^{-})$	70(1) ms	7.958(25)	4.593(16)		3.344(21)	13.296(25)	[1996Pa01]
^{155m1} Lu	0.199(62)	$(1/2^+)$	136(9) ms	7.978(25)	4.613(16)		3.364(21)	13.316(25)	1996Pa01, 1997Da07]
^{155m2} Lu	1.781(2)	$(25/2^{-})$	2.71(3) ms	9.739(25)	6.374(16)		5.125(21)	15.097(25)	1996Pa01]
¹⁵⁹ Ta		$(1/2^+)$	1.10(10) s	8.413(26)	5.484(17)		4.403(23)	13.639(26)	1996Pa01]
^{159m} Ta	0.0637(52)	$(11/2^{-})$	514(9) ms**	8.477(26)	5.548(18)		4.467(24)	13.703(26)	1997Da07, 1996Pa01]
¹⁶³ Re		$(1/2^+)$	390(72) ms	8.910(60)	6.490(64)		5.736(30)	14.425(25)	[1997Da07]
^{163m} Re	0.1151(40)	$(11/2^{-})$	214(5) ms	9.025(60)	6.605(64)		5.851(30)	14.540(25)	[1997Da07]
¹⁶⁷ Ir		$(1/2^+)$	29.3(6) ms	9.430(80)	7.476(88)		7.211(32)	15.411(61)	[2005Sc22]
^{167m} Ir	0.1753(22)	$(11/2^{-})$	28.5(6) ms***	9.650(80)	7.651(88)		7.386(32)	15.586(61)	[2005Sc22, 2004Ke06,
									1997Da07]
¹⁷¹ Au		$(1/2^+)$	$22^{+3}_{-2} \mu s$	9.900(80)#	8.33(10)#		8.583(33)#	16.512(84)	[2004Ke06]
^{171m} Au	0.258(13)	$(11/2^{-})$	1.09(3) ms	10.158(81)#	8.59(10)#		8.5841(35)#	16.770(85	[2004Ke06]

* Weighted average of 19.3(2) m [1968Se05] and 18.2(3) m [1969La33].

** Weighted average of 500(11) ms [1997Da07], and 544(16) ms [1996Pa01].

*** Weighted average of 30.0(6) ms [1997Da07], 25.7(8) ms [2004Ke06], and 28.7(33) ms [2005Sc22].

Table 2

Particle emission from the odd-Z, $T_z = +13/2$ nuclei. Unless otherwise stated, all Q-values and separation energies are taken from [2021Wa16] or deduced from values therein.

Nuclide	S_p	BR_p	S_{2p}	Qα	BRα	Experimental
110-	0.05((00))		0.54 (/0.0)	0.001(05)		
122 ~	3.376(28)		9.716(23)	0.801(27)		
¹²⁵ Cs	2.978(16)		9.376(13)	0.309(25)		
¹² /La	2.515(29)		8.384(27)	0.723(29)		
¹³¹ Pr	2.167(55)		7.555(52)	1.171(54)		
¹³⁵ Pm	1.705(84)		6.703(84)	1.813(95)		
¹³⁹ Eu	1.189(18)		5.903(19)	2.239(84)		
¹⁴³ Tb	0.749(58)		5.071(53)	2.554(53)		
¹⁴⁷ Ho	0.491(8)		3.94(11)	2.237(51)		
¹⁵¹ Tm	0.229(9)		3.704(23)	2.561(20)		
¹⁵⁵ Lu	-0.098(8)		3.150(23)	5.802(2)	90(2)%	[2016Ca42, 1997Da01, 1996Pa01, 1979Ho10, 2018Pa37, 1998DiZY,
						1993Li34, 1993ToZX, 1991To09, 1990AbZW, 1989Ho12, 1989HoZX,
						1984Gr14, 1981HoZM]
^{155m1} Lu	-0.078(10)		3.130(23)	5.822(6)	76(16)%	[2016Ca42, 1997Da07, 1996Pa01, 1991To09]
^{155m2} Lu	1.683(12)		1.369(23)	7.583(6)	obs	[1996Pa01 , 2016Ca42, 1993Li34 1981HoZM]
¹⁵⁹ Ta	-0.374(9)		2.578(23)	5.681(6)	34(5)%	1997Da07, 1996Pa01]
^{159m} Ta	-0.438(10)		2.514(24)	5.745(8)	55(1)%	1997Da07, 1996Pa01, 2002Ro17, 1979Ho10]
¹⁶³ Re	-0.708(6)		1.802(31)	6.012(8)	32(3)%	[1997Da07]
^{163m} Re	-0.823(7)		1.687(31)	6.127(9)	66(4)%	[1997Da07 , 1996Pa01, 1979Ho10]
¹⁶⁷ Ir	-1.070(4)	39.3(13)%	0.991(30)	6.505(3)	43(2)%	[2005Sc22, 1997Da07, 2001Ke05, 1996Pa01, 1995DaZX, 1981Ho10]
167m Ir	-1.185(6)	0.42(8)%	0.876(30)	6.620(5)	90(3)%	2005Sc22, 2004Ke06, 1997Da07, 1995DaZX, 1981Ho10]
¹⁷¹ Au	-1.448(10)	100%	0.047(31)	7.085(11)	· /	[2004Ke06, 1999Po09 , 2003Bb21]
171m Au	-1.706(16)	40(4)%*	-0.211(34)	7.343(17)	60(4)%*	[2004Ke06, 1999Po09, 1997Da07, 2003Bb21, 1995DaZX]

