

Fig. 1: Known experimental values for heavy particle emission of the odd-Z T_z = +10 nuclei.

Last updated 7/26/2023

Observed and predicted β -delayed particle emission from the odd-Z, $T_z = +10$ nuclei. Unless otherwise stated, all Q-values are taken from [2021Wa16] or deduc	ced
from values therein. J^{π} values for 134 La. 138 Pr. 142 Pm. 146 Eu. 150 Tb. 154 Ho. 158 Tm. 162 Lu. 166 Ta. 170 Re are taken from ENSDF.	

Nuclide	Ex	J^{π}	$T_{1/2}$	Qε	$Q_{\varepsilon p}$	$Q_{\varepsilon \alpha}$	BR_F	Experimental
134L a		1+	6 67(2) m	3 731(20)	-4 437(20)	2 237(20)		[1968Bi02]
138pr		1+	1.44(8) m	4437(10)	-3.277(10)	3 396(10)		[1906D102] [1971 Ju01]
¹⁴² Pm		1+	40.5(5) m	4.809(24)	-2.416(24)	3.999(24)		[1970Ar17]
¹⁴⁶ Eu		4-	4.62(4) d*	3.879(6)	-3.139(6)	6.408(6)		[1970Ch09, 1964Ta11]
¹⁵⁰ Tb		(2^{-})	3.48(16) h	4.658(8)	-1.953(8)	7.466(8)		[1973Vy01]
¹⁵⁴ Ho		2-	11.75(20 m	5.755(10)	-0.615(9)	8.700(10)		[1993Al03]
^{154m} Ho	0.239(28)**	8^+	2.80(13) m	5.994(30)	-0.376(29)	8.939(30)		[1993Al03]
¹⁵⁸ Tm		2^{-}	3.94(6) m	6.600(30)	0.841(34)	9.266(26)		[1993Al03]
¹⁶² Lu		1-	1.37(2) m	6.990(80)	1.778(80)	10.047(79)		[1983Ge08]
¹⁶⁶ Ta		$(2)^+$	34.4(5) s	7.760(40)	3.055(39)	11.298(32)		[1982Li17]
¹⁷⁰ Re		(5^+)	9.2(2) s	8.387(17)	4.097(30)	12.530(30)		[1992Me10]
¹⁷⁴ Ir		(3+)	7.8(6) s	9.209(15)	5.479(30)	14.080(17)		[1992Bo21]
174mIr	0.129(17)	(7^{+})	5.0(2) s***	9.338(23)	5.608(34)	14.209(24)		[2020Cu04, 1992Bo21, 1992Si16]
¹⁷⁸ Au		$(2^+, 3^-)$	3.4(5) s	9.694(14)	6.455(22)	15.267(14)		[2020Cu04]
^{178m} Au	0.189(14)	$(7^+, 8^-)$	2.7(5) s	9.883(20)	6.644(26)	15.456(20)		[2020Cu04]
¹⁸² Tl [@]		low spin	1.9(1) s	10.250(15)	7.255(23)	16.245(16)		[2016Va01]
¹⁸⁶ Bi ^{@@}		(3+)	14.8(8) ms	11.535(20)	9.323(27)	18.006(20)	0.022(13)% ^{@@@}	[2013La02, 2003An27]
^{186m} Bi ^{@@}	х	(10^{+})	9.8(4) ms	11.535(20)+x	9.323(27)+x	18.006(20)+x	0.022(13)% @@@	[2013La02, 2003An27]
¹⁹⁰ At [@]		low spin	$0.56^{+2.69}_{-0.16}$ ms	$11.756(24)^a$	$9.969(29)^a$	$17.237(29)^a$		[2023AnXX, 2023Ko10]
^{190m} At	Х	high spin	$1.2^{+1.3}_{-0.4}$ ms ^b	$11.756(24)+x^a$	$9.969(29) + x^a$	$17.237(29)+x^a$		[2023AnXX, 2023Ko10]

* Weighted average of 4.65(4) d [1970Ch09] and 4.59(4) d [1964Ta11].

** Based on α energies and the energy of the isomeric state in ¹⁵⁰Tb.

*** Weighted average of 5.0(4) s [1992Bo21], 4.9(3) s, 5.5(6) s [1992Si16].

[@] May not be the ground state.

