

Fig. 1: Known experimental values for heavy particle emission of the odd-Z T_z = +1/2 nuclei.

Last updated 3/22/23

Table 1

Observed and predicted β -delayed particle emission from the odd-*Z*, $T_z = +11/2$ nuclei. Unless otherwise stated, all Q-values are taken from [2021Wa16] or deduced from values therein. J^{π} values for ¹¹³Sb, ¹¹⁷I ¹²¹Cs, ¹²⁵La, ¹¹⁹Pr, ¹³³Pm, ¹³⁷Eu, ¹⁴¹Tb, ¹⁴⁵Ho, ¹⁴⁹Tm are taken from ENSDF.

Nuclide	Ex	J^{π}	$T_{1/2}$	Qε	Q_{ε_P}	$BR_{\beta p}$	$Q_{\epsilon_{2p}}$	$Q_{\mathcal{E} \alpha}$	Experimental
¹¹³ Sb		5/2+	6.67(7) m	3.911(17)	-3.716(18)		-9.743(17)	1.662(17)	[1976Wi10]
^{117}I		$(5/2^+)$	22.2(4) m	4.657(28)	-0.906(26)		-4.983(26)	5.465(26)	[1985Le10]
¹²¹ Cs		3/2+	155(4) s	5.379(14)	-0.644(21)		-4.498(16)	5.568(20)	[1991Ge02]
¹²⁵ La		$(3/2^+)$	64.8(12) s	5,909(28)	0.693(28)		-3.089(28)	6.297(28)	[1992Ic02]
¹²⁹ Pr		$(3/2^+)$		6.510(40)	1.563(62)		-1.534(32)	7.470(32)	
¹³³ Pm		(3/2+)	13.5(3) s*	6.920(70)	2.531(58)		-0.277(60)	8.455(58)	[1995Br21, 1977Bo02]
¹³⁷ Eu		$(11/2^{-})$	11(2) s	7.846(29)	3.735(69)		1.490(20)	9.762(47)	[1982No15]
¹⁴¹ Tb		$(5/2^{-})$	3.5(2) s	8.68(11)	5.16(12)		3.26(11)	11.03(11)	[1989Gi06]
¹⁴⁵ Ho		$(11/2^{-})$	2.4(1) s	9.122(10)	5.959(29)		4.53(20)	11.679(21)	[1989Vi02]
¹⁴⁹ Tm		$(11/2^{-})$	0.9(2) s	9.80(20)#	6.76(22)#	obs	5.68(20)#	11.88(20)#	[1987To12]
¹⁵³ Lu		11/2-	0.9(2) s	8.78(25)#	6.06(14)#		5.31(15)#	12.94(15)#	[1989Ni04]
¹⁵⁷ Ta		$1/2^{+}$	10.1(4) ms	9.26(25)#	6.82(14)#		6.33(15)#	15.14(25)#	[1997Ir01]
^{157m1} Ta	0.022(5)	$11/2^{-}$	4.3(1) ms	9.28(25)#	6.84(14)#		6.35(15)#	15.16(25)#	[1996Pa01, 1997Ir01]
^{157m2} Ta	1.589(10)	$(25/2^{-})$	1.7(1) ms	10.85(25)#	8.41(14)#		7.92(15)#	16.73(25)#	[1996Pa01]
¹⁶¹ Re		1/2+	0.44(1) ms	9.66(25)#	7.69(14)#		7.43(15)#	15.59(25)#	[1997Ir01]
^{161m} Re	0.1238(13)	11/2-	14.8(3) ms	9.78(25)#	7.81(14)#		7.55(15)#	15.71(28)#	[2006La16]
¹⁶⁵ Ir		$(1/2^+)$		10.15(26)#	8.59(15)#		8.74(17)#	16.49(26)#	
165mIr	0.18(5)	$(11/2^{-})$	340(40) µs	10.33(26)#	8.77(15)#		8.92(17)#	16.67(26)#	[2014Dr02]
¹⁶⁹ Au		. /	<5 µs	10.68(36)#	9.59(30)#		10.13(31)#	17.53(36)#	[2019Uu01]

* Weighted average of 15(3) s [1995Br21] and 12(3) s [1977Bo02].