* Weighted average from [2004Ke06] $BR_p = 34(4)\%$ and [1997Da07]. $BR_p = 46(4)\%$.

direct α emis	ssion from ¹⁵⁵ Lu, J ^{π}	$=(11/2^{-}), T_{1/2}=7$	$70(1) \text{ ms}^*, BR_{\alpha}$	$=90(2)\%^{**}.$			
$E_{\alpha}(\text{c.m.})$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(abs)$	J_f^π	$E_{daughter}(^{151}\mathrm{Tm})$	coincident γ -rays	i	
5.809(5)	5.659(5)***	90(2)%**	(11/2 ⁻)	0.0		1.5533(22)	1.38(9)
* [1996] ** [1997 *** Wei	Pa01] 7Da07] ghted average of 5.6	61(5) MeV [2016C	°a42], 5661(4) N	1eV [1997Da07], 5.655(:	5) [1996Pa01], and 5.	656(6) MeV [1979Ho1	0].
Table 4 direct α emis	ssion from ^{155m1} Lu, 1	Ex = 19.9(62) keV*	*, $J^{\pi} = (1/2^+), T$	$F_{1/2} = 136(9) \text{ ms}^{**}, BR_{\alpha}$	= 76(16)%*.		
$E_{\alpha}(c.m.)$	$E_{\alpha}(lab)$	$I_{\alpha}(abs)$	${ m J}_f^{\pi}$	$E_{daughter}(^{151}\mathrm{Tm})$	coincident γ-rays	3	
5.732(4)	5.584(4)***	76(16)%**	$(1/2^+)$	0.096(9)@		1.5533(22)	$1.6\substack{+0.6 \\ -0.4}$
* [1997] ** [1996 *** Wei @ Deduc Table 5 direct α emis	Da07] SPa01] ghted average of 5.5 ced from isomer ener ssion from ^{155m2} Lu*,	86(5) MeV [2016C rgy, and α energies Ex = 1.781(2) Me	a42], 5.586(4) M of ground state V, J ^{π} = (25/2 ⁻),	MeV [1997Da07], 5.584(and isomer. $T_{1/2} = 2.71(3) \text{ ms}, BR_{\alpha}$	5) [1996Pa01], and 5 = obs.	.579(5) MeV [1991To0	9].
$E_{\alpha}(c.m.)$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(abs)$	J_f^π	$E_{daughter}(^{151}\mathrm{Tm})$	coincident γ-1	rays	
7.586(5)	7.390(5)	(11/2 ⁻)	(11/2 ⁻)	0.0?		1.5533(22	2)
* All val Table 6	lues from [1996Pa01].					
direct α emis	ssion from ¹³⁷ Ta, J^{π}	$=, T_{1/2} = 1.10(10)$	$s^*, BR_\alpha = 34(5)$)%**.			
$E_{\alpha}(\text{c.m.})$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(abs)$	J_f^{π}	$E_{daughter}(^{12}$	^{55m} Lu) coir	ncident γ-rays	
5.660(4)	5.518(4)***	34(5) %	19.9(62)			
* [1996] ** [1997 *** Wei	Pa01]. 7Da07]. ghted average of 5.5	19(4) MeV [1997D	0a07] and 5.516((5) MeV [1996Pa01].			
Table 7 direct α emises	ssion from ^{159m} Ta*, 1	Ex = 63.7(52) keV,	$J^{\pi} = , T_{1/2} = 51$	4(9) ms**, $BR_{\alpha} = 55(1)$	%.		
$E_{\alpha}(c.m.)$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(abs)$	J_f^π	$E_{daughter}(^{155}Lu$) coincid	ent γ-rays	
5.746(3)	5.600(3)	55(1)%	0.0				
* All val ** Weig	lues from [1997Da07 hted average of 500(7], except where no 11) ms [1997Da07	oted.], and 544(16) n	ns [1996Pa01].			
Table 8 direct α emises	ssion from ¹⁶³ Re*, J ²	$\tau = , T_{1/2} = 390(72)$) ms, $BR_{\alpha} = 320$	(3) %.			
$E_{\alpha}(c.m.)$	$E_{\alpha}(lab)$	$I_{\alpha}(abs)$	${ m J}_f^{\pi}$	$E_{daughter}(^{159}\mathrm{Ta})$	a) coincid	ent γ-rays	

