

Fig. 1: Known experimental values for heavy particle emission of the odd-Z T_z = -2 nuclei.

Last updated 3/17/23

Table 1

Observed and predicted β -delayed particle emission from the odd Z, $T_z = -2$ nuclei. Unless otherwise stated, all Q-values values are taken from [2021Wa16] or deduced from values therein.

Nuclide	J^{π}	$T_{1/2}$	$Q_{\mathcal{E}}$	$Q_{\varepsilon p}$	$BR_{\beta p}$	$Q_{\varepsilon 2p}$	$BR_{\beta 2p}$	$Q_{\varepsilon 3p}$	$Q_{\varepsilon \alpha}$	$BR_{\beta\alpha}$	Experimental
¹⁰ N	(1^{-})	$2.5^{+2.0}$ MeV	23.10(40)	19.09(40)		19.28(40)		2.03(40)	18.00(40)		[2017Ho10]
^{14}F	2-	0.91(10) MeV	23.96(4)	19.33(4)		17.382(40)		1.425(40)	13.836(40)		[2010Go16]
¹⁸ Na	$(1)^{-}$	<0.2 MeV	19.72(9)	15.80(9)		15199(90)		3.072(90)	14.607(90)		[2012Mu05]
²² Al	4+	91.1(5) ms	18.60(40)#	13.10(40)#	54.5(25)%	10.66(40)#	1.10(11)%	-2.18(40)#	10.46(40)#	0.038(17)%	[2006Ac04 , 1997B103, 1982Ca16]
²⁶ P	3+	43.6(3) ms	18.285(61)*	12.775(61)**	33.5(20)%	10.505(61)**	3.20(42)%	-1.37(20)#	9.225(61)**		[2022Li66, 2020Li06, 2017Ja05, 2015Sc16, [2004Th09, 1983Ho23, 1983Ca06]
³⁰ Cl	(3^{+})	<30 ns	18.734(24)	14.338(24)		11.590(24)		0.005(24)	8.95(20)		-
³⁴ K		<25 ns	17.16(20)#	12.49(20)#		10.22(20)#		1.35(20)#	10.41(20)#		
³⁸ Sc			17.81(20)#	13.26(20)#		11.40(20)#		2.90(20)#	11.70(20)#		
^{42}V		<55 ns	17.49(20)#	13.73(20)#		12.65(20)#		4.32(20)#	12.01(20)#		
⁴⁶ Mn	4+	36.2(4) ms	17.050(90)	12.180(90)	57.0(8)%	10.551(90)		1.901(90)	12.01(20)		[2007Do17 , 2001Gi01, 1992Bo37]
⁵⁰ Co	(6^{+})	38.8(2) ms	16.89(13)	12.74(13)	70.5(7)%	10.65(13)#		2.55(13)#	9.46(13)		[2007Do17, 1996Fa09]
⁵⁴ Cu	(3 ⁺)	< 75 ns	18.04(40)#	14.13(40)#		12.51(40)#		5.14(40)#	10.81(40)#		
⁵⁸ Ga			18.76(30)#	16.48(30)#		15.79(30)#		8.62(30)#	13.31(30)#		
⁶² As			17.72(33)#	15.43(30)#		15.18(30)#		10.07(30)#	15.46(30)#		
⁶⁶ Br			18.09(45)#	16.08(41)#		16.17(40)#		11.11(40)#	16.15(42)#		

* Taken from [2022Li66], 18.11(20)# in [2021Wa16]. ** Deduced from Q_{ε} [2022Li66] of ²⁶P, and daughter values from [2021Wa16].

Table 2

Particle emission from the odd Z, $T_z = -2$ nuclei. Unless otherwise stated, all Q-values and separation energies are taken from [2021Wa16] or deduced from values therein.