Table 2

Particle emission from the odd-Z, $T_z = +11/2$ nuclei. Unless otherwise stated, all Q-values and separation energies are taken from [2021Wa16] or deduced from values therein.

Nuclide	S_p	BR_p	S_{2p}	Qα	BR_{α}	Experimental
112 01	2.051(15)		10 (00 (10)	0.050(10)		
115Sb	3.051(17)		10.603(18)	-0.352(18)		
117I	2.464(35)		8.013(30)	1.553(31)		
¹²¹ Cs	2.219(19)		7.903(26)	0.911(29)		
¹²⁵ La	1.959(29)		7.294(29)	0.918(30)		
¹²⁹ Pr	1.529(41)		6.455(40)	1.561(40)		
¹³³ Pm	1.271(56)		5.685(69)	1.941(58)		
¹³⁷ Eu	0.624(13)		4.662(83)	2.837(50)		
¹⁴¹ Tb	0.05(11)		3.72(11)	3.18(11)		
¹⁴⁵ Ho	-0.161(10)		3.279(52)	3.00(11)		
¹⁴⁹ Tm	-0.25(20)#		2.76(20)#	2.76(20)#		
¹⁵³ Lu	-0.606(10)		2.18(15)	3.14(25)#		
¹⁵⁷ Ta	-0.935(10)	3.4(12) %	1.63(15)	6.355(6)	96.6(12)%	[1997Ir01 , 1996Pa01]
^{157m1} Ta	-0.957(11)		1.41(16)	6.377(8)	$95^{+5}_{-12}\%$	[1997Ir01, 1996Pa01, 1981HoZM, 1979Ho10]
^{157m2} Ta	-2.524(140)		0.04(18)	7.944(12)	100%	[1996Pa01]
¹⁶¹ Re	-1.197(5)	100%	0.98(15)	6.328(7)		1997Ir01 , 2006La16, 1996Pa01, 2011Sa59,
						2001Ke05, 1979Ho10]
^{161m} Re	-1.300(14)	7.0(3) %	0.86(15)	6.162(15)	93.0(3)%	2006La16, 1997Ir01, 1996Pa01, 2011Sa59,
						2001Ke05, 1995DeZY, 1981HoZM, 1979Ho10]
¹⁶⁵ Ir	-1.541(50)#		0.17(16)#	6.823(50)#		· · · •
165mIr	-1.721(71)#	88(2)%	-0.10(17)#	7.003(71)#	12(2)%	[2014Dr02, 1997Da07]
¹⁶⁹ Au	-1.93(33)#	$\approx 100\%$	-0.71(30)#	7.382(34)#		[2019Uu01]

Table 3

direct p emission	n from ¹⁵⁷ Ta*, $J^{\pi} = 1/2^+$	$T_{1/2} = 10.1(4) \text{ ms}, BR_p$, = 3.4(12) %.			
$E_p(\text{c.m.})$	$E_p(\text{lab})$	<i>I</i> _p (absb)	${\sf J}_f^{\pi}$	$E_{daughter}(^{156}\mathrm{Hf})$	coincident γ-rays	
0.933(7)	0.927(7)	3.4(12)%	0^+	0.0		

* All values from [1997Ir01], except where noted.