What not be the ground state. ^(a) ^(a) ^(a) ^(a) ^(b) ^(b) ^(b) ^(c) ^(b) ^(c) ^(b) ^(c) ^(b) ^(c) taken from [2021Wa16]. ^b Weighted average of $2.67^{+3.65}_{-0.98}$ ms [2023AnXX] and $1.0^{+1.4}_{-0.4}$ ms [2023Ko10].

Particle separation, Q-values, and measured values for direct particle emission of the odd-Z, $T_z = +10$ nuclei. Unless otherwise stated, all S and Q-values are taken from [2021Wa16] or deduced from values therein.

Nuclide	S_p	S_{2p}	Qα	BR_{α}	Experimental
	,	,			*
¹³⁴ La	4.954(20)	12.644(20)	-0.744(22)		
¹³⁸ Pr	4.499(10)	11.669(54)	-0.335(22)		
¹⁴² Pm	4.239(24)	11.033(24)	-0.438(26)		
¹⁴⁶ Eu	3.755(6)	10.279(6)	1.599(24)		
¹⁵⁰ Tb	3.268(8)	9.386(12)	3.587(5)		
¹⁵⁴ Ho	2.785(9)	8.500(41)	4.041(4)	0.028(9)%	[1974Sc19, 1982To14, 1981ZuZU, 1981ZuZY, 1978AfZZ, 1974PeZS, 1974ToZQ, 1971To01, 1971ToZR, 1970ToZS, 1970ToZY, 1968Go13, 1967Ha34]
^{154m} Ho	2.546(29)	8.261(50)	4.280(28)	< 0.01%	[1974Sc19, 1971To01, 1968Go13]
¹⁵⁸ Tm	2.579(37)	7.743(46)	3.511(27)		
¹⁶² Lu	2.286(77)	7.109(82)	3.447(79)		
¹⁶⁶ Ta	1.751(40)	6.033(40)	4.309(80)		
¹⁷⁰ Re	1.275(19)	5.088(30)	4.769(30)		
¹⁷⁴ Ir	0.637(19)	3.797(37)	5.693(16)	$\approx 0.4\%$	[1992Sc16]
174m Ir	0.508(25)	3.668(41)	5.822(23)	2.5(3)%	[1992Si16, 1992MeZW, 1986Ke03, 1967Si02]
¹⁷⁸ Au	0.222(18)	2.999(13)	6.058(5)	16(1)%	[2020Cu04 , 2021Gi08, 1996Pa01, 1986Ke03, 1984Gr14, 1968Si01, 1965Si07]
^{178m} Au	0.033(23)	2.810(19)	6.247(15)	18(1)%	[2020Cu04 , 2021Gi08]
¹⁸² Tl*	-0.045(19)	2.280(13)	6.551(6)	>0.49%	[2016Va01 , 1993BoZK, 1992BIZW, 1991BoZZ, 1986Ke03]
¹⁸⁶ Bi**	-1.107(23)	0.840(20)	7.757(12)	$\approx 100\%$	[2003An27, 2003AnZZ, 1997Ba21]
186mBi**	-1.107(23)-x	0.840(20)-x	7.757(12)+x	$\approx 100\%$	[2003An27, 2003AnZZ, 1997Ba21, 1984ScZQ]
¹⁹⁰ At*	-1.326(30)	0.190(23) [@]	7.913(10)***	100%	[2023AnXX, 2023Ko10]
190mAt*	-1.326(30)-x@	0.190(23)-x [@]	7.913(10)+x***	100%	[2023AnXX, 2023Ko10]

* May not be the ground state.

** The ordering of these states is unknown. *** From α energy to ¹⁸⁶Bi.

^a Deduced from mass excess of 7.193(20) for ¹⁹⁰At (deduced from the α energy and the mass of the daughter ¹⁸⁶Bi), and the mass excess for the daughter taken from [2021Wa16].

Table 3

direct α emission from ¹⁵⁴Ho*, J^{π} = 2⁻, T_{1/2} = 11.75(20 m**, BR_{α} = 0.028(9)%.

$E_{\alpha}(c.m.)$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(abs)$	${ m J}_f^\pi$	$E_{daughter}(^{150}\mathrm{Tb})$	coincident γ-rays	R ₀ (fm)	HF
4.046(5)	3.941(5)***	0.028(9)%	(2-)	0.0		1.560(26)@	9^{+7}_{-4}

* All values from [1974Sc19], except where noted.