Nuclide	\mathbf{S}_p	BR_{1p}	S_{2p}	Qα	Experimental	
10	a (a)(10)	1000	1.00(10)	10.05(00) //		
¹⁰ N	-2.60(40)	100%	-1.30(40)	-10.95(20)#	[2017Ho10]	
^{14}F	-1.560(40)	100%	-0.050(40)	-9.26(400	[2010Go16, 2012Go11]	
¹⁸ Na	-1.250(90)	100%	0.220(90)	-9.35(10)	[2012Mu05, 2018Xu04]	
²² Al	-0.01(40)#		3.23(40)#	-9.26(41)#	[2006Ac04]	
²⁶ P	0.14(20)#		3.56(20)#	-9.65(45)#		
³⁰ Cl	-0.480(20)		2.756(24)	-8.72(20)#		
³⁴ K	-0.88(20)#		2.46(20)#	-8.32(20)#		
³⁸ Sc	-1.60(20)#		1.41(20)#	-5.45(28)#		
^{42}V	-0.79(20)#		1.67(20)#	-5.80(28)#		
⁴⁶ Mn	0.19(90)		3.19(90)	-7.22(21)#		
⁵⁰ Co	0.13(13)		2.87(13)	-7.60(15)		
⁵⁴ Cu	-1.10(40)#		1.47(40)#	-6.08(42)#		
⁵⁸ Ga	-1.72(36)#		-0.51(30)#	-4.73(50)#		
⁶² As	-2.08(42)#		-0.59(36)#	-3.31(42)#		
⁶⁶ Br	-2.16(30)#		-1.39(45)#	-1.57(50)#		

	/					
$E_p(\text{c.m.})$	$I_p(\text{rel})$	$I_p(abs)$	E _{emitter} (²² Mg)**	<i>E</i> _{daughter} (²¹ Na)***	coincident γ-rays***	
0.475(9)	25.6(42)	4 72(62)	6 211(9)	0.2210(1)	0.222	
0.473(8)	23.0(+2)	7.4(10)	6 225(8)	0.3319(1)	0.552	
0.721(8)	40(7)	7.4(10)	0.223(8)	0		
0.975(8)	1.4(3)	0.25(5)	6.4/9(8)	0		
1.033(8)	16(2)	3.00(34)	6.869(8)	0.3319(1)	0.332	
1.223(8)	4.05(66)	0.75(10)	6.727(8)	0		
1.299(8)	100	18.51(17)	7.135(8)	0.3319(1)	0.332	
1.551(10)	4.38(96)	0.81(16)	7.055(10)	0		
1.753(8)	2.4(5)	0.45(8)	7.257(8)	0		
2.072(8)	2.59(45)	0.48(7)	7.576(8)	0		
2.503(10)	3.46(77)	0.64(13)	8.007(10)	0		
2.583(8)	26.4(28)	4.89(24)	8.419(8)	0.3319(1)	0.332	
2.838(8)	11.4(12)	2.11(9)	8.342(8)	0		
3.088(8)	10.2(10)	1.89(7)	8.592(8)	0		
3.484(8)	11.8(14)	2.18(15)	8.988(8)	0		
4.017(8)	5.6(19)	1.04(33)	9.521(8)	0		
4.224(9)	4.5(7)	0.84(11)	9.728(9)	0		
4.464(8)	13.6(15)	2.52(14)	9.968(8)	0		
4.912(10)	1.5(17)	0.27(32)	10.416(10)	0		
5.177(13)	1.6(6)	0.29(11)	10.681(13)	0		
5.667(8)	1.9(6)	0.35(11)	14.012(3) [@]	2.8291(7)	1.113, 1.384, 2.497, 0.332	
5.808(49)	3.0(2)	0.18(55)	11.312(49)	0		
5.909(56)	1.1(34)	0.21(62)	11.413(56)	0		
6.774(8)	2.2(7)	0.41(12)	14.012(3)@	1.7161(3)	1.384, 0.332	
7.517(11)	1.8(4)	0.33(7)	13.021(11)	0		

Table 3 β -p emission from ²²Al*, T_{1/2} = 91.1(5) ms, BR_{βp} = 54.5(25)%

* All values taken from [2006Ac04], except where noted. ** Calculated from proton energies and S_p (²²Al) = 5504.10(16) keV [2021Wa16].

*** Values from adopted levels in ENSDF [2015Fi05].

@ Assigned as IAS.

Table 4

 β -2p emission from ²²Al*, $BR_{\beta 2p} = 1.10(11)\%$

$E_{2p}(c.m.)$	$I_{2p}(\text{rel})$	$I_{2p}(abs)$	$E_{emitter}$ (²² Mg)	$E_{daughter}(^{20}\text{Ne})^{***}$	coincident γ-rays [@]
4.464(8)	100	0.69(8)	13.997(8)**	1.6337	1.634
6.085(8)	59(12)	0.41(7)	14.012(3)**	0	

* All values taken from [2006Ac04], except where noted.

