

Fig. 1: Known experimental values for heavy particle emission of the odd-Z T_z = -1 nuclei.

Last updated 3/17/23

Tabla	1
Table	T

Observed and predicted β -delayed particle emission from the odd-Z, $T_z = -1$ nuclei. Unless otherwise stated, all Q-values are taken from [2021Wa16] or deduced from values therein.

Nuclide	Ex	J^{π}	$T_{1/2}$	$Q_{\mathcal{E}}$	$Q_{\varepsilon p}$	$BR_{\beta p}$	$Q_{arepsilon 2p}$	$Q_{\varepsilon \alpha}$	$BR_{\beta \alpha}$	Experimental
4 1 ;		2-		22.00(21)	2 (19(21)					
⁸ B		$\frac{2}{2^{+}}$	768(3) ms	17.980(1)	0.7255(10)		-9.248(1)	6.106(1)	100%	[1988Ai01 , 1971Wi05,
5		-	100(0) 110	1,1,500(1)	011200(10)) <u>12</u> (0(1)	01100(1)	10070	1964Ma35]
^{12}N		1^{+}	11.000(16) ms	17.3881(10)	1.3814(10)		-9.847(1)	9.971(1)	4.12(22)%	[2020Bi15, 2020Bi11,
										2009Hy01,2009Hy02,
										2010Hy01]
¹⁰ F		0-	40 (20) keV	15.412(5)	3.285(5)		-6.923(5)	8.250(5)	00 05 (00) X	[1993Ti07 , 2014Wu03]
²⁰ Na		2+	447.9(40) ms	13.8924(11)	1.0490(11)		-6.9447(11)	9.1625(11)	20.05(22)%	[2021Wa06, 2013La22,
										1989Cl02, 1972l008,
										197201000, 1971G010, 1080Po171
²⁴ A1		Δ^+	2 053(4) s	13 8848(2)	2 19207(23)	0.0012(3)%	-6 6021(2)	4 5681(2)	0.035(6)%	[1994Ra1 7]
711		т	2.035(4) 3	15.0040(2)	2.19207(23)	0.0012(5)/0	0.0021(2)	4.5001(2)	0.035(0)70	1979Ho08
^{24m}Al	0.4258(1)	1^{+}	130.9(13) ms	14.3106(2)	2.6179(3)		-6.1763(2)	4.9939(2)	0.028(6)%	[1994Ba54, 1979Ho08,
			. ,							2011Ma88, 1979Ho08]
²⁸ P		3+	270.3(5) ms	14.3449(11)	2.7600(11)	0.0013(4)%	-5.5114(11)	4.3607(11)	0.00086(25)%	[1996Og01, 1968Ar03,
										1979Ho27]
³² Cl		1^{+}	298(1) ms	12.6808(6)	3.8169(6)	0.026(5)%	-3.4797(6)	5.7331(6)	0.054(8)%	[1979Ho27, 2008Bh08,
										2018Ab06, 2012Me03,
26		a	2 (2 (2)		1 2 2 7 1 (2)	0.040/02/07	0.0000	(1500 (0)		1985Bj01]
³⁰ K		2^{+}	342(2) ms	12.8144(3)	4.3074(3)	0.048(9)%	-2.0635(3)	6.1733(3)	0.0034(7)%	[19961102, 1980Es01,
40 c		4-	100 7(0)	14 2020/202	5.0040(20)	0.44(7)(7)	0.20(((20))	7.0001(00)	0.017(5)0	[199/II03, 1980Ew01]
"Sc		4	182.7(8) ms	14.3230(28)	5.9949(28)	0.44(7)%	-0.3866(28)	7.2831(28)	0.01/(5)%	[1982H009 , 1968Ar03, 1060Wa04, 1074Sa111
44V		$(2)^{+}$	111(7) ms	13 4741(7)	5 001(7)		0.161(7)	8 613(7)	obs	[1909 ve04, 19743e11]
⁴⁸ Mn		(2) 4^+	158 1(22) ms	13.4741(7) 13.525(10)	5.071(7) 5.421(7)	0 280(37)%	0.101(7) 0.253(7)	5.827(7)	003	[1991Sz03 1987Se07]
⁵² Co		(6^+)	111(4) ms	13.988(5)	6.610(5)	0.200(37)/0	1.339(5)	6.052(9)		[2017Ku12]
⁵⁶ Cu		(4^+)	80(2) ms	15.278(6)	8.111(6)#	0.40(12)%	3.047(6)	7.277(6)		[2001Bo54, 2017Ku12]
⁶⁰ Ga		(2^+)	69.4(2) ms	14.58(20)#	9.48(20)#	1.6(7)%	6.06(20)#	11.89(20)#		[2021Or01, 2017Ku12,
		. ,	. ,					. ,		2001Ma96]
⁶⁴ As			69.0(14) ms	14.78(20)#	9.73(20)#		7.06(20)#	12.22(20)#		[2020Gi02]
⁶⁸ Br			35(5) ns	15.40(26)#	10.51(26)#		8.24(26)#	13.10(26)#		[2019Wi08, 1995Bl06,
										1997Au04]
⁷² Rb		(5+)	103(22) ns	15.61(50)#	10.88(50)#		9.02(50)#	13.43(50)#		[2019Si33, 2017Su31]
⁷⁶ Y			24^{+12}_{-6} ms	16.00(30)#	11.68(30)#		9.50(30)#	13.27(30)#		[2019Si33]
⁸⁰ Nb				16.34(50)#	12.09(41)#		10.18(40)#	13.41(40)#		
⁸⁴ Tc				16.47(50)#	12.62(43)#		11.34(40)#	14.37(50)#		
*** Rh				17.48(50)#	13.54(40)#		12.67(40)#	14.89(50)#		
²² Ag			**	17.25(53)#	13.75(50)#		12.78(40)#	14.39(50)#		[2016Ce02]
⁷⁰ In			~*	17.48(65)#	14.53(64)#		13.43(50)#	14.27(61)#		[2016Ce02]

* Calculated from the sum of the β feeding to states [2020Bi15] above the alpha separation energy ** Observed at RIKEN with BigRIPS and ZDS that have a time of flight 760 ns [2016Ce02].