** [1993Al03].

*** 3.937 MeV in [1974Sc19], adjusted to 3.941 meV in [1991Ry01].

[@] Interpolated between 1.5796(54) fm 152 Dy and 1.541(26) fm 156 Er.

Table 4

direct α emission from ^{154m}Ho*, Ex = 239(28) keV, J^{π} = 8⁺, T_{1/2} = 2.80(13) m**, BR_{α} = <0.01%.

$E_{\alpha}(c.m.)$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(abs)$	\mathbf{J}_f^{π}	$E_{daughter}(^{150}\mathrm{Tb})$	coincident γ -rays	R ₀ (fm)	HF
3.824(5)	3.725(5)***	<0.01%		0.461(27)@		1.560(26)@@	>0.18

* All values from [1974Sc19], except where noted.

** [1993Al03].

*** 3.721 MeV in [1974Sc19], adjusted to 3725 meV in [1991Ry01].

@ [2013Ba31].

@@ Interpolated between 1.5796(54) fm ¹⁵²Dy and 1.541(26) fm ¹⁵⁶Er.

direct α emission	direct α emission from ¹⁷⁴ Ir*, J ^{π} = (3 ⁺), T _{1/2} = 7.8(6) s**, BR _{α} = \approx 0.4%.										
$E_{\alpha}(\text{c.m.})$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(abs)$	J_f^{π}	$E_{daughter}(^{170}\text{Re})$	coincident γ-rays	$R_0 (fm)^{@}$	HF				
5.399(10)	5.275(10)	≈0.4%	(3+)	0.289***	0.224, 0.193, 0.031	1.571(14)***	$\approx 2.7^{@@}$				

* All values from [1992Sc16], except where noted.

** [1992Bo21].

*** Reported as decaying to a 224.7(3) keV state, which then cascades to the ground state in [1992Sc16]. However this would imply an isomer energy of 193(12) keV in contrast to the measured value of 129(17) keV [2020Cu04]. It is suggested that the α -decay is to a state 224.7-keV above an isomer in ¹⁷⁰Re with an energy of 64(20) keV [2020Cu04].

[@] Interpolated between 1.583(13) fm ¹⁷²Os and 1.5597(42) fm ¹⁷⁶Pt. [@] Calculated assuming the isomer decays to the 370-keV state in ¹⁵⁰Tb, (which then γ -cascades to the ground state), giving a Q_{\alpha} = 5.688(23) MeV.

Table 6

direct α emission from ^{174m}Ir*, Ex = 193(12) keV, J^{π} = (7⁺), T_{1/2} = 5.0(2) s **, BR_{α} = 2.5(3)%.

$E_{\alpha}(c.m.)$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(\text{rel})$	$I_{\alpha}(abs)$	$\mathbf{J}_f^{\boldsymbol{\pi}}$	$E_{daughter}(^{170}\mathrm{Re})^{***}$	coincident γ -rays	$R_0 (fm)^@$	HF
5.441(10) 5.607(6)	5.316(10) 5.478(6) ^{@@}	100% ≈13%	2.2(3)% ≈0.3%	(7/2+)	0.3701(6)? 0.2103(2)?	0.210, 0.190, 0.159, 0.020 0.210, 0.190, 0.020	1.571(14) [@] 1.571(14) [@]	$0.52^{+0.21}_{-0.16}\\21^{+9}_{-7}$

* All values from [1992Sc16], except where noted.

** Weighted average of 5.0(4) s [1992Bo21], 4.9(3) s, 5.5(6) s [1992Si16].

*** [2018Ba41].

[@] Interpolated between 1.583(13) fm ¹⁷²Os and 1.5597(42) fm ¹⁷⁶Pt.

@@ [1967Si02].

Table 7

direct α emission from ¹⁷⁸Au*, J^{π} = (2⁺, 3⁻), T_{1/2} = 3.4(5) s, BR_{α} = 16(1)%.

$E_{\alpha}(\text{c.m.})$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(\text{rel})$	$I_{\alpha}(abs)$	\mathbf{J}_f^{π}	$E_{daughter}(^{174}\mathrm{Ir})$	coincident γ -rays	$R_0 (fm)^{**}$	HF
5 882(10)	5 750(10)	1.05(2)%	0.15(1)%		0 1748(5)	0 1748(5)	1 5460(48)**	41(8)
5.945(10)	5.811(10)	2.01(3)%	0.28(2)%		0.157(3)	0.157(3)	1.5460(48)**	39(8)
5.974(10)	5.840(10)	12.6(1)%	1.7(1)%		0.0900(3)	0.0900(3), 0.0828(3)	1.5460(48)**	8.0(15)
6.058(5)	5.922(5)	100%	13.8(9)%	(3 ⁺)	0.0		1.5460(48)**	2.4(5)

* All values from [2020Cu04].