** Assigned as IAS.

*** Values from adopted levels in ENSDF [1998Ti06].

Table 5

 β - α emission from ²²Al*, $BR_{\beta\alpha} = 0.038(17)\%$

$E_{\alpha}(c.m.)$	$I_{\alpha}(abs)$	$E_{emitter}$ (²² Mg)**	<i>E</i> _{daughter} (¹⁸ Ne)***	coincident γ-rays***
4.017(8)	0.038(17)	12.160(8)	1.8873(2)	1.887

* All values taken from [2006Ac04]. ** Calculated from α energies and S_{α} (²²Mg) = 8142.5(4) keV [2021Wa16]. *** Values from adopted levels in ENSDF [1995Ti07].

Fable 6	
3-p emission from ²⁶ P*, $T_{1/2}$ =43.6(3) ms, $BR_{\beta p}$ = 33.5(20)%**.	

$E_p(c.m.)^{@@}$	$I_p(\text{rel})$	$I_p(abs)^{@@}$	$E_{emitter}$ (²⁶ Si)***	$E_{daughter}(^{25}\text{Al})^{@}$	coincident γ-rays [@]	
0.412(2)	100(7)	17.96(90)	5.926(2)	0		
0.778(3)	4.3(5)	0.78(7)	6.292(3)	0		
0.866(2)	9.5(10)	1.71(15)	6.380(2)	0		
1.248(2)	8.4(8)	1.51(12)	6.762(2)	0		
1.499(2)	5.5(5)	0.99(7)	7.958(2)	0.9449(5)	0.493, 0.945	
1.638(3)	3.6(4)	0.65(6)	7.604(3)	0.4517(5)	0.452	
1.798(4)	1.1(3)	0.20(5)	8.251(3)	0.9449(5)	0.452, 0.493	
1.983(2)	13.3(11)	2.39(16)	7.497(2)	0		
2.139(4)	3.0(8)	0.54(14)	9.429(3)	1.7895(5)	0.452, 0.493, 1.338	
2.288(3)	8.2(9)	1.47(12)	9.429(3)	1.6125(5)	1.612	
2.541(6)	0.5(2)	0.09(3)				
2.593(13)	1.5(3)	0.27(6)	8.559(13)	0.4517(5)	0.452	
2.638(18)	0.6(2)	0.11(4)	8.152(18)	0		
2.732(4)	2.6(4)	0.47(6)	8.251(4)	0		
2.855(17)	< 0.8(2)	< 0.14(4)				
2.908(11)	0.3(3)	0.06(5)	9.367(11)	0.949(5)	0.452, 0.493	
2.968(5)	1.8(3)	0.32(5)	9.419(4)	0.949(5)	0.452, 0.493	
3.097(6)	1.7(4)	0.31(6)	10.401(6)	1.7895(5)	0.452, 0.493, 0.845, 1.790	
3.258(4)	1.9(2)	0.23(4)	9.717(4)	0.949(5)	0.452, 0.493	
3.766(9)	2.0(4)	0.36(7)	9.732(9)	0.4517(5)	0.452	
3.817(6)	0.7(3)	0.13(5)	10.291(3)	0.949(5)	0.452, 0.945	
3.879(3)	4.4(6)	0.79(12)			1.369	
3.920(5)	6.7(9)	1.21(14)	9.419(4)	0		
4.097(5)	<2.1(3)	< 0.37(4)				
4.719(6)	1.3(2)	0.24(4)	10.685(6)	0.4517(5)	0.452	
4.793(3)	3.0(4)	0.54(6)	10.291(3)	0		
4.858(4)	2.5(3)	0.44(5)	10.824(4)	0.4517(5)	0.452	
5.751(3)@@@	4.5(8)	0.81(14)@@@	13.055(2) ^{@@@a}	1.7895(5)	0.452, 0.493, 0.845, 1.790	
5.921(4)@@@	2.4(5)	0.43(9)@@@	13.055(2) ^{@@@a}	1.6125(5)	1.625	
6.401(10)@@@	0.40(32)	0.072(57)@@@	11.912(4)@@@	0.0		
6.587(6) ^{@@@}	0.67(12)	$0.12(2)^{@@@}$	13.055(2) ^{@@@a}	0.9449(5)	0.493, 0.945	
7.075(16)@@@	1.0(2)	0.18(3)@@@	13.055(2) ^{@@@a}	0.4517(5)	0.452	
7.54394)@@@	1.6(2)	$0.29(4)^{@@@}$	13.055(2) ^{@@@a}	0.0		
7.854(6)@@@	0.39(11)	0.07(2)@@@	13.380(13)@@@	0.0		

* All values taken from [2004Th09], except where noted.