Table 2

Particle emission from the odd-Z, $T_z = -1$ nuclei. Unless otherwise stated, all Q-values and separation energies are taken from [2021Wa16] or deduced from values therein.

Nuclide	S _n	BR_{1n}	S_{2n}	Ο _α	Experimental
	P	• <i>P</i>	- <i>p</i>	C ⁴⁴	1 I
⁴ Li	-3.10(21)	100%	-6.80(200)#		[1996Ed02, 1990Br14, 1973Fr04]
${}^{8}B$	0.1364(10)		5.7433(10)	-4.83(21)	
¹² N	0.6003(10)		9.2905(10)	-8.0084(14)	
¹⁶ F	-0.531(5)	100%	6.766(5)	-9.088(5)	[2014Wu03 , 1993Ti07]
²⁰ Na	2.1905(11)		8.6006(12)	-6.250(5)	
²⁴ Al	1.86411(23)		9.44536(26)	-9.3242(11)	
$^{24m}Al^{@}$	2.2899(3)		9.8712(3)	-9.7500(11)	
^{28}P	2.0523(12)		9.5157(11)	-9.52240(12)	
³² Cl	1.5811(5)		7.7118(6)	-8.6118(13)	
³⁶ K	1.6589(8)		7.5550(3)	-6.5074(6)	
40 Sc	0.5296(29)		6.3005(28)	-5.5311(28)	
^{44}V	1.781(9)		6.265(7)	-5.710(8)	
⁴⁸ Mn	2.023(6)		6.799(7)	-7.913(10)	
⁵² Co	1.444(5)		6.295(5)	-7.472(9)	
⁵⁶ Cu	0.583(6)		5.198(6)	-6.711(8)	
⁶⁰ Ga	-0.34(20)#		2.50(20)#	-3.39(20)#	
⁶⁴ As	-0.10(20)#		2.12(20)#	-2.37(29)#	
⁶⁸ Br	-0.50(25)#	100%**	1.34(26)#	-1.68(33)#	[2019Wi08, 1995Bl06, 1997Au04]
⁷² Rb	-0.71(52)#	100%**	1.48(50)#	-1.96(56)#	[2019Si33, 2017Su31]
⁷⁶ Y	-1.08(37)#		0.91(30)#	-2.35(58)#	
⁸⁰ Nb	-1.06(50)#		70.83(50)#	-2.60(50)#	
⁸⁴ Tc	-1.35(57)#		0.47(50)#	-1.71(57)#	
⁸⁸ Rh	-1.58(57)#		-0.13(50)#	-1.59(57)#	
⁹² Ag	-1.35(58)#	100%**	0.47(45)#	-3.10(57)#	[2016Ce02]
⁹⁶ In	-1.68(76)#	100%**	0.27(64)#	-2.99(64)#	[2016Ce02]

[@] Excitation energy = 0.4258(1) MeV.

** Inferred by half-life

Table 3

 β - α emission from ²⁰Na*, T_{1/2} = 447.9(40) ms[@], BR_{$\beta\alpha$} =20.05(22) %.

E_{α} (c.m.)	$I_{\alpha}(\text{rel})\%$	$I_{\alpha}(abs)\%$	$E_{emitter}$ (²⁰ Ne)	$E_{daughter}(^{16}\text{O})^{***}$	coincident γ -rays
0.8915(17)	0.039(6)	0.0063(9)	5.6214(17)	0	
1.5073(35)	0.0099(44)	0.0016(7)	12.367(35)	6.12989(4)	6.130
1.0579(26)	0.0099(31)	0.0016(5)	5.7877(26)	0	
1.9902(5)	0.0149(44)	0.0024(7)	6.720(5)	0	
2.6937(18)	100(4)	16.1(6)	7.4235(18)	0	
3.1020(23)	4.3(3)	0.69(3)	7.8318(23)	0	
3.324(7)**	0.074(6)	0.015(1)**	8.054(7)**	0	
4.0402(50)	0.21(5)	0.034(8)	8.770(50)	0	
4.7587(22)	1.91(13)	0.307(18)	9.4885(22)	0	
5.5469(2)	17.4(10)	2.80(12)	10.2767(20)	0	
5.8522(3)	0.53(3)	0.085(4)	10.582(3)	0	
6.1117(22)	1.21(7)	0.195(8)	11.300(10)	0	
6.383(7)**	0.055(7)	0.011(2)**	11.116(9)**	0	
6.561(4)**	0.165(11)	0.033(2)**	11.291(4)**	0	
6.5702(10)	0.217(15)	0.035(2)	11.870(50)	0	
7.1402(50)	0.014(1)	0.0023(1)	12.367(35)	0	

* All values taken from [2021Wa06], except where noted.