** Interpolated between 1.5597(42) fm 176 Pt and 1.5324(24) fm 180 Hg.

Table 8

direct α emission from ^{178m}Au*, Ex = 189(14) keV, J^{π} = (7⁺, 8⁻), T_{1/2} = 2.7(5) s, BR_{α} = 18(1)%.

$E_{\alpha}(c.m.)$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(\text{rel})$	$I_{\alpha}(abs)$	J_f^π	$E_{daughter}(^{174}\mathrm{Ir})$	coincident γ-rays	R ₀ (fm)**	HF
5.648(7)	5.521(7)	1.16(3)%	0.18(1)%		0.601(17)	0.472(1)	1.5460(48)**	$0.54^{+0.17}_{-0.15}$
5.699(7)	5.571(7)	0.97(2)%	0.15(1)%		0.550(17)	0.421.4(10)	1.5460(48)**	$1.13^{+0.15}_{-0.22}$
5.973(10)	5.839(10)	6.87(7)%	1.07(6)%		0.277(17)	0.1392(3), 0.0912(3), 0.0568(3)	1.5460(48)**	$2.8(8)^{-0.32}$
6.061(7)	5.925(7)	100%	15.5(9)%		0.186(17)	0.0568(3)	1.5460(48)**	$0.48^{+0.14}_{-0.12}$
6.114(10)	5.977(10)	6.83(14)%	1.06(6)%	(7^{+})	0.129(17)		1.5460(48)**	12_{-3}^{+4}

* All values from [2020Cu04].

** Interpolated between 1.5597(42) fm ¹⁷⁶Pt and 1.5324(24) fm ¹⁸⁰Hg.

Table 9 direct α emission from ¹⁸²Tl*, J^{π} = low soin, T_{1/2} = 1.9(1) s, BR_{α} = >0.49%.

$E_{\alpha}(c.m.)$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(\text{rel})$	$I_{\alpha}(abs)$	${\sf J}_f^{{m \pi}}$	E _{daughter} (¹⁷⁸ Au)	coincident γ-rays	R ₀ (fm)**	HF
6.096(5)	5.962(5)	21(3)%	>0.042%		0.446	0.4461(14), 0.2658(2), 0.2322(3), 0.2067(1), 0.1692(3), 0.1129(1)	1.518(12)	<27
6.182(6)	6.046(6)	16(3)%	>0.032%		0.362	0.3615(1), 0.3126(1), 0.2967(3), 0.2478(7), 0.2318(2), 0.1975(8), 0.1827(3), 0.1693(2), 0.1534(2), 0.1317(4), 0.1129(1), 0.1020(5)	1.518(12)	<80
6.304(6)	6.165(6)	62(10)%	>0.12%		0.247	0.2472(5), 0.2322(1), 0.1975(2), 0.1823(2), 0.1692(1), 0.1329(4), 0.1187(3), 0.1129(2)	1.518(12)	<62
6.503(6)	6.360(6)	100%	>0.20%		0.046		1.518(12)	<230
6.550(10)	6.406(10	45(7)%	>0.09%	$(2^+, 3^-)$	0.0		1.518(12)	<1600

* All values from [2016Va01].

** Interpolated between 1.5324(24) fm 180 Hg and 1.504(11) 184 Pb.

Table 10

direct α emission from ¹⁸⁶Bi*, J^{π} = (3⁺), T_{1/2} = 14.8(8) s, *BR*_{α} ≈100%.

$E_{\alpha}(c.m.)$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(\text{rel})$	$I_{\alpha}(abs)$	\mathbf{J}_f^{π}	$E_{daughter}(^{182}\mathrm{Tl})$	coincident γ-rays
7.225-7.389	7.070-7.230**					0.087, 0.098, 0.133, 0.215, 0.238, 0.276, 0.281, 0.371, 0.380, 0.444, 0.520
7.236(15)	7.080(15)	28(14)%			0.520	0.520
7.276(15)	71.20(15)***					0.133
7.309 (15)	7.152(15)	100%			0.444	0.444
7.385(15)	7.226 (15)***					0.238

* All values from [2003An27].