** From [2017Ja05].

*** Calculated from proton energies and S_p (²⁶Si) = 5514.00(11) keV [2021Wa16]. For levels de-excited by more than one proton transition, E_{level} (emitter) is the weighted average. ^(a) Values from adopted levels in ENSDF: B. Singh Janurary 2018, http://www.nndc.bnl.gov/ensdf/ ^(a) ^(a)

 $E_p(keV) / I_p (abs)\%$ 0.418(8) / 11.1(12) 0.787(8) / 0.74(17) 0.870(8) / 1.44(30) 1.256(8) / 1.45(21) 1.507(9) / 0.80(18) @@@ [2022Li66]. a IAS.

Table 7

 β -2p emission from ²⁶P*, $BR_{\beta 2p} = 3.2(4)\%$.

$E_{2p}(c.m.)$	$I_{2p}(\text{rel})$	$I_{2p}(abs)$	$E_{emitter}$ (²⁶ Si)	$E_{daughter}(^{24}Mg)$	coincident γ -rays	
2 758(7)	15 1(6)	0.18(11)	11.012(4)	1 360	1 360	
3.902(3)	53(21)	0.63(22)	13.055(2)**	1.369	1.369	
4.125(5)	24(10)	0.29(10)	11.912(4)	0.0		
4.250(10)	61(21)	0.72(21)	13.380(13)	1.369	1.369	
5.277(4)	100(20)	1.19(24)	13.055(2)**	0.0		
5.630(20)	16(7)	0.19(7)	13.380(13)	0.0		

* All values taken from [2022Li66].

** IAS

$E_p(c.m.)$	$I_p(rel)$	$I_p(abs)$	E _{emitter} (⁴⁶ Cr)**	$E_{daughter}(^{45}V)^{***}$	coincident γ-rays***	
1.224(12)	28(6)	1.8(3)				
2.358(13)	26(7)	1.7(4)				
3.003(13)	100	6.5(9)	9.144(11)	1.2722(4)	1.272, 0.886, 0.329, 0.055	
3.494(25)	54(12)	3.5(6)	9.144(11)	0.7972(5)	0.411, 0.329, 0.055, 0.741	
4 254(15)	85(15)	5 5(9)	9 144(11)	0		

Table 8 β -p emission from ⁴⁶Mn*, T_{1/2}=36.2(4) ms, $BR_{\beta p} = 57.0(8)\%$.

* All values taken from [2007Do17], except where noted.

** IAS. Listed energy is the weighted average calculated from proton energies and S_p (⁴⁶Cr) = 4874(11) keV [2021Wa16].

*** Values from adopted levels in ENSDF [2008Bu01].

Tal	ble	9	
-----	-----	---	--

-p emission	from ⁵⁰ Co*,	T_1	/2=38.8(2) ms,	$BR_{\beta p}$	= 70.	5(7	!)%
-------------	-------------------------	-------	----------------	----------------	-------	-----	-----

$E_p(c.m.)$	<i>I_p</i> (rel)	$I_p(abs)$	$E_{emitter}$ (⁵⁰ Fe)	$E_{daughter}(^{49}Mn)^{***}$	coincident γ-rays***
1.874(16)	2.4(5)	1.0(2)	8.473(12)**	2.4813(4)	0.940, 0.482, 1.279, 0.798, 0.261
2.044(14)	7.3(15)	3.0(6)			
2.296(27)	2.2(7)	0.9(3)			
2.770(12)	100	41.1(24)	8.473(12)**	1.54131(25)	0.482, 1.279, 0.798, 0.261

* All values from [2007Do17], except where noted. Many of the delayed protons have not been measured resulting in a total intensity for individual protons to be lower than the total β^+ -p intensity.