Table 4

direct α emis	ssion from ¹⁵⁷ Ta*,	$J^{\pi} = 1/2^+, T_{1/2}$	= 10.1(4) ms,	$BR_{\alpha} = 96.6(12)$ %.			
$E_{\alpha}(c.m.)$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(abs)$	$\mathbf{J}_f^{m{\pi}}$	$E_{daughter}(^{153}Lu)$	coincident γ-rays	R ₀ (fm)	HF
6.277(4)	6.117(4)	96.6(12)%	1/2+	80(5)	?	1.5551(66)	$0.73\substack{+0.11 \\ -0.10}$
* All val	lues from [1997Ir0)1].					
Table 5 direct α emission	ssion from ^{157m1} Ta	[*] , Ex = 22(5) ke	$V^{**}, J^{\pi} = (11)$	$(2^{-}), T_{1/2} = 4.3(1) \text{ ms}, B$	$R_{\alpha} = 95^{+5}_{-12}\%.$		
$E_{\alpha}(c.m.)$	$E_{\alpha}(lab)$	$I_{\alpha}(abs)$	${\sf J}_f^\pi$	<i>E</i> _{daughter} (¹⁵³ Lu)	coincident γ-rays	R ₀ (fm)	HF
6.375(4)	6.213(4)	$95^{+5}_{-12}\%$	11/2-	0.0		1.5551(66)	$1.56\substack{+0.23\\-0.20}$
* All oth ** [1997	ner values from [19 7Ir01]	996Pa01], except	where noted.				
Table 6 direct α emis	ssion from ^{157m2} Ta	u*, Ex = 1.589(10)) MeV, $J^{\pi} = (2)$	25/2 ⁻), $T_{1/2} = 1.7(1)$ ms	$, BR_{\alpha} = 100\%.$		
$E_{\alpha}(\text{c.m.})$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(abs)$	J_f^π	$E_{daughter}(^{153}Lu)$	coincident γ -rays	R ₀ (fm)	HF
7.946(8)	7.744(8)	100%	11/2-	0.0		1.5551(66)	2.07(29)×10 ⁴
* All val	lues from [1996Pa	01].					
Table 7 direct p emiss	sion from ¹⁶¹ Re*,	$J^{\pi} = 1/2^+, T_{1/2}$	= 0.44(1) ms,	$BR_p = 100 \%.$			
$E_p(\text{c.m.})$	$E_{\alpha}(\operatorname{lat}$))	$I_p(abs)$	${ m J}_f^{\pi}$	$E_{daughter}(^{160}W)$	coincide	nt γ-rays
1.199(6)	1.192((6)	100%	0+	0.0		
* All val	lues from [1997Ir0)1].					
Table 8 direct p emiss	sion from ^{161m} Re*	^c , Ex = 123.8(13)	keV**, $J^{\pi} = 1$	$1/2^+$, $T_{1/2} = 14.8(3)$ ms,	$BR_p = 7.0(3) \%.$		
$E_p(\text{c.m.})$	$E_p(\text{lab})$)	<i>I_p</i> (abs)	${ m J}_f^{\pi}$	$E_{daughter}(^{160}W)$	coincide	ent γ-rays
1.199(2)	1.192(2	2)**	7.0(3)%	0+	0.0		
* All val ** [1997	lues from [2006La 7Ir01].	16], except wher	e noted.				
Table 9 direct α emission	ssion from ^{161m} Re	*, Ex = 123.8(13) keV**, $J^{\pi} = 1$	$11/2^-$, $T_{1/2} = 14.8(3)$ ms	$BR_{\alpha} = 93.0(3) \%.$		
$E_{\alpha}(\text{c.m.})$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(abs)$	J_f^π	$E_{daughter}(^{157}\mathrm{Ta})$	coincident γ -rays	R ₀ (fm)	HF
6.429(6)	6.269(6)***	93.0(3)%	11/2-	0.022		1.5580(46)	1.30(13)

* All values from [2006La16], except where noted. ** [1997Ir01]. *** Weighted average of 6.265(6) MeV [1996Pa01], and 6.272(6) MeV [2006Pa01].

Table	10
Lank	· IV

$E_p(c.m.)$	$E_p(\text{lab})$	$I_p(abs)$	\mathbf{J}_{j}^{π}	E Edaughter	(¹⁶⁴ Os) coinciden	t γ-rays	
1.733(7)	1.707(7)**	88(2)%	* 0	+ 0.0			
* [2014]	Dr02]						
** [1997	Da07]						
Fable 11 lirect α emis	Da07] sion from ^{165m} Ir, Ex	= 180(50) keV*,	$J^{\pi} = (11/2^{-}), T$	$\Gamma_{1/2} = 340(40) \ \mu s^*, B$	$R_{\alpha} = 12(2)\%^*.$		
Fable 11 lirect α emis $\overline{c_{\alpha}}(c.m.)$	Da07] sion from 165m Ir, Ex E_{α} (lab)	= 180(50) keV*, $I_{\alpha}(abs)$	$J^{\pi} = (11/2^{-}), T$ J_{f}^{π}	$\Gamma_{1/2} = 340(40) \ \mu s^*, B$ $E_{daughter}(^{161} \text{Re})$	$R_{\alpha} = 12(2)\%^*.$ coincident γ -rays	R ₀ (fm)	HF

direct p emission from ^{165m}Ir, Ex = 180(50) keV*, $J^{\pi} = 11/2^{-}$, $T_{1/2} = 340(40) \ \mu s^{*}$, $BR_{p} = 88(2)\%^{*}$.