** Unresolved multiplet.

*** May belong to the other isomer.

Table 11

direct α emission from ^{186m}Bi*, J^{π} = (10⁻), T_{1/2} = 9.8(4) s, *BR*_{α} ≈100%.

$E_{\alpha}(\text{c.m.})$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(\text{rel})$	$I_{\alpha}(abs)$	J_f^π	$E_{daughter}(^{182}\text{Tl})$	coincident γ-rays
7.423(5) 7.531(10)	7.263(5) 7.369(10)**	100% <2%	pprox 98% < 2%		0.1085 0.0	0.1085(5)

* All values from [2003An27].

** Tentative assignment.

Table 12

direct α emission from ¹⁹⁰ At*, $J^{\pi} = \log \operatorname{spin}, T_{1/2} = 0.56^{+2.69}_{-0.16}$ ms, $BR_{\alpha} = 100\%$.													
$E_{\alpha}(c.m.)$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(abs)$	$\mathbf{J}_{f}^{\pmb{\pi}}$	E _{daughter} (¹⁸⁶ Bi)	coincident γ -rays								
7.913(10)	7.746(10)	100%	(3+)	0.0		1.551(15)	$1.0^{+5.0}_{-0.4}$						

* All values taken from [2023AnXX]. In that paper, the authors present two scenarios. In the first, two α transitions 7.746(10) MeV (25%) and 7.739(10) MeV de-excite the same state, indicating that the (10⁻)^{186m}Bi isomer has an energy of 7 keV. This however, results in large HF for the two transitions of 15 and 5 respectively. The 2nd scenario is reflected here, combined with data from [2023Ko10], resulting in mostly unhindered transitions from two isomers in ¹⁹⁰At.

direct α emission from ^{190m}At, J^{π} = high spin, T_{1/2} = 1.2^{+1.3}_{-0.4} ms^{*}, BR_{α} = 100%.

$E_{\alpha}(c.m.)$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(abs)$	$\mathbf{J}_f^{oldsymbol{\pi}}$	$E_{daughter}(^{186}\mathrm{Bi})$	coincident γ -rays		
7.907(9)	7.741(9)**	100%	(10 ⁻)	х		1.551(15)	$2.1^{+2.4}_{-0.9}$

* Weighted average of $2.67^{+3.65}_{-0.98}$ ms [2023AnXX] and $1.0^{+1.4}_{-0.4}$ ms [2023Ko10].