** [1989Cl02].

*** Values from adopted levels in ENSDF [1998Ti06].

[@] Weighted average of 442(5) ms [1971Go18], 446(8) ms [1972Mo08], 448(4) ms [1972To08], and 452(4) ms [1989Cl02].

Table 4

E_p	$I_p(rel)$	$I_p(abs)(\times 10^{-4})$	E _{emitter} (²⁸ Si)**	$E_{daughter}(^{27}\text{Al})$	coincident γ -rays	
0.486(1)	6(1)	0.4(14)	12.071(1)	0		
0.480(1) 0.704(1)	100	6.8(21)	12.289(1)	0		
0.859(1)	6(1)	0.41(14)	12.444(1)	0		
0.988(1)	56(4)	3.8(12)	12.573(1)	0		
1.129(1)	4(1)	0.27(11)	12.714(1)	0		
1.314(1)	18(2)	1.2(4)	12.899(1)	0		
1.506(4)	2(1)	0.14(8)	13.091(4)	0		

 β -p emission from ²⁸P*, T_{1/2} = 270.3(5) ms***, $BR_{\beta p} = 0.0013(4)\%$.

*All values taken from [1996Og01], except where noted. ** Calculated from proton energies and S_{α} (²⁸Si) = 11584.90(5) keV [2021Wa16].

*** [1968Ar03]

Table 5

 β - α emission from ²⁸P*, $BR_{\beta\alpha} = 0.00086(25)\%$.

Eα	$I_{\alpha}(rel)$	$I_{\alpha}(abs)(\times 10^{-5})$	<i>E_{emitter}</i> (²⁸ Si)**	$E_{daughter}(^{24}Mg)$	coincident γ -rays	
1.528(1)	25(3)	8(2)	11.512(1)	0		
1.671(1)	79(6)	24(7)	11.65(1)7	0		
1.945(1)	<3	<0.9	11.929(1)	0		
2.085(1)	15(4)	4(2)	12.069(1)	0		
2.303(1)	14(5)	5(2)	12.287(1)	0		
2.457(1)	100	31(9)	12.441(1)	0		
2.563(1)	23(6)	7(3)	12.547(1)	0		
2.738(1)	6(2)	1.8(8)	12.722(1)	0		
2.912(1)	13(3)	4.0(15)	12.896(1)	0		
3.107(1)	3(1)	0.9(4)	13.091(1)	0		

*All values taken from [1996Og01], except where noted. ** Calculated from α energies and S_{α} (²⁸Si) = 9984.14(1) keV [2021Wa16].

Table 6

 β -p emission from ³²Cl*, T_{1/2} = 298(1) ms, $BR_{\beta p} = 0.026(5)\%$.

E_p	$I_p(\text{rel})$	$I_p(abs)$	$E_{emitter}$ (³² S)	$E_{daughter}(^{31}\mathrm{P})$	coincident γ-rays	
0.787(5)	47(10)	0.0052(8)	9.651(5)	0		
1.023(5)	100	0.0113(17)	9.887(5)	0		
1.085(5)	17(4)	0.0019(4)	9.949(5)	0		
1.367(5)	47(10)	0.0052(8)	10.231(5)	0		
1.426(5)	7(2)	0.00078(2)	10.290(5)	0		
1.916(5)	14(3)	0.0016(3)	10.780(5)	0		

*All values taken from [1979Ho27], except where noted. ** Calculated from proton energies and S_p (³²S) = 8863.96 keV [2021Wa16].

Table 7 β - α emission from ³²Cl*, T_{1/2} =*BR*_{$\beta \alpha$} = 0.054(8)%.

Eα	$I_{\alpha}(rel)$	$I_{\alpha}(abs)$	$E_{emitter}$ (³² S)	$E_{daughter}(^{28}\mathrm{Si})$	coincident γ-rays	
1.744(5)	3.7(8)	0.0011(2)	8.692(5)	0		
1.912(5)	49(9)	0.0146(20)	8.860(5)	0		
2.283(5)	0.7(3)	0.0002(1)	9.231(5)	0		
2.515(5)	100	0.0300(42)	9.463(5)	0		
2.762(5)	13(3)	0.0040(7)	9.710(5)	0		
3.035(5)	2.3(5)	0.00069(20)	9.983(5)	0		
3.345(5)	5.7(13)	0.0017(3)	10.293(5)	0		
3.511(5)	0.8(3)	0.00024(10)	10.459(5)	0		
3.583(5)	2.8(8)	0.00084(20)	10.531(5)	0		
3.845(5)	1.7(4)	0.00051(10)	10.792(5)	0		
4.115(5)	0.2(1)	0.00006(3)	11.063(5)	0		

*All values taken from [1979Ho27], except where noted. ** Calculated from α energies and S_{α} (³²S) = 6947.66 keV [2021Wa16].

Table 8

<u> β </u>-p emission from ³⁶K*, T_{1/2} = 342(2) ms**, $BR_{\beta p} = 0.048(14)\%$ **.