* [2014Dr02]

** [1997Da07]

References used in the Tables

- [1] 1976Wi10 M. E. J. Wigmans, R. J. Heynis, P. M. A. van der Kam, H. Verheul, Phys. Rev. C14, 229 (1976). https://doi.org/10.1103/PhysRevC.14.229
- [2] 1977Bo02 D. D. Bogdanov, A. V. Demyanov, V. A. Karnaukhov, L. A. Petrov, A. Plochocki, V. G. Subbotin, J. Voboril, Nucl. Phys. A275, 229 (1977). https://doi.org/10.1016/0375-9474(77)90285-8
- [3] 1979Ho10 S. Hofmann, W. Faust, G. Munzenberg, W. Reisdorf, P. Armbruster, K. Guttner, H. Ewald, Z. Phys. A291, 53 (1979). https://doi.org/10.1007/BF01415817
- [4] 1981HoZM S. Hofmann, G. Munzenberg, W. Faust, F. Hessberger, W. Reisdorf, J. R. H. Schneider, P. Armbruster, K. Guttner, B. Thuma, Proc. Int. Conf. Nuclei Far from Stability, Helsingor, Denmark, Vol. 1, p. 190 (1981); CERN-81-09 (1981).
- [5] 1982No15 M. Nowicki, D. D. Bogdanov, A. A. Demyanov, Z. Stachura, Acta Phys. Pol. B13, 879 (1982).
- [6] 1985Le10 R. S. Lee, J. H. Hamilton, A. V. Ramayya, A. P. de Lima, D. L. Sastry, K. S. R. Sastry, E. H. Spejewski, R. L. Mlekodaj, H. K. Carter, W. -D. Schmidt-Ott, J. Lin, C. R. Bingham, L. L. Riedinger, E. F. Zganjar, J. L. Weil, B. D. Kern, A. C. Xenoulis, R. W. Fink, Sun Xi-jun, Guo Jun-sheng, Cho Chi-cheng, Pan Zong-you, Guo Ying-xian, Phys. Rev. C32, 277 (1985). https://doi.org/10.1103/PhysRevC.32.277
- [7] 1987To12 K. S. Toth, J. Gilat, J. M. Nitschke, P. A. Wilmarth, K. Vierinen, F. T. Avignone III, Phys. Rev. C36, 826 (1987). https://doi.org/10.1103/PhysRevC.36.826
- [8] 1989Gi06 J. Gilat, J. M. Nitschke, P. A. Wilmarth, R. B. Firestone, Phys. Rev. C40, 2249 (1989). https://doi.org/10.1103/PhysRevC.40.2249
- [9] 1989Ni04 J. M. Nitschke, K. S. Toth, K. S. Vierinen, P. A. Wilmarth, R. M. Chasteler, Z. Phys. A334, 111 (1989).
- [10] 1989Vi02 K. S. Vierinen, J. M. Nitschke, P. A. Wilmarth, R. M. Chasteler, A. A. Shihab-Eldin, R. B. Firestone, K. S. Toth, Y. A. Akovali, Phys. Rev. C39, 1972 (1989). https://doi.org/10.1103/PhysRevC.39.1972
- [11] 1991Ge02 J. Genevey, A. Gizon, G. Marguier, C. Richard-Serre, A. Knipper, P. Paris, C. F. Liang, B. Weiss, and the ISOLDE and ISOCELE Collaborations, Z. Phys. A338, 405 (1991). https://doi.org/10.1007/BF01295768
- [12] 1992Ic02 S. -I. Ichikawa, T. Sekine, M. Oshima, H. Iimura, Y. Nakahara, Nucl. Instrum. Methods Phys. Res. B70, 93 (1992). https://doi.org/10.1016/0168-583X(92)95915-E
- [13] 1995Br21 J. B. Breitenbach, J. L. Wood, M. Jarrio, R. A. Braga, J. Kormicki, P. B. Semmes, Nucl. Phys. A592, 194 (1995). https://doi.org/10.1016/0375-9474(95)00188-7
- [14] **1995DeZY** E. Dermendzhiev, JINR-P3-95-469 (1995).
- [15] 1996Pa01 R. D. Page, P. J. Wood, R. A. Cunningham, T. Davinson, N. J. Davis, A. N. James, K. Livingston, P. J. Sellin, A. C. Shotter, Phys. Rev. C53, 660 (1996). https://doi.org/10.1103/PhysRevC.53.660
- [16] 1997Da07 C. N. Davids, P. J. Woods, J. C. Batchelder, C. R. Bingham, D. J. Blumenthal, L. T. Brown, B. C. Busse, L. F. Conticchio, T. Davinson, S. J. Freeman, D. J. Henderson, R. J. Irvine, R. D. Page, H. T. Penttila, D. Seweryniak, K. S. Toth, W. B. Walters, B. E. Zimmerman, Phys. Rev. C55, 2255 (1997). https://doi.org/10.1103/PhysRevC.55.2255