** Weighted average of 7.739(10) MeV [2023AnXX] and 7.750(20) MeV [2023Ko10].

References used in the Tables

- **1964Ta11** E. Takekoshi, Z. -I. Matumoto, M. Ishii, K. Sugiyama, S. Hayashibe, H. Sekiguchi, H. Natsume, J. Phys. Soc. Japan 19, 587 (1964). https://doi.org/10.1143/JPSJ.19.587
- [2] **1965Si07** A. Siivola, UCRL-11828, p. 25 (1965).
- [3] 1967Ha34 R. L. Hahn, K. S. Toth, T. H. Handley, Phys. Rev. 163, 1291 (1967). https://doi.org/10.1103/PhysRev.163.1291
- [4] 1967Si02 A. Siivola, Nucl. Phys. A92, 475 (1967). https://doi.org/10.1016/0375-9474(67)90230-8
- [5] 1968Bi02 P. G. Bizzeti, A. M. Bizzeti-Sona, Nucl. Phys. A108, 274(1968). https://doi.org/10.1016/0375-9474(68)90092-4
- [6] 1968Go13 N. A. Golovkov, So Ki Kvan, V. G. Chumin, Contrib. Intern. Conf. Nucl. Struct., Dubna, p. 27 (1968).
- [7] **1968Si01** A. Siivola, Nucl. Phys. A**109**, 231 (1968). https://doi.org/10.1016/0375-9474(68)90571-X
- [8] 1970Ar17 R. Arlt, G. Baier, G. Musiol, L. K. Peker, G. Pfrepper, H. Strusny, Izv. Akad. Nauk SSSR, Ser. Fiz. 34, 754 (1970); Bull. Acad. Sci. USSR, Phys. Ser. 34, 667 (1971).
- [9] 1970Ch09 Y. Y. Chu, E. M. Franz, G. Friedlander, Phys. Rev. C1, 1826 (1970). https://doi.org/10.1103/PhysRevC.1.1826
- [10] 1970ToZS K. S. Toth, R. L. Hahn, Proc. Int. Conf. Prop. Nuclei Far from Region of Beta-Stability, Leysin, Switzerland, Vol. 1, p. 533 (1970); CERN-70-30 (1970).
- [11] **1970ToZY** K. S. Toth, CONF Leysin Vol1 P533, CERN 70-30.
- [12] 1971Ju01 G. M. Julian, T. E. Fessler, Phys. Rev. C3, 751 (1971). https://doi.org/10.1103/PhysRevC.3.751
- [13] 1971To01 K. S. Toth, R. L. Hahn, Phys. Rev. C3, 854 (1971). https://doi.org/10.1103/PhysRevC.3.854
- [14] 1971ToZR K. S. Toth, R. L. Hahn, M. A. Ijaz, ORNL-4706, p. 15 (1971).
- [15] 1973Vy01 T. Vylov, K. Y. Gromov, I. I. Gromova, G. I. Iskhakov, V. V. Kuznetsov, M. Y. Kuznetsova, A. V. Potempa, M. I. Fominykh, Izv. Akad. Nauk SSSR, Ser. Fiz. 37, 43 (1973); Bull. Acad. Sci. USSR, Phys. Ser. 37, No. 1, 36 (1973).
- [16] 1974PeZS I. Penev, K. Zuber, Y. Zuber, A. Lyatushinskii, A. V. Potempa, Program and Thesis, Proc. 24th Ann. Conf. Nucl. Spectrosc. Struct. At. Nuclei, Kharkov, p. 106 (1974).
- [17] 1974Sc19 W-D Schmidt-Ott, K S Toth, E Newman, C R Bingham, Phys Rev C10, 296 (1974). https://doi.org/10.1103/PhysRevC.10.296
- [18] 1974ToZQ K. S. Toth, CONF Nashville(Reactions Between Complex Nuclei), Vol1 P156 (1974).
- [19] 1978AfZZ V.P.Afanasev, L.Kh.Batist, E.E.Berlovich, K.Ya.Gromov, V.G.Kalinnikov, T.Kozlovski, Ya.Kormitski, K.A.Mezilev, F.V.Moroz, Yu.N.Novikov, V.N.Panteleev, A.G.Polyakov, V.I.Raiko, E.Rurarz, V.K.Tarasov, Yu.V.Yushkevich, Program and Theses, Proc.28th Ann.Conf.Nucl.Spectrosc.Struct.At.Nuclei, Alma-Ata, p.70 (1978).
- [20] 1981ZuZU K. Zuber, F. Prazhak, Program and Theses, Proc. 31st Ann. Conf. Nucl. Spectrosc. Struct. At. Nuclei, Samarkand, p. 661 (1981).
- [21] 1981ZuZY K. Zuber, V. G. Kalinnikov, F. Prazak, JINR-P6-81-22 (1981).
- [22] 1982Li17 C .F. Liang, P. Paris, D. Bucurescu, S. Della Negra, J. Obert, J. C. Putaux, Z. Phys. A309, 185 (1982). https://doi.org/10.1007/BF01414981
- [23] 1982To14 K. S. Toth, Y. A. Ellis-Akovali, D. M. Moltz, R. L. Mlekodaj, Phys. Lett. 117B, 11 (1982). https://doi.org/10.1016/0370-2693(82)90863-2
- [24] 1983Ge08 W. Gelletly, Nucl. Instrum. Methods 211, 89 (1983). https://doi.org/10.1016/0167-5087(83)90559-8
- [25] 1984Gr14 K. Ya. Gromov, ATOMKI Kozlem, 26, 43 (1984).
- [26] 1984ScZQ J. Schneider GSI-84-3 (thesis) (1984).