** IAS. Listed energy is the weighted average calculated from proton energies and S_p (⁵⁰Fe) = 4146(9) keV [2021Wa16].

*** Values from adopted levels in ENSDF [2008Bu17].

References used in the Tables

- **1982Ca16** M. D. Cable, J. Honkanen, R. F. Parry, H. M. Thierens, J. M. Wouters, Z. Y. Zhou, J. Cerny, Phys. Rev. C26, 1778 (1982). https://doi.org/10.1103/PhysRevC.26.1778
- [2] 1983Ca06 M. D. Cable, J. Honkanen, R. F. Parry, S. H. Zhou, Z. Y. Zhou, J. Cerny, Phys. Lett. 123, 25 (1983). https://doi.org/10.1016/0370-2693(83)90950-4
- [3] 1983Ho23 J. Honkanen, M. D. Cable, R. F. Parry, S. H. Zhou, Z. Y. Zhou, J. Cerny Phys. Lett. 133, 146 (1983). https://doi.org/10.1016/0370-2693(83)90547-6
- [4] 1992Bo37 V. Borrel, R. Anne, D. Bazin, C. Borcea, G. G. Chubarian, R. Del Moral, C. Detraz, S. Dogny, J. P. Dufour, L. Faux, A. Fleury, L. K. Fifield, D. Guillemaud-Mueller, F. Hubert, E. Kashy, M. LewitowiCz, C. Marchand, A. C. Mueller, F. Pougheon, M. S. Pravikoff, M. G. Saint-Laurent, O. Sorlin, Z. Phys. A344, 135 (1992). https://doi.org/10.1007/BF01291696
- [5] 1996Fa09 L. Faux, S. Andriamonje, B. Blank, S. Czajkowski, R. Del Moral, J. P. Dufour, A. Fleury, T. Josso, M. S. Pravikoff, A. PiechaCzek, E. Roeckl, K. -H. Schmidt, K. Summerer, W. Trinder, M. Weber, T. Brohm, A. Grewe, E. Hanelt, A. Heinz, A. Junghans, C. Rohl, S. Steinhauser, B. Voss, Z. Janas, M. Pfutzner, Nucl. Phys. A602, 167 (1996). https://doi.org/10.1016/0375-9474(96)00109-1
- [6] 1997Bl03 B. Blank, F. Boue, S. Andriamonje, S. Czajkowski, R. Del Moral, J. P. Dufour, A. Fleury, P. Pourre, M. S. Pravikoff, N. A. Orr, K. -H. Schmidt, E. Hanelt, Nucl. Phys. A615, 52 (1997). https://doi.org/10.1016/S0375-9474(96)00483-6
- [7] 2001Gi01 J. Giovinazzo, B. Blank, C. Borcea, M. Chartier, S. Czajkowski, G. de France, R. Grzywacz, Z. Janas, M. LewitowiCz, F. de Oliveira Santos, M. Pfutzner, M. S. Pravikoff, J. C. Thomas, Eur. Phys. J. A 10, 73 (2001). https://doi.org/10.1007/s100500170146
- [8] 2004Th09 J. C. Thomas, L. Achouri, J. Aysto, R. Beraud, B. Blank, G. Canchel, S. Czajkowski, P. Dendooven, A. Ensallem, J. Giovinazzo, N. Guillet, J. Honkanen, A. Jokinen, A. Laird, M. LewitowiCz, C. Longour, F. de Oliveira Santos, K. Perajarvi, M. Stanoiu, Eur. Phys. J. A 21, 419 (2004). https://doi.org/10.1140/epja/i2003-10218-8
- [9] 2006Ac04 N. L. Achouri, F. de Oliveira Santos, M. Lewitowicz, B. Blank, J. Aysto, G. Canchel, S. Czajkowski, P. Dendooven, A. Emsallem, J. Giovinazzo, N. Guillet, A. Jokinen, A. M. Laird, C. Longour, K. Perajarvi, N. Smirnova, M. Stanoiu, J. -C. Thomas, Eur. Phys. J. A 27, 287 (2006). https://doi.org/10.1140/epja/i2005-10274-0
- [10] 2007Do17 C. Dossat, N. Adimi, F. Aksouh, F. Becker, A. Bey, B. Blank, C. Borcea, R. Borcea, A. Boston, M. Caamano, G. Canchel, M. Chartier, D. Cortina, S. Czajkowski, G. de France, F. de Oliveira Santos, A. Fleury, G. Georgiev, J. Giovinazzo, S.