* All values from [1997Da07].

$E_{\alpha}(\text{c.m.})$	$E_{\alpha}(lab)$	$I_{\alpha}(abs)$	\mathbf{J}_f^{π}	$E_{daughter}(^{159m}\mathrm{Tm})$	coincident γ -rays	
6.069(3)	5.920(3)	66(4)%	0.0637(52)			
* All valu	ues from [1997Da07]					
Table 10 direct p emiss	tion from ¹⁶⁷ Ir*, J ^{π} =	, T _{1/2} = 29.3(6) ms,	$BR_p = 39.3(13)\%.$			
<i>E_p</i> (c.m.)	$E_p(\text{lab})$	$I_p(abs)$	$E_{daughter}(^{16}$	⁶ Os) coincide	nt γ-rays	
1.068(6)	1.062(6)	39.3(13)%	0.0			
* All valu	ues from [2015Sc22]	, except where noted				
Table 11 direct α emiss	sion from ¹⁶⁷ Ir*, J ^{π} =	$T_{1/2} = 29.3(6) \text{ ms}$	$, BR_{\alpha} = 43(2)\%.$			
$E_{\alpha}(\text{c.m.})$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(abs)$	\mathbf{J}_f^{π}	$E_{daughter}(^{163}\mathrm{Re})$	coincident γ-rays	
6.504(3)	6.348(3)	43(2)%	0.0			
* All valu	ues from [2005Sc22]					
* All valu Table 12 direct p emiss	ues from [2005Sc22] tion from ^{167m} Ir*, Ex	$= 175.3(22) \text{ keV}, \text{ J}^{\pi}$	= , T _{1/2} = 28.5(6) ms	**, $BR_p = 0.42(8)\%$.		
* All valu Table 12 direct p emiss $E_p(c.m.)$	ues from [2005Sc22] tion from $167m$ Ir*, Ex E_p (lab)	$= 175.3(22) \text{ keV, } J^{\pi}$ $I_p(\text{abs})$	= , $T_{1/2} = 28.5(6) \text{ ms}$ $E_{daughter}($	**, $BR_p = 0.42(8)\%$. ¹⁶⁶ Os) coincid	ent γ-rays	
* All value Table 12 direct p emisses $E_p(c.m.)$ 1.251(7)	ues from [2005Sc22] tion from 167m Ir*, Ex E_p (lab) 1.243(7)***	$= 175.3(22) \text{ keV, } J^{\pi}$ $I_p(\text{abs})$ $0.42(8)\%$	=, $T_{1/2}$ = 28.5(6) ms $E_{daughter}($ 0.0	**, $BR_p = 0.42(8)\%$. ¹⁶⁶ Os) coincid	ent γ-rays	
* All value Table 12 direct p emisse $E_p(c.m.)$ 1.251(7) * All value ** Weighter ** Weighter ** Weighter	ues from [2005Sc22] ion from 167m Ir*, Ex E_p (lab) 1.243(7)*** ues from [2005Sa22] nted average of 30.0(6 nted average of 1.238	$= 175.3(22) \text{ keV, } J^{\pi}$ $I_p(\text{abs})$ $0.42(8)\%$ a, except where noted. (5) [1997Da07], 25.7((7) MeV [1997Da07]) = 0.257(10)	=, $T_{1/2} = 28.5(6)$ ms $E_{daughter}($ 0.0 8) ms [2004Ke06], ar], and 1.248)7) MeV	**, $BR_p = 0.42(8)\%$. 166Os) coincid 	ent γ-rays	