- [27] 1986Ke03 J. G. Keller, K. -H. Schmidt, F. P. Hessberger, G. Munzenberg, W. Reisdorf, H. -G. Clerc, C. -C. Sahm, Nucl. Phys. A452, 173 (1986). https://doi.org/10.1016/0375-9474(86)90514-2
- [28] 1991BoZZ V. A. Bondarenko, I. L. Kuvaga, Le Khong Kkhem, Yu. P. Popov, P. T. Prokofev, A. M. Sukhovoi, F. D. Kkhang, V. A. Khitrov, Yu. V. Kholnov, Program and Thesis, Proc. 41st Ann. Conf. Nucl. Spectrosc. Struct. At. Nuclei, Minsk, p. 77 (1991).
- [29] 1992Bo21 A. Bouldjedri, R. Duffait, R. Beraud, A. Emsallem, N. Redon, A. Gizon, J. Genevey, D. Barneoud, J. Blachot, Z. Phys. A342, 267 (1992). https://doi.org/10.1007/BF01291508
- [30] 1992BIZW Yu. S. Blinnikov, V. A. Bolshakov, A. G. Dernyatin, K. A. Mezilev, Yu. N. Novikov, A. G. Polyakov, A. V. Popov, Yu. Ya. Sergeev, V. A. Sergienko, V. I. Tikhonov, G. V. Veselov, V. M. Zeleznyakov, Leningrad Nucl. Phys. Inst., 1990-1991 Ann. Rept., p. 63 (1992).
- [31] 1992Sc16 W -D Schmidt-Ott, H Salewski, F Meissner, U Bosch-Wicke, P Koschel, V Kunze, R Michaelsen, Nucl Phys A545, 646 (1992). https://doi.org/10.1016/0375-9474(92)90297-W
- [32] 1992Me10 F. Meissner, H. Salewski, W. -D. Schmidt-Ott, U. Bosch-Wicke, R. Michaelsen, Z. Phys. A343, 283 (1992). https://doi.org/10.1007/BF01291527
- [33] 1992MeZW F. Meissner, W. -D. Schmidt-Ott, H. Salewski, U. Bosch-Wicke, R. Michaelsen, Contrib. 6th Intern. Conf. on Nuclei Far from Stability + 9th Intern. Conf. on Atomic Masses and Fundamental Constants, Bernkastel-Kues, Germany, PE42 (1992).
- [34] 1992Si16 A. A. Sibirtsev, Yad. Fiz. 55, 965 (1992); Sov. J. Nucl. Phys. 55, 541 (1992).
- [35] 1993Al03 G. D. Alkhazov, L. H. Batist, A. A. Bykov, F. V. Moroz, S. Yu. Orlov, V. K. Tarasov, V. D. Wittmann, Z. Phys. A344, 425 (1993). https://doi.org/10.1007/BF01283198
- [36] 1993BoZK V. A. Bolshakov, A. G. Dernyatin, K. A. Mezilev, Yu. N. Novikov, A. V. Popov, Yu. Ya. Sergeev, V. I. Tikhonov, V. A. Sergienko, G. V. Veselov, Proc. 6th Intern. Conf. on Nuclei Far from Stability + 9th Intern. Conf. on Atomic Masses and Fundamental Constants, Bernkastel-Kues, Germany, 19-24 July, 1992, R. Neugart, A. Wohr, Eds., p. 743 (1993).
- [37] 1996Pa01 R. D. Page, P. J. Wood, R. A. Cunningham, T. Davinson, N. J. Davis, A. N. James, K. Livingston, P. J. Sellin, A. C. Shotter, Phys. Rev. C53, 660 (1996). https://doi.org/10.1103/PhysRevC.53.660
- [38] 1997Ba21 J. C. Batchelder, K. S. Toth, C. R. Bingham, L. T. Brown, L. F. Conticchio, C. N. Davids, T. Davinson, D. J. Henderson, R. J. Irvine, D. Seweryniak, W. B. Walters, P. J. Woods, J. Wauters, E. F. Zganjar, Z. Phys. A357, 121 (1997). https://doi.org/10.1140/epja/i2003-10051-1
- [39] 2003An27A N Andreyev, D Ackermann, F P Hessberger, S Hofmann, M Huyse, I Kojouharov, B Kindler, B Lommel, G Munzenberg, R D Page, K Van de Vel, P Van Duppen, K Heyde, Eur Phys J A 18, 55 (2003). https://doi.org/10.1140/epja/i2003-10051-1
- [40] 2003AnZZ A. N. Andreyev, D. Ackermann, F. P. Hessberger, S. Hofmann, M. Huyse, B. Kindler, I. Kojouharov, B. Lommel, G. Munzenberg, R. D. Page, K. Van de Vel, P. Van Duppen, GSI 2003-1, p. 9 (2003)
- [41] 2013La02 J. F. W. Lane, A. N. Andreyev, S. Antalic, D. Ackermann, J. Gerl, F. P. Hessberger, S. Hofmann, M. Huyse, H. Kettunen, A. Kleinbohl, B. Kindler, I. Kojouharov, M. Leino, B. Lommel, G. Munzenberg, K. Nishio, R. D. Page, S. Saro, H. Schaffner, M. J. Taylor, P. Van Duppen, Phys. Rev. C 87, 014318 (2013). https://doi.org/10.1103/PhysRevC.87.014318
- [42] 2016Va01 C. Van Beveren, A. N. Andreyev, A. E. Barzakh, T. E. Cocolios, R. P. de Groote, D. Fedorov, V. N. Fedosseev, R. Ferrer, L. Ghys, M. Huyse, U. Koster, J. Lane, V. Liberati, K. M. Lynch, B. A. Marsh, P. L. Molkanov, T. J. Procter, E. Rapisarda, K. Sandhu, M. D. Seliverstov, P. Van Duppen, M. Venhart, M. Veselsky, J. Phys. (London) G43, 025102 (2016). https://doi.org/10.1088/0954-3899/43/2/025102
- [43] 2020Cu04 J. G. Cubiss, A. N. Andreyev, A. E. Barzakh, V. Manea, M. Al Monthery, N. A. Althubiti, B. Andel, S. Antalic, D. Atanasov, K. Blaum, T. E. Cocolios, T. Day Goodacre, A. de Roubin, G. J. Farooq-Smith, D. V. Fedorov, V. N. Fedosseev, D. A. Fink, L. P. Gaffney, L. Ghys, R. D. Harding, F. Herfurth, M. Huyse, N. Imai, D. T. Joss, S. Kreim, D. Lunney, K. M. Lynch, B. A. Marsh, Y. Martinez Palenzuela, P. L. Molkanov, D. Neidherr, G. G. O'Neill, R. D. Page, M. Rosenbusch, R. E. Rossel, S. Rothe, L. Schweikhard, M. D. Seliverstov, S. Sels, A. Stott, C. Van Beveren, P. Van Duppen, E. Verstraelen, A. Welker, F. Wienholtz, R. N. Wolf, K. Zuber, Phys. Rev. C 102, 044332 (2020). https://doi.org/10.1103/PhysRevC.102.044332
- [44] 2021Gi08 S. A. Gillespie, A. Stott, A. N. Andreyev, J. G. Cubiss, M. Al Monthery, C. J. Barton, S. Antalic, K. Auranen, H. Badran, D. Cox, T. Grahn, P. T. Greenlees, A. Herzan, E. Higgins, R. Julin, S. Juutinen, J. Klimo, J. Konki, M. Leino, M. Mallaburn, J. Pakarinen, P. Papadakis, J. Partanen, P. M. Prajapati, P. Rahkila, M. Sandzelius, C. Scholey, J. Sorri, S. Stolze, R. Urban, J. Uusitalo, M. Venhart, F. Wearing, Phys. Rev. C 103, 044307 (2021). https://doi.org/10.1103/PhysRevC.103.044307
- [45] 2021Wa16 M Wang, W J Huang, F G Kondev, G Audi, S Naimi, Chin Phys C 45, 030003 (2021).