E_p	$I_p(rel)$	$I_p(abs) (X \ 10^{-4})$	$E_{emitter}$ (³⁶ Ar)**	$E_{daughter}(^{35}\text{Cl})$	coincident γ-rays
0.5161(11)	0.33(9)	0.011(3)	9.023(1)	0	
0.6405(14)	0.45(12)	0.015(4)	9.1475(14)	0	
0.7133(8)	23.(6)	0.76(20)	9.2203(8)	0	
0.876(1)	6.7(18)	0.22(6)	9.383(1)	0	
0.9973(12)	100(27)	3.3(9)	9.5043(12)	0	
1.2019(14)	0.18(6)	0.006(2)	9.7089(14)	0	
1.2327(11)	0.73(18)	0.024(6)	9.7397(11)	0	
1.308(2)	0.45(12)	0.015(4)	9.815(2)	0	
1.3723(7)	13(3)	0.43(11)	9.8793(7)	0	
1.4496(22)	0.30(9)	0.010(3)	9.9566(22)	0	
1.928(10)	0.33(15)	0.011(5)	10.435(10)	0	
2.049(10)	1.45(58)	0.048(19)	10.556(10)	0	
2.107(10)	1.42(55)	0.047(18)	10.614(10)	0	
2.528(10)	0.88(36)	0.029(12)	11.035(10)	0	
2.715(10)	0.61(27)	0.020(9)	11.222(10)	0	

*All values taken from [1996Il02], except where noted.

** [1980Es01]

*** Calculated from proton energies and S_p (³⁶Ar) = 8506.98(4) keV [2021Wa16].

Table 9

 β - α emission from ³⁶K*, $BR_{\beta \alpha} = 0.031(6)\%$ **.

Eα	$I_{\alpha}(rel)$	$I_{\alpha}(abs) (X \ 10^{-6})$	<i>E_{emitter}</i> (³⁶ Ar)***	$E_{daughter}(^{32}\mathrm{S})$	coincident γ-rays
1 712(2)	2 2(7)	0.5(1)	0.252(2)	0	
1.712(3)	3.3(7)	0.5(1)	8.333(3)	0	
1.757(3)	1.6(5)	0.24(8)	8.398(3)	0	
2.208(3)	4.0(13)	0.6(2)	8.849(3)	0	
2.268(3)	100(27)	15(4)	8.909(3)	0	
2.508(3)	10(3)	1.5(4)	9.149(3)	0	
2.721(3)	0.73(20)	0.11(3)	9.362(3)	0	
2.827(3)	0.53(20)	0.08(3)	9.468(3)	0	
3.068(3)	67(20)	10(3)	9.709(3)	0	
3.355(3)	0.53(13)	0.08(2)	9.996(3)	0	
3.566(3)	0.73(27)	0.11(4)	10.207(3)	0	
3.688(3)	2.7(7)	0.4(1)	10.329(3)	0	
3.808(3)	1.7(5)	0.26(7)	10.449(3)	0	
3.923(3)	7.3(20)	1.1(3)	10.564(3)	0	
3.958(3)	4.0(13)	0.6(2)	10.599(3)	0	
4.065(4)	0.27(13)	0.04(2)	10.706(4)	0	
4.217(3)	1.1(3)	0.17(5)	10.858(3)	0	
4.330(4)	0.23(10)	0.034(15)	10.971(4)	0	
4.417(3)	1.9(5)	0.28(8)	11.058(3)	0	
4.597(4)	0.40(13)	0.059(20)	11.238(4)	0	

*All values taken from [1996Il02], except where noted.

** [1980Es01] *** Calculated from α energies and S_{α} (³⁶Ar) = 6640.92(3) keV [2017Wa10].

Table 10

 β -p Emission from ⁴⁰Sc*, T_{1/2} =182.7(8) ms**, $BR_{\beta p} = 0.44(7)\%$.

E_p	$I_p(rel)$	$I_p(abs) (X \ 10^{-4})$	$E_{emitter}$ (⁴⁰ Ca)	$E_{daughter}(^{39}\mathrm{K})^{***}$	coincident γ -rays
1.032(3)	65(14)	7 2(11)	9 360(3)	0	
1.087(8)	40(9)	4 40(75)	9 415(8)	õ	
1.098(6)	50(12)	5.50(95)	9 427(6)	0	
1.123(3)	100.00	11.0(17)	9.451(3)	0	
1.273(3)	29(6)	3.2(5)	9.601(3)	0	
$\frac{1.278(8)}{1.482(4)}$	8(2)	0.88(15)	9.810(4)	0	
1.501(8)	2.4(7)	0.26(7)	9.829(8)	0	
1.592(3)	4.5(11)	0.50(9)	9.920(3)	0	
1.650(5)	0.8(5)	0.092(5)	9.978(5)	0	
1.721(4)	3.8(10)	0.42(9)	10.049(4)	0	
1.797(4)	1.2(4)	0.13(4)	10.125(4)	0	
1.882(4)	12.6(28)	1.39(22)	10.210(4)	0	
2.003(4)	0.42(19)	0.046(2)	10.331(4)	0	
2.037(8)	0.27(19)	0.03(2)	10.365(8)	0	
2.118(4)	2.(6)	0.28(5)	10.446(4)	0	
2.143(4)	8.5(18)	0.94(14)	10.471(4)	0	
2.175(4)	11.4(25)	1.25(19)	10.504(4)	0	
2.253(5)	1.5(4)	0.17(4)	10.582(5)	0	
2.268(10)	0.32(19)	0.035(20)	10.596(10)	0	
2.364(5)	0.7(3)	0.076(30)	10.692(5)	0	
2.426(8)	0.8(3)	0.092(30)	10.754(8)	0	
2.447(5)	11.6(26)	1.28(20)	10.775(5)	0	
2.485(9)	0.74(30)	0.081(3)	10.813(9)	0	
2.520(5)	3.5(6)	0.38(2)	10.8548(5)	0	
2.581(5)	0.32(19)	0.035(20)	10.909(5)	0	
2.628(8)	1.82(46)	0.20(4)	10.956(8)	0	
2.644(7)	1.82(46)	0.20(4)	10.972(7)	0	
2.709(7)	0.63(21)	0.069(20)	11.037(7)	0	
2.786(6)	1.00(31)	0.11(3)	11.114(6)	0	
2.813(6)	2.09(49)	0.23(4)	11.142(6)	0	
2.888(5)	6.2(14)	0.68(11)	11.216(5)	0	
2.987(5)	0.46(20)	0.051(20)	11.315(5)	0	
3.089(7)	0.25(19)	0.028(20)	11.417(7)	0	
3.123(9)	0.75(22)	0.083(20)	11.451(9)	0	
3.287(10)	0.22(10)	0.024(10)	11.615(10)	0	
3.393(10)	0.66(29)	0.073(30)	11.721(10)	0	
3.463(10)	0.24(19)	0.026(20)	11.791(10)	0	
3.676(10)	0.09(9)	0.01(1)	12.004(10)	0	
3.706(10)	0.22(10)	0.024(10)	12.034(10)	0	
3.743(10)	0.11(9)	0.012(10)	12.071(10)	0	