* All value Table 12 direct p emisse $E_p(c.m.)$ 1.251(7) * All value ** Weight ** Weight Table 13 direct α emisse	ues from [2005Sc22] ion from 167m Ir*, Ex E_p (lab) 1.243(7)*** ues from [2005Sa22] tted average of 30.0(6 tted average of 1.238 sion from 167m Ir, Ex =	$= 175.3(22) \text{ keV, } J^{\pi}$ $I_p(abs)$ $0.42(8)\%$ $(1997Da07], 25.7(7) \text{ MeV } [1997Da07]$ $= 175.3(22) \text{ keV*, } J^{\pi}$	$=, T_{1/2} = 28.5(6) \text{ ms}$ $E_{daughter}($ 0.0 . 8) ms [2004Ke06], ar], and 1.248)7) MeV [$E =, T_{1/2} = 28.5(6) \text{ ms}$	**, $BR_p = 0.42(8)\%$. (166 Os) coincid (166 Os) coincid (167	ent γ-rays].	
* All value Table 12 direct p emisse $E_p(c.m.)$ 1.251(7) * All value ** Weight ** Weight Table 13 direct α emisse $E_{\alpha}(c.m.)$	ues from [2005Sc22] ion from ^{167m} Ir*, Ex E_p (lab) 1.243(7)*** ues from [2005Sa22] tted average of 30.0((tted average of 1.238 sion from ^{167m} Ir, Ex = E_{α} (lab)	$= 175.3(22) \text{ keV, } J^{\pi}$ $I_p(abs)$ $0.42(8)\%$ (a) (1997Da07], 25.7((7) MeV [1997Da07]), 25.7((7) MeV [1907 Me	$=, T_{1/2} = 28.5(6) \text{ ms}$ $E_{daughter}($ 0.0 . 8) ms [2004Ke06], ar], and 1.248)7) MeV [$\overline{F} =, T_{1/2} = 28.5(6) \text{ m}$ J_f^{π}	**, $BR_p = 0.42(8)\%$. (166Os) coincid (107) (166Os) coincid (107) (167) (ent γ-rays]. coincident γ-rays	
* All value Table 12 direct p emisse $E_p(c.m.)$ 1.251(7) * All value ** Weight ** Weight Table 13 direct α emisses $E_{\alpha}(c.m.)$ 6.556(3)	ues from [2005Sc22] ion from ^{167m} Ir*, Ex E_p (lab) 1.243(7)*** ues from [2005Sa22] nted average of 30.0(6 nted average of 1.238 sion from ^{167m} Ir, Ex = E_{α} (lab) 6.399(3)***	$= 175.3(22) \text{ keV, } J^{\pi}$ $I_p(abs)$ $0.42(8)\%$ (a) except where noted. (b) [1997Da07], 25.7((c) MeV [1907Da07], 25.7(($=, T_{1/2} = 28.5(6) \text{ ms}$ $E_{daughter}($ 0.0 . 8) ms [2004Ke06], ar], and 1.248)7) MeV [$\frac{1}{2} =, T_{1/2} = 28.5(6) \text{ ms}$ J_f^{π} 0.1151(40)	**, $BR_p = 0.42(8)\%$. (166 Os) coincid (104 28.7(33) ms [2005Sc22] (2005Sc22]. (2005Sc22]. (2005Sc22]. (2005Sc22]. (2005Sc22]. (2005Sc22]. (2005Sc22]. (2005Sc22].	ent γ-rays]. coincident γ-rays	
* All value Table 12 direct p emisse $E_p(c.m.)$ 1.251(7) * All value ** Weight Table 13 direct α emisse $E_{\alpha}(c.m.)$ 6.556(3) * [1997D ** Weight ** Weight	tion from $[2005Sc22]$ $E_p(lab)$ $1.243(7)^{***}$ $E_p(lab)$ $1.243(7)^{***}$ $1.238(7)^{*}$ 1.238(7)	$= 175.3(22) \text{ keV, } J^{\pi}$ $I_p(abs)$ $0.42(8)\%$ $(7) \text{ kevept where noted}$ $I = 175.3(22) \text{ keV*, } J^{\pi}$ $I_{\alpha}(abs)$ $90(3)\%$ $(1997\text{Da07], 25.7(3)$ $(7) \text{ MeV } [1997\text{Da07], 25.7(3)}$ $(7) \text{ MeV } [1997\text{Da07], 25.7(3)}$ $(7) \text{ MeV } [1997\text{Da07], 25.7(3)}$	$=, T_{1/2} = 28.5(6) \text{ ms}$ $E_{daughter}($ 0.0 8) ms [2004Ke06], ar], and 1.248)7) MeV [$=, T_{1/2} = 28.5(6) \text{ m}$ J_{f}^{π} 0.1151(40) 5.7(8) ms [2004Ke06] 7] and 6.394(2) MeV	**, $BR_p = 0.42(8)\%$. (166Os) coincid (166Os) coincid (166Os) coincid (166Os) coincid (166Os) coincid (166Os) coincid (166Os) coincid (2005Sc22]. (200	ent γ-rays]. coincident γ-rays c22].	
* All value Table 12 direct p emisse $E_p(c.m.)$ 1.251(7) * All value ** Weight Table 13 direct α emisse $E_{\alpha}(c.m.)$ 6.556(3) * [1997D ** Weight *** Wei	tion from $[2005Sc22]$ ion from 167m Ir*, Ex $E_p(lab)$ 1.243(7)*** ues from $[2005Sa22]$ nted average of 30.0(6 nted average of 1.238 sion from 167m Ir, Ex = $E_{\alpha}(lab)$ 6.399(3)*** Da07]. nted average of 30.0(6 5Sc22]. ghted average of 6.41 sion from 171 Au*, J ^π	$= 175.3(22) \text{ keV, } J^{\pi}$ $I_p(abs)$ $0.42(8)\%$ $(1997Da07], 25.7(7) \text{ MeV } [1997Da07]$ $= 175.3(22) \text{ keV*, } J^{\pi}$ $I_{\alpha}(abs)$ $90(3)\%$ $(1997Da07], 22$ $(3) \text{ MeV } [1997Da07], 22$ $(3) \text{ MeV } [1997Da07]$	$=, T_{1/2} = 28.5(6) \text{ ms}$ $E_{daughter}($ 0.0 . 8) ms [2004Ke06], ar], and 1.248)7) MeV [$=, T_{1/2} = 28.5(6) \text{ m}$ J_f^{π} 0.1151(40) 5.7(8) ms [2004Ke06] 7] and 6.394(2) MeV $BR_p = 100\%.$	**, $BR_p = 0.42(8)\%$. (166Os) coincid (107) (166Os) coincid (107) (167) (ent γ-rays]. coincident γ-rays c22].	
* All value Table 12 direct p emisss $E_p(c.m.)$ 1.251(7) * All value ** Weight Table 13 direct α emisse $E_{\alpha}(c.m.)$ 6.556(3) * [1997D ** Weight *** Wei	ues from [2005Sc22] ion from ^{167m} Ir*, Ex E_p (lab) 1.243(7)*** ues from [2005Sa22] tted average of 30.0((tted average of 1.238 sion from ^{167m} Ir, Ex = E_{α} (lab) 6.399(3)*** Da07]. tted average of 30.0((5Sc22]. ghted average of 6.41 ion from ¹⁷¹ Au*, J ^π E_p (lab)	$= 175.3(22) \text{ keV, } J^{\pi}$ $I_p(abs)$ $0.42(8)\%$ $(1997Da07], 25.7(7) \text{ MeV } [1997Da07], 25.7(7) $	$=, T_{1/2} = 28.5(6) \text{ ms}$ $E_{daughter}($ 0.0 . 8) ms [2004Ke06], ar], and 1.248)7) MeV [$=, T_{1/2} = 28.5(6) \text{ m}$ J_f^{π} 0.1151(40) 5.7(8) ms [2004Ke06] 7] and 6.394(2) MeV $BR_p = 100\%.$ $E_{daughter}(^{170}$	**, $BR_p = 0.42(8)\%$. (166 Os) coincid (106 Os) coincid (107 Os) coincid (108 Os) coincide (108 Os) coincide (108 Os) coinciden (108 Os) coinciden (108 Os) coinciden (108 Os) coinciden	ent γ-rays]. coincident γ-rays c22]. t γ-rays	

* All values from [2004Ke06], except where noted. ** Weighted average of 1.437(12) MeV [2004Ke06] and 1.444(17) MeV [1999Po09].

direct p emission from ^{171m} Au, Ex = 258(13) keV*, J^{π} = , $T_{1/2}$ = 1.09(3) ms*, BR_p = 40(4)%**.									
$E_p(c.m.)$	$E_p(lab)$	$I_p(abs)$	$E_{daughter}(^{170}\mathrm{Pt})$	coincident γ-rays					
1.703(6)	1.693(6)***	40(4)%	0.0						
* [2004Ka ** Weight *** Weight Table 16 direct α emiss	e06]. ted average of 34(4)% [hted average of 1.694(6 ion from ^{171m} Au*, Ex =	2004Ke06], and 46() MeV [2004Ke06], = 258(13) keV, J ^π = ,	4)% [1997Da07]. and 1.692(6) MeV [1999P $T_{1/2} = 1.09(3) \text{ ms}, BR_{\alpha} = 0$	50(4)%**.					
$E_{\alpha}(\text{c.m.})$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(abs)$	$\mathbf{J}_{f}^{\pi} = E_{dat}$	$g_{hter}(^{167m}\mathrm{Ir})$ coincident γ -rays	s				

7.162(4) 6.995(4) 60(4)% 0.1753(22)

* [2004Ke06].

** Weighted average from [2004Ke06] BR_{α} = 66(4)% and [1997Da07]. BR_{α} = 54(4) %.

References used in the Tables

- [1] 1968Se05 H. Sergolle, Compt. Rend. 266B, 633 (1968).
- [2] 1969La33 I. M. Ladenbauer-Bellis, H. Bakhru, A. Luzzati, Phys. Rev. 187, 1739 (1969). https://doi.org/10.1103/PhysRev.187.1739
- [3] 1979Ho10 S. Hofmann, W. Faust, G. Munzenberg, W. Reisdorf, P. Armbruster, K. Guttner, H. Ewald, Z. Phys. A291, 53 (1979). https://doi.org/10.1007/BF01415817
- [4] 1981Ho10 S. Hofmann, G. Munzenberg, F. Hessberger, W. Reisdorf, P. Armbruster, B. Thuma, Z. Phys. A 299, 281 (1981). https://doi.org/10.1007/BF01443948
- [5] 1981HoZM S. Hofmann, G. Munzenberg, W. Faust, F. Hessberger, W. Reisdorf, J. R. H. Schneider, P. Armbruster, K. Guttner, B. Thuma, Proc. Int. Conf. Nuclei Far from Stability, Helsingor, Denmark, Vol. 1, p. 190 (1981); CERN-81-09 (1981).
- [6] 1982No08 E. Nolte, S. Z. Gui, G. Colombo, G. Korschinek, K. Eskola, Z. Phys. A 306, 223 (1982). https://doi.org/10.1007/BF01415124
- [7] 1983AkZZ A. A. Akhmonen, V. D. Vitman, F. V. Moroz, S. Yu. Orlov, V. K. Tarasov, Program and Theses, Proc. 33rd Ann. Conf. Nucl. Spectrosc. Struct. At. Nuclei, Moscow, p. 88 (1983).
- [8] 1984Gr14 K. Ya. Gromov, ATOMKI Kozlem. 26, 43 (1984).
- [9] 1986De35 J. Deslauriers, S. Gujrathi, S. K. Mark, S. P. Sud, Z. Phys. A 325, 421 (1986).
- [10] 1986Re11 N. Redon, T. Ollivier, R. Beraud, A. Charvet, R. Duffait, A. Emsallem, J. Honkanen, M. Meyer, J. Genevey, A. Gizon, N. Idrissi, Z. Phys. A 325, 127 (1986).
- [11] 1988Ba02 R. Barden, A. Plochocki, D. Schardt, B. Rubio, M. Ogawa, P. Kleinheinz, R. Kirchner, O. Klepper, J. Blomqvist, Z. Phys. A 329, 11 (1988).
- [12] 1989Ho12 S. Hofmann, P. Armbruster, G. Berthes, T. Faestermann, A. Gillitzer, F. P. Hessberger, W. Kurcewicz, G. Munzenberg, K. Poppensieker, H. J. Schott, I. Zychor, Z. Phys. A333, 107 (1989).
- [13] 1989HoZX S. Hofmann, P. Armbruster, G. Berthes, T. Faestermann, A. Gillitzer, F. P. Hessberger, W. Kurcewicz, G. Munzenberg, K. Poppensieker, H. J. Schott, I. Zychor, GSI-89-1, p. 30 (1989).
- [14] 1989K007 M. O. Kortelahti, H. K. Carter, R. A. Braga, R. W. Fink, B. D. Kern, Z. Phys. A 332, 229 (1989).
- [15] 1990AbZW V. N. Abrosimov, A. T. Vasilenko, V. G. Kalinnikov, E. Krupa, V. A. Morozov, V. O. Sidorova, K. Pyshnyak, E. N. Khudaiberdiev, P. Chaloun, JINR-P6-90-231 (1990).
- [16] 1991To09 K. S. Toth, K. S. Vierinen, J. M. Nitschke, P. A. Wilmarth, R. M. Chasteler, Z. Phys. A 340, 343 (1991). https://doi.org/10.1007/BF01294685
- [17] 1992Ic02 S. -I. Ichikawa, T. Sekine, M. Oshima, H. Iimura, Y. Nakahara, Nucl. Instrum. Methods Phys. Res. B70, 93 (1992). https://doi.org/10.1016/0168-583X(92)95915-E