https://doi.org/10.1088/1674-1137/abddaf

- [46] 2023AnXX A. N. Andreyev, D. Seweryniak, B. Andel, S. Antalic, D. T. Doherty, A. Korichi, C. Barton, L. Canete, M. P. Carpenter, R. M. Clark, P. A. Copp, J. G. Cubiss, J. Heery, Y. Hrabar, H. Huang, T. Huang, V. Karayonchev, F. G. Kondev, T. Lauritsen, 2 Z. Liu, 8, 9 G. Lotay, C. Müller-Gatermann, S. Nandi, C. Page, D. H. Potterveld, P. H. Regan, W. Reviol, D. Rudolph, M. Siciliano, R. S. Sidhu, A. Sitarcík, P. J. Woods, Z. Yue, W. Zhang, Phys. Rev. C 108, 04303 (2023). https://doi.org/10.1103/PhysRevC.108.034303
- [47] 2023Ko10 H. Kokkonen, K. Auranen, J. Uusitalo, S. Eeckhaudt, T. Grahn, P. T. Greenlees, P. Jones, R. Julin, S. Juutinen, M. Leino, A. -P. Leppanen, M. Nyman, J. Pakarinen, P. Rahkila, J. Saren, C. Scholey, J. Sorri, M. Venhart, Phys.Rev. C 107, 064312 (2023). https://doi.org/10.1103/PhysRevC.107.064312