*All values taken from [1982Ho09], except where noted.

** [1968Ar03] *** Calculated from proton energies and S_p (⁴⁰Ca) = 8328.18(2) keV [2021Wa16].

Eα	$I_{\alpha}(rel)$	$I_{\alpha}(abs)$	$E_{emitter}$ (⁴⁰ Ca)**	$E_{daughter}(^{36}\mathrm{Ar})$	coincident γ -rays	
2.321(6)	14.9(5)	8.8(2)	9.361(6)	0		
2.911(8)	2.7(2)	1.6(1)	9.951(8)	0		
3.089(8)	3.2(2)	1.9(1)	10.129(8)	0		
3.113(8)	5.4(2)	3.2(1)	10.153(8)	0		
3.152(8)	3.6(2)	2.1(1)	10.192(8)	0		
3.424(7)	13.2(4)	7.8(2)	10.464(7)	0		
3.480(7)	14.1(4)	8.3(2)	10.520(7)	0		
3.559(7)	11.7(4)	6.9(2)	10.599(7)	0		
3.684(5)	100.0	59(12)	10.724(5)	0		
3.779(7)	7.1(4)	4.2(2)	10.819(7)	0		
3.947(12)	1.9(2)	1.1(1)	10.986(12)	0		
4.048(12)	1.7(2)	1.0(1)	11.088(12)	0		
4 164(5)	644(19)	38(8)	11.204(5)	Ő		
4 266(7)	4.1(2)	2.4(1)	11.305(7)	0		
4 431(7)	6.1(2)	3 6(1)	11.471(7)	0		
4 509(6)	11 2(4)	6.6(2)	11 549(6)	0		-
4.505(0)	3.9(2)	23(1)	11.662(7)	0		
4.622(7)	1.5(2)	0.9(1)	11.726(7)	0		
4.800(6)	1.3(2)	28(1)	11.720(7)	0		
4.058(7)	4.7(2) 8 5(4)	2.0(1) 5.0(2)	11.040(0)	0		
4.930(7) 5.021(0)	2.3(4)	1.6(1)	12.061(0)	0		
J.021(9)	2.1(2)	1.0(1)	12.001(7)	U		

Table 11 β - α emission from ⁴⁰Sc*, $BR_{\beta-\alpha} = 0.017(5)\%$.

* All values taken from [1982Ho09], except where noted.