- [18] 1993Al03 G. D. Alkhazov, L. H. Batist, A. A. Bykov, F. V. Moroz, S. Yu. Orlov, V. K. Tarasov, V. D. Wittmann, Z. Phys. A344, 425 (1993). https://doi.org/10.1007/BF01283198
- [19] 1993Li34 K. Livingston, P. J. Woods, T. Davinson, N. J. Davis, S. Hofmann, A. N. James, R. D. Page, P. J. Sellin, A. C. Shotter, Phys. Rev. C48, R2151 (1993). https://doi.org/10.1103/PhysRevC.48.R2151
- [20] 1993ToZX K. S. Toth, J. M. Nitschke, D. C. Sousa, K. S. Vierinen, P. A. Wilmarth, Proc. 6th Intern. Conf. on Nuclei Far from Stability + 9th Intern. Conf. on Atomic Masses and Fundamental Constants, Bernkastel-Kues, Germany, 19-24 July, 1992, R. Neugart, A. Wohr, Eds., p. 703 (1993).
- [21] 1995DaZX C. N. Davids, P. J. Woods, J. C. Batchelder, C. R. Bingham, D. J. Blumenthal, L. T. Brown, B. C. Busse, L. F. Conticchio, T. Davinson, S. J. Freeman, M. Freer, D. J. Henderson, R. J. Irvine, R. D. Page, H. T. Penttila, A. V. Ramayya, D. Seweryniak, K. S. Toth, W. B. Walters, A. H. Wuosmaa, B. E. Zimmerman, Proc. Intern. Conf on Exotic Nuclei and Atomic Masses, Arles, France, June 19-23, 1995, p. 263 (1995).
- [22] 1996Pa01 R. D. Page, P. J. Wood, R. A. Cunningham, T. Davinson, N. J. Davis, A. N. James, K. Livingston, P. J. Sellin, A. C. Shotter, Phys. Rev. C53, 660 (1996). https://doi.org/10.1103/PhysRevC.53.660
- [23] 1997Da07 C. N. Davids, P. J. Woods, J. C. Batchelder, C. R. Bingham, D. J. Blumenthal, L. T. Brown, B. C. Busse, L. F. Conticchio, T. Davinson, S. J. Freeman, D. J. Henderson, R. J. Irvine, R. D. Page, H. T. Penttila, D. Seweryniak, K. S. Toth, W. B. Walters, B. E. Zimmerman, Phys. Rev. C55, 2255 (1997). https://doi.org/10.1103/PhysRevC.55.2255
- [24] 1998DiZY K. Y. Ding, D. Seweryniak, J. A. Cizewski, H. Amro, L. T. Brown, M. P. Carpenter, C. N. Davids, N. Fotiades, G. Hackman, R. V. F. Janssens, T. Lauritsen, C. J. Lister, A. O. Macchiavelli, D. Nisius, P. Reiter, S. Siem, J. Uusitalo, I. Wiedenhover, Contrib. Nuclear Structure '98, Gatlinburg, p.28 (1998).
- [25] 1999Po09 G. L. Poli, C. N. Davids, P. J. Woods, D. Seweryniak, J. C. Batchelder, L. T. Brown, C. R. Bingham, M. P. Carpenter, L. F. Conticchio, T. Davinson, J. DeBoer, S. Hamada, D. J. Henderson, R. J. Irvine, R. V. F. Janssens, H. J. Maier, L. Muller, F. Soramel, K. S. Toth, W. B. Walters, J. Wauters, Phys. Rev. C 59, R2979 (1999). https://doi.org/10.1103/PhysRevC.59.R2979
- [26] 2001Ke05 H. Kettunen, P. T. Greenlees, K. Helariutta, P. Jones, R. Julin, S. Juutinen, P. Kuusiniemi, M. Leino, M. Muikku, P. Nieminen, J. Uusitalo, Acta Phys. Pol. B32, 989 (2001).