Grevy, R. Grzywacz, M. Hellstrom, M. Honma, Z. Janas, D. Karamanis, J. KurcewiCz, M. LewitowiCz, M. J. Lopez Jimenez, C. Mazzocchi, I. Matea, V. Maslov, P. Mayet, C. Moore, M. Pfutzner, M. S. Pravikoff, M. Stanoiu, I. Stefan, J. C. Thomas, Nucl. Phys. A**792**, 18 (2007). https://doi.org/10.1016/j.nuclphysa.2007.05.004

- [11] 2010Go16 V. Z. Goldberg, B. T. Roeder, G. V. Rogachev, G. G. Chubarian, E. D. Johnson, C. Fu, A. A. Alharbi, M. L. Avila, A. Banu, M. McCleskey, J. P. Mitchell, E. Simmons, G. Tabacaru, L. Trache, R. E. Tribble, Phys. Lett. B 692, 307 (2010). https://doi.org/10.1016/j.physletb.2010.07.054
- [12] 2012Go11 V. Z. Goldberg, B. T. Roeder, G. V. Rogachev, G. G. Chubarian, E. D. Johnson, C. Fu, A. A. Alharbi, M. L. Avila, A. Banu, M. McCleskey, J. P. Mitchell, E. Simmons, G. Tabacaru, L. Trache, R. E. Tribble, J. Phys. Conf. Ser. 337, 012008 (2012). https://doi.org/10.1088/1742-6596/337/1/012008
- [13] 2012Mu05 I. Mukha, L. Grigorenko, L. Acosta, M. A. G. Alvarez, E. Casarejos, A. Chatillon, D. Cortina-Gil, J. M. Espino, A. Fomichev, J. E. Garcia-Ramos, H. Geissel, J. Gomez-Camacho, J. Hofmann, O. Kiselev, A. Korsheninnikov, N. Kurz, Yu. A. Litvinov, I. Martel, C. Nociforo, W. Ott, M. Pfutzner, C. Rodriguez-Tajes, E. Roeckl, C. Scheidenberger, M. Stanoiu, K. Summerer, H. Weick, P. J. Woods, Phys. Rev. C 85, 044325 (2012). https://doi.org/10.1103/PhysRevC.85.044325
- [14] 2015Sc16 S. B. Schwartz, C. Wrede, M. B. Bennett, S. N. Liddick, D. Perez-Loureiro, A. Bowe, A. A. Chen, K. A. Chipps, N. Cooper, D. Irvine, E. McNeice, F. Montes, F. Naqvi, R. Ortez, S. D. Pain, J. Pereira, C. Prokop, J. Quaglia, S. J. Quinn, J. Sakstrup, M. Santia, S. Shanab, A. Simon, A. Spyrou, E. Thiagalingam, Phys. Rev. C92, 031302 (2015). https://doi.org/10.1103/PhysRevC.92.031302
- [15] 2017Ja05 L. Janiak, N. Sokolowska, A. A. Bezbakh, A. A. Ciemny, H. Czyrkowski, R. D?browski, W. Dominik, A. S. Fomichev, M. S. Golovkov, A. V. Gorshkov, Z. Janas, G. Kami?ski, A. G. Knyazev, S. A. Krupko, M. Kuich, C. Mazzocchi, M. Mentel, M. Pfutzner, P. Pluciski, M. Pomorski, R. S. Slepniev, B. Zalewski, Phys. Rev. C 95, 034315 (2017). https://doi.org/10.1103/PhysRevC.95.034315
- [16] 2017Ho10 J. Hooker, G. V. Rogachev, V. Z. Goldberg, E. Koshchiy, B. T. Roeder, H. Jayatissa, C. Hunt, C. Magana, S. Upadhyayula, E. Uberseder, A. Saastamoinen, Phys. Lett. B 769, 62 (2017). https://doi.org/10.1016/j.physletb.2017.03.025
- [17] 2018Xu04 X. -D. Xu, I. Mukha, L. V. Grigorenko, C. Scheidenberger, L. Acosta, E. Casarejos, V. Chudoba, A. A. Ciemny, W. Dominik, J. Duenas-Diaz, V. Dunin, J. M. Espino, A. Estrade, F. Farinon, A. Fomichev, H. Geissel, T. A. Golubkova, A. Gorshkov, Z. Janas, G. Kaminski, O. Kiselev, R. Knobel, S. Krupko, M. Kuich, Yu. A. Litvinov, G. Marquinez-Duran, I. Martel, C. Mazzocchi, C. Nociforo, A. K. Orduz, M. Pfutzner, S. Pietri, M. Pomorski, A. Prochazka, S. Rymzhanova, A. M. Sanchez-Benitez, P. Sharov, H. Simon, B. Sitar, R. Slepnev, M. Stanoiu, P. Strmen, I. Szarka, M. Takechi, Y. K. Tanaka, H. Weick, M. Winkler, J. S. Winfield, Phys. Rev. C 97, 034305 (2018). https://doi.org/10.1103/PhysRevC.97.034305
- [18] 2020Li06 P. F. Liang, L. J. Sun, J. Lee, S. Q. Hou, X. X. Xu, C. J. Lin, C. X. Yuan, J. J. He, Z. H. Li, J. S. Wang, D. X. Wang, H. Y. Wu, Y. Y. Yang, Y. H. Lam, P. Ma, F. F. Duan, Z. H. Gao, Q. Hu, Z. Bai, J. B. Ma, J. G. Wang, F. P. Zhong, C. G. Wu, D. W. Luo, Y. Jiang, Y. Liu, D. S. Hou, R. Li, N. R. Ma, W. H. Ma, G. Z. Shi, G. M. Yu, D. Patel, S. Y. Jin, Y. F. Wang, Y. C. Yu, Q. W. Zhou, P. Wang, L. Y. Hu, X. Wang, H. L. Zang, P. J. Li, Q. Q. Zhao, H. M. Jia, L. Yang, P. W. Wen, F. Yang, G. L. Zhang, M. Pan, X. Y. Wang, H. H. Sun, Z. G. Hu, R. F. Chen, M. L. Liu, W. Q. Yang, Y. M. Zhao, Phys. Rev. C 101, 024305 (2020). https://doi.org/10.1103/PhysRevC.101.024305
- [19] 2021Wa16 M. Wang, W. J. Huang, F. G. Kondev, G. Audi, S. Naimi, Chin. Phys. C 45, 030003 (2021). https://doi.org/ 10.1088/1674-1137/abddaf
- [20] 2022Li66 J. J. Liu, X. X. Xu, L. J. Sun, C. X. Yuan, K. Kaneko, Y. Sun, P. F. Liang, H. Y. Wu, G. Z. Shi, C. J. Lin, J. Lee, S. M. Wang, C. Qi, J. G. Li, H. H. Li, Latsamy Xayavong, Z. H. Li, P. J. Li, Y. Y. Yang, H. Jian, Y. F. Gao, R. Fan, S. X. Zha, F. C. Dai, H. F. Zhu, J. H. Li, Z. F. Chang, S. L. Qin, Z. Z. Zhang, B. S. Cai, R. F. Chen, J. S. Wang, D. X. Wang, K. Wang, F. F. Duan, Y. H. Lam, P. Ma, Z. H. Gao, Q. Hu, Z. Bai, J. B. Ma, J. G. Wang, C. G. Wu, D. W. Luo, Y. Jiang, Y. Liu, D. S. Hou, R. Li, N. R. Ma, W. H. Ma, G. M. Yu, D. Patel, S. Y. Jin, Y. F. Wang, Y. C. Yu, L. Y. Hu, X. Wang, H. L. Zang, K. L. Wang, B. Ding, Q. Q. Zhao, L. Yang, P. W. Wen, F. Yang, H. M. Jia, G. L. Zhang, M. Pan, X. Y. Wang, H. H. Sun, H. S. Xu, X. H. Zhou, Y. H. Zhang, Z. G. Hu, M. Wang, M. L. Liu, H. J. Ong, W. Q. Yang, Phys. Rev. Lett. 129, 242502 (2022). https://doi.org/10.1103/PhysRevLett.129.242502