** Calculated from α energies and S_{α} (⁴⁰Ca) = 7039.78(3) keV [2021Wa16].

References used in the Tables

- [1] 1964Ma35 E. Matt, H. Pfander, H. Rieseberg, V. Soergel, Phys. Lett. 9, 174 (1964). https://doi.org/10.1016/0031-9163(64)90132-5
- [2] **1968Ar03** Anthony J. Armini, Jules W. Sunier, and J. Reginald Richardson, Phys. Rev. **165**, 1194 (1968). https://doi.org/10.1103/PhysRev.165.1194
- [3] 1969Ve04 R. I. Verrall, R. E. Bell, Nucl. Phys. A127, 635 (1969). https://doi.org/10.1016/0375-9474(69)91034-3
- [4] 1970Ce02 J. Cerny, C. U. Cardinal, H. C. Evans, K. P. Jackson, N. A. Jelley, Phys. Rev. Lett. 24, 1128 (1970). https://doi.org/10.1103/PhysRevLett.24.1128
- [5] 1971Go18 D. R. Goosman, K. W. Jones, E. K. Warburton, D. E. Alburger, Phys. Rev. C4, 1800 (1971). https://doi.org/10.1103/PhysRevC.4.1800
- [6] 1971Wi05 D. H. Wilkinson, D. E. Alburger, Phys. Rev. Lett. 26, 1127 (1971). https://doi.org/10.1103/PhysRevLett.26.1127
- [7] 1972Mo08 C. E. Moss, C. Detraz, C. S. Zaidins, D. J. Frantsvog, Phys.Rev. C 5, 1122 (1972). https://doi.org/10.1103/PhysRevC.5.1122
- [8] 1972To08 D. F. Torgerson, K. Wien, R. D. Macfarlane, Phys. Lett. 40B, 203 (1972). https://doi.org/10.1016/0370-2693(72)90410-8
- [9] 1973Fr04 W. A. Friedman, Phys. Rev. Lett. 30, 394 (1973). https://doi.org/10.1103/PhysRevLett.30.394
- [10] 1974Se11 R. G. Sextro, R. A. Gough, J. Cerny, Nucl. Phys. A234, 130 (1974). https://doi.org/10.1016/0375-9474(74)90383-2
- [11] 1977Ha04 Z. Haratym, J. Kownacki, J. Ludziejewski, Z. Sujkowski, L. -E. De Geer, A. Kerek, H. Ryde Nucl. Phys. A276, 299 (1977). https://doi.org/10.1016/0375-9474(77)90385-2
- [12] 1979Ho08 J. Honkanen, M. Kortelahti, J. Aysto, K. Eskola, A. Hautojarvi, Phys. Scr. 19, 239 (1979). https://doi.org/10.1088/0031-8949/19/3/004
- [13] 1979Ho27 J. Honkanen, M. Kortelahti, K. Valli, K. Eskola, A. Hautojarvi, K. Vierinen, Nucl. Phys. A330429 (1979). https://doi.org/10.1016/0375-9474(79)90064-2
- [14] 1980Es01 K. Eskola, M. Riihonen, K. Vierinen, J. Honkanen, M. Kortelahti, K. Valli, Nucl. Phys. A341, 365 (1980). https://doi.org/10.1016/0375-9474(80)90370-X
- [15] 1980Ew01 G. T. Ewan, E. Hagberg, J. C. Hardy, B. Jonson, S. Mattsson, P. Tidemand-Petersson, Nucl. Phys. A337, 189 (1980). https://doi.org/10.1016/0375-9474(80)90050-0