- [17] 1997Ir01 R. J. Irvine, C. N. Davids, P. J. Woods, D. J. Blumenthal, L. T. Brown, L. F. Conticchio, T. Davinson, D. J. Henderson, J. A. Mackenzie, H. T. Penttila, D. Seweryniak, W. B. Walters, Phys. Rev. C55, R1621 (1997). https://doi.org/10.1103/PhysRevC.55.R1621
- [18] 2001Ke05 H. Kettunen, P. T. Greenlees, K. Helariutta, P. Jones, R. Julin, S. Juutinen, P. Kuusiniemi, M. Leino, M. Muikku, P. Nieminen, J. Uusitalo, Acta Phys. Pol. B32, 989 (2001).
- [19] 2006La16 K. Lagergren, D. T. Joss, R. Wyss, B. Cederwall, C. J. Barton, S. Eeckhaudt, T. Grahn, P. T. Greenlees, B. Hadinia, P. M. Jones, R. Julin, S. Juutinen, D. Karlgren, H. Kettunen, M. Leino, A. -P. Leppanen, P. Nieminen, M. Nyman, R. D. Page, J. Pakarinen, E. S. Paul, P. Rahkila, C. Scholey, J. Simpson, J. Uusitalo, D. R. Wiseman, Phys. Rev. C 74, 024316 (2006). https://doi.org/10.1103/PhysRevC.74.024316
- [20] 2011Sa59 P. J. Sapple, R. D. Page, D. T. Joss, L. Bianco, T. Grahn, J. Pakarinen, J. Thomson, J. Simpson, D. O'Donnell, S. Erturk, P. T. Greenlees, U. Jakobsson, P. M. Jones, R. Julin, S. Juutinen, S. Ketelhut, M. Leino, M. Nyman, P. Peura, A. Puurunen, P. Rahkila, P. Ruotsalainen, J. Saren, C. Scholey, J. Uusitalo, Phys. Rev. C 84, 054303 (2011). https://doi.org/10.1103/PhysRevC.84.054303
- [21] 2014Dr02 M. C. Drummond, D. O'Donnell, R. D. Page, D. T. Joss, L. Capponi, D. M. Cox, I. G. Darby, L. Donosa, F. Filmer, T. Grahn, P. T. Greenlees, K. Hauschild, A. Herzan, U. Jakobsson, P. M. Jones, R. Julin, S. Juutinen, S. Ketelhut, M. Leino, A. Lopez-Martens, A. K. Mistry, P. Nieminen, P. Peura, P. Rahkila, S. Rinta-Antila, P. Ruotsalainen, M. Sandzelius, J. Saren, B. Saygi, C. Scholey, J. Simpson, J. Sorri, A. Thornthwaite, J. Uusitalo, Phys. Rev. C 89, 064309 (2014). https://doi.org/10.1103/PhysRevC.89.064309
- [22] 2019Uu01 J. Uusitalo, J. Saren, J. Partanen, J. Hilton, Acta Phys. Pol. B50, 319 (2019). https://doi.org/10.5506/aphyspolb.50.319
- [23] 2021Wa16 M. Wang, W. J. Huang, F. G. Kondev, G. Audi, S. Naimi, Chin. Phys. C 45, 030003 (2021). https://doi.org/ 10.1088/1674-1137/abddaf