- [27] 2002Ro17 M. W. Rowe, J. C. Batchelder, T. N. Ginter, K. E. Gregorich, F. Q. Guo, F. P. Hessberger, V. Ninov, J. Powell, K. S. Toth, X. J. Xu, J. Cerny, Phys. Rev. C 65, 054310 (2002). https://doi.org/10.1103/PhysRevC.65.054310
- [28] 2003Bb21 T. Back, B. Cederwall, K. Lagergren, R. Wyss, A. Johnson, D. Karlgren, P. Greenlees, D. Jenkins, P. Jones, D. T. Joss, R. Julin, S. Juutinen, A. Keenan, H. Kettunen, P. Kuusiniemi, M. Leino, A. -P. Leppanen, M. Muikku, P. Nieminen, J. Pakarinen, P. Rahkila, J. Uusitalo, Eur. Phys. J. A 16, 489 (2003). https://doi.org/10.1140/epja/i2002-10108-7
- [29] 2004Ke06 H. Kettunen, T. Enqvist, T. Grahn, P. T. Greenlees, P. Jones, R. Julin, S. Juutinen, A. Keenan, P. Kuusiniemi, M. Leino, A. -P. Leppanen, P. Nieminen, J. Pakarinen, P. Rahkila, J. Uusitalo, Phys. Rev. C 69, 054323 (2004). https://doi.org/10.1103/PhysRevC.69.054323
- [30] 2005Sc22 C. Scholey, M. Sandzelius, S. Eeckhaudt, T. Grahn, P. T. Greenlees, P. Jones, R. Julin, S. Juutinen, M. Leino, A. -P. Leppanen, P. Nieminen, M. Nyman, J. Perkowski, J. Pakarinen, P. Rahkila, P. M. Rahkila, J. Uusitalo, K. Van de Vel, B. Cederwall, B. Hadinia, K. Lagergren, D. T. Joss, D. E. Appelbe, C. J. Barton, J. Simpson, D. D. Warner, I. G. Darby, R. D. Page, E. S. Paul, D. Wiseman, J. Phys. (London) G 31, S1719 (2005). https://doi.org/10.1088/0954-3899/31/10/061
- [31] 2016Ca42 R. J. Carroll, B. Hadinia, C. Qi, D. T. Joss, R. D. Page, J. Uusitalo, K. Andgren, B. Cederwall, I. G. Darby, S. Eeckhaudt, T. Grahn, C. Gray-Jones, P. T. Greenlees, P. M. Jones, R. Julin, S. Juutinen, M. Leino, A. -P. Leppanen, M. Nyman, J. Pakarinen, P. Rahkila, M. Sandzelius, J. Saren, C. Scholey, D. Seweryniak, J. Simpson, Phys. Rev. C 94, 064311 (2016). https://doi.org/10.1103/PhysRevC.94.064311
- [32] 2018Pa37 E Parr, R D Page, D T Joss, F A Ali, K Auranen, L Capponi, T Grahn, P T Greenlees, J Henderson, A Herzan, U Jakobsson, R Julin, S Juutinen, J Konki, M Labiche, M Leino, P J R Mason, C McPeake, D O'Donnell, J Pakarinen, P Papadakis, J Partanen, P Peura, P Rahkila, J P Revill, P Ruotsalainen, M Sandzelius, J Saren, C Scholey, J Simpson, J F Smith, M Smolen, J Sorri, S Stolze, A Thornthwaite, J Uusitalo, Phys Rev C 98, 024321 (2018). https://doi.org/10.1103/PhysRevC.98.024321
- [33] 2021Wa16 M. Wang, W. J. Huang, F. G. Kondev, G. Audi, S. Naimi, Chin. Phys. C 45, 030003 (2021). https://doi.org/ 10.1088/1674-1137/abddaf