- [16] 1982H009 J. Honkanen, J. Aysto, M. Kortelahti, K. Eskola, K. Vierinen, A. Hautojarvi, Nucl. Phys. A380, 410 (1982). https://doi.org/10.1016/0375-9474(82)90567-X
- [17] 1985Bj01 T. Bjornstad, M. J. G. Borge, P. Dessagne, R. -D. Von Dincklage, G. T. Ewan, P. G. Hansen, A. Huck, B. Jonson, G. Klotz, A. Knipper, P. O. Larsson, G. Nyman, H. L. Ravn, C. Richard-Serre, K. Riisager, D. Schardt, G. Walter, and the ISOLDE Collaboration, Nucl. Phys. A443, 283 (1985). https://doi.org/10.1016/0375-9474(85)90264-7
- [18] 1987Se07 T. Sekine, J. Cerny, R. Kirchner, O. Klepper, V. T. Koslowsky, A. Plochocki, E. Roeckl, D. Schardt, B. Sherrill, B. A. Brown, Nucl. Phys. A467, 93 (1987). https://doi.org/10.1016/0375-9474(87)90330-7
- [19] 1988Aj01 F. Ajzenberg-Selove, Nucl. Phys. A490, 1 (1988). https://doi.org/10.1016/0375-9474(88)90124-8
- [20] 1989Cl02 E. T. H.Clifford, E. Hagberg, J. C. Hardy, H. Schmeing, R. E. Azuma, H. C. Evans, V. T. Koslowsky, U. J. Schrewe, K. S. Sharma, I. S. Towner, Nucl. Phys. A493, 293 (1989). https://doi.org/10.1016/0375-9474(89)90399-0
- [21] 1989Ra17 P. Raghavan, At. Data Nucl. Data Tables 42, 189 (1989). https://doi.org/10.1016/0092-640X(89)90008-9
- [22] 1990Br14 M. Bruno, F. Cannata, M. D'Agostino, M. L. Fiandri, Phys. Rev. C42, 448 (1990). https://doi.org/10.1103/PhysRevC.42.448
- [23] 1991Sz03 J. Szerypo, D. Bazin, B. A. Brown, D. Guillemaud-Mueller, H. Keller, R. Kirchner, O. Klepper, D. Morrissey, E. Roeckl, D. Schardt, B. Sherrill, Nucl. Phys. A528, 203 (1991). https://doi.org/10.1016/0375-9474(91)90424-5
- [24] 1993Ti07 D. R.Tilley, H. R.Weller, C. M.Cheves, Nucl. Phys. A564, 1 (1993). https://doi.org/10.1016/0375-9474(93)90073-7
- [25] 1994Ba54 J. C. Batchelder, R. J. Tighe, D. M. Moltz, T. J. Ognibene, M. W. Rowe, J. Cerny, Phys. Rev. C 501807 (1994). https://doi.org/10.1103/PhysRevC.50.1807
- [26] 1995Bl06 B. Blank, S. Andriamonje, S. Czajkowski, F. Davi, R. Del Moral, J. P. Dufour, A. Fleury, A. Musquere, M. S. Pravikoff, R. Grzywacz, Z. Janas, M. Pfutzner, A. Grewe, A. Heinz, A. Junghans, M. Lewitowicz, J. E. Sauvestre, C. Donzaud, Phys. Rev. Lett. 74, 4611 (1995). : 10.1103/PhysRevLett.74.4611
- [27] 1996Ed02 C. M. Edwards, M. Palarczyk, D. Dehnhard, M. A. Espy, M. A. Franey, J. L. Langenbrunner, L. C. Bland, D. S. Carman, B. Brinkmoller, R. Madey, Y. Wang, J. W. Watson, L. Bildsten, Phys. Lett. 368B, 39 (1996); Erratum Phys. Lett. 380B, 493 (1996). https://doi.org/10.1016/0370-2693(95)01499-3
- [28] 1996II02 C. Iliadis, R. E. Azuma, L. Buchmann, J. Chow, J. M. D'Auria, M. Dombsky, U. Giesen, J. D. King, A. C. Morton, Nucl. Phys. A609, 237 (1996). https://doi.org/10.1016/S0375-9474(96)00297-7
- [29] 1996Og01 T. J. Ognibene, J. Powell, D. M. Moltz, M. W. Rowe, J. Cerny, Phys. Rev. C54, 1098 (1996). https://doi.org/10.1103/PhysRevC.54.1098
- [30] 1997Au04 G. Audi, O. Bersillon, J. Blachot, A. H. Wapstra, Nucl. Phys. A624, 1 (1997). https://doi.org/10.1016/S0375-9474(97)00482-X
- [31] 1997II03 C. Iliadis, R. E. Azuma, J. Chow, J. D. King, A. C. Morton, L. Buchmann, M. Dombsky, K. P. Jackson, J. M. D'Auria, U. Giesen, J. G. Ross, H. Schatz, M. Wiescher, Nucl. Phys. A621, 211c (1997). https://doi.org/10.1016/S0375-9474(97)00240-6
- [32] 1998Ti06 D. R. Tilley, C. M. Cheves, J. H. Kelley, S. Raman, H. R. Weller, NPA636, 249 (1998). https://doi.org/10.1016/S0375-9474(98)00129-8
- [33] 2001Bo54 R. Borcea, J. Aysto, E. Caurier, P. Dendooven, J. Doring, M. Gierlik, M. Gorska, H. Grawe, M. Hellstrom, Z. Janas, A. Jokinen, M. Karny, R. Kirchner, M. La Commara, K. Langanke, G. Martinez-Pinedo, P. Mayet, A. Nieminen, F. Nowacki, H. Penttila, A. Plochocki, M. Rejmund, E. Roeckl, C. Schlegel, K. Schmidt, R. Schwengner, M. Sawicka, Nucl. Phys. A695, 69 (2001); Erratum Nucl. Phys. A703, 889 (2002). https://doi.org/10.1016/S0375-9474(01)01096-X
- [34] 2001Ma96 C. Mazzocchi, Z. Janas, J. Doring, M. Axiotis, L. Batist, R. Borcea, D. Cano-Ott, E. Caurier, G. de Angelis, E. Farnea, A. Fassbender, A. Gadea, H. Grawe, A. Jungclaus, M. Kapica, R. Kirchner, J. KurcewiCz, S. M. Lenzi, T. Martinez, I. Mukha, E. Nacher, D. R. Napoli, E. Roeckl, B. Rubio, R. Schwengner, J. L. Tain, C. A. Ur, Eur. Phys. J. A 12, 269 (2001). https://doi.org/10.1007/s100500170004
- [35] 2008Bh08 M. Bhattacharya, D. Melconian, A. Komives, S. Triambak, A. Garcia, E. G. Adelberger, B. A. Brown, M. W. Cooper, T. Glasmacher, V. Guimaraes, P. F. Mantica, A. M. Oros-Peusquens, J. I. Prisciandaro, M. Steiner, H. E. Swanson, S. L. Tabor, M. Wiedeking, Phys. Rev. C77, 065503. https://doi.org/10.1103/PhysRevC.77.065503
- [36] 2009Hy01 S. Hyldegaard, C. Forssen, C. A. Diget, M. Alcorta, F. C. Barker, B. Bastin, M. J. G. Borge, R. Boutami, S. Brandenburg, J. Buscher, P. Dendooven, P. Van Duppen, T. Eronen, S. Fox, B. R. Fulton, H. O. U. Fynbo, J. Huikari, M. Huyse, H. B. Jeppesen, A. Jokinen, B. Jonson, K. Jungmann, A. Kankainen, O. Kirsebom, M. Madurga, I. Moore, P. Navratil, T. Nilsson, G. Nyman, G. J. G. Onderwater, H. Penttila, K. Perajarvi, R. Raabe, K. Riisager, S. Rinta-Antila, A. Rogachevskiy, A. Saastamoinen, M. Sohani, O. Tengblad, E. Traykov, J. P. Vary, Y. Wang, K. Wilhelmsen, H. W. Wilschut, J. Aysto, Phys. Lett. B

678, 459 (2009). https://doi.org/10.1016/j.physletb.2009.06.064

- [37] 2009Hy02 S. Hyldegaard, C. Aa. Diget, M. J. G. Borge, R. Boutami, P. Dendooven, T. Eronen, S. P. Fox, L. M. Fraile, B. R. Fulton, H. O. U. Fynbo, J. Huikari, H. B. Jeppesen, A. S. Jokinen, B. Jonson, A. Kankainen, I. Moore, G. Nyman, H. Penttila, K. Perajarvi, K. Riisager, S. Rinta-Antila, O. Tengblad, Y. Wang, K. Wilhelmsen, J. Aysto, Phys. Rev. C80, 044304 (2009). https://doi.org/10.1103/PhysRevC.80.044304
- [38] 2010Hy01 S. Hyldegaard, M. Alcorta, B. Bastin, M. J. G. Borge, R. Boutami, S. Brandenburg, J. Buscher, P. Dendooven, C. Aa. Diget, P. Van Duppen, T. Eronen, S. P. Fox, L. M. Fraile, B. R. Fulton, H. O. U. Fynbo, J. Huikari, M. Huyse, H. B. Jeppesen, A. S. Jokinen, B. Jonson, K. Jungmann, A. Kankainen, O. S. Kirsebom, M. Madurga, I. Moore, A. Nieminen, T. Nilsson, G. Nyman, G. J. G. Onderwater, H. Penttila, K. Perajarvi, R. Raabe, K. Riisager, S. Rinta-Antila, A. Rogachevskiy, A. Saastamoinen, M. Sohani, O. Tengblad, E. Traykov, Y. Wang, K. Wilhelmsen, H. W. Wilschut, J. Aysto, Phys. Rev. C81, 024303 (2010). https://doi.org/10.1103/PhysRevC.81.024303
- [39] 2011Ma88 K. Matsuta, D. Nishimura, M. Fukuda, Y. Fujita, M. Mihara, E. Ganioglu, G. Susoy, Y. Ichikawa, S. Momota, A. Kitagawa, M. Kanazawa, M. Torikoshi, S. Sato, B. Rubio, J. Phys. Conf. Ser. 312, 092039 (2011). https://doi.org/10.1088/1742-6596/312/9/092039
- [40] 2012Me03 D. Melconian, S. Triambak, C. Bordeanu, A. Garcia, J. C. Hardy, V. E. Iacob, N. Nica, H. I. Park, G. Tabacaru, L. Trache, I. S. Towner, R. E. Tribble, Y. Zhai, Phys.Rev. C 85, 025501 (2012). https://doi.org/10.1103/PhysRevC.85.025501
- [41] 2013La22 K. L. Laursen, O. S. Kirsebom, H. O. U. Fynbo, A. Jokinen, M. Madurga, K. Riisager, A. Saastamoinen, O. Tengblad, J. Aysto, Eur. Phys. J. A 49, 79 (2013). 140/epja/i2013-13079-6
- [42] 2014Wu03 Z. D. Wu, B. Guo, Z. H. Li, Y. J. Li, J. Su, D. Y. Pang, S. Q. Yan, E. T. Li, X. X. Bai, X. C. Du, Q. W. Fan, L. Gan, J. J. He, S. J. Jin, L. Jing, L. Li, Z. C. Li, G. Lian, J. C. Liu, Y. P. Shen, Y. B. Wang, X. Q. Yu, S. Zeng, D. H. Zhang, L. Y. Zhang, W. J. Zhang, W. P. Liu, Phys. Rev. C 89, 054315 (2014). https://doi.org/10.1103/PhysRevC.89.054315
- [43] 2016Ce02 I. Celikovic, M. Lewitowicz, R. Gernhauser, R. Krucken, S. Nishimura, H. Sakurai, D. S. Ahn, H. Baba, B. Blank, A. Blazhev, P. Boutachkov, F. Browne, G. de France, P. Doornenbal, T. Faestermann, Y. Fang, N. Fukuda, J. Giovinazzo, N. Goel, M. Gorska, S. Ilieva, N. Inabe, T. Isobe, A. Jungclaus, D. Kameda, Y. -K. Kim, Y. K. Kwon, I. Kojouharov, T. Kubo, N. Kurz, G. Lorusso, D. Lubos, K. Moschner, D. Murai, I. Nishizuka, J. Park, Z. Patel, M. Rajabali, S. Rice, H. Schaffner, Y. Shimizu, L. Sinclair, P. -A. Soderstrom, K. Steiger, T. Sumikama, H. Suzuki, H. Takeda, Z. Wang, H. Watanabe, J. Wu, Z. Xu, Phys. Rev. Lett. 116, 162501 (2016). https://doi.org/10.1103/PhysRevLett.116.162501
- [44] 2017Ku12 L. Kucuk, S. E. A. Orrigo, A. Montaner-Piza, B. Rubio, Y. Fujita, W. Gelletly, B. Blank, Y. Oktem, T. Adachi, A. Algora, P. Ascher, R. B. Cakirli, G. de France, H. Fujita, E. Ganioglu, J. Giovinazzo, S. Grevy, F. M. Marques, F. Molina, F. de Oliveira Santos, L. Perrot, R. Raabe, P. C. Srivastava, G. Susoy, A. Tamii, J. C. Thomas, Eur. Phys. J. A 53, 134 (2017). https://doi.org/10.1140/epja/i2017-12327-1
- [45] 2017Su31 H. Suzuki, L. Sinclair, P. -A. Soderstrom, G. Lorusso, P. Davies, L. S. Ferreira, E. Maglione, R. Wadsworth, J. Wu, Z. Y. Xu, S. Nishimura, P. Doornenbal, D. S. Ahn, F. Browne, N. Fukuda, N. Inabe, T. Kubo, D. Lubos, Z. Patel, S. Rice, Y. Shimizu, H. Takeda, H. Baba, A. Estrade, Y. Fang, J. Henderson, T. Isobe, D. Jenkins, S. Kubono, Z. Li, I. Nishizuka, H. Sakurai, P. Schury, T. Sumikama, H. Watanabe, V. Werner, Phys.Rev.Lett. 119, 192503 (2017). https://doi.org/10.1103/PhysRevLett.119.192503
- [46] 2018Ab06 E. Aboud, M. B. Bennett, C. Wrede, M. Friedman, S. N. Liddick, D. Perez-Loureiro, D. W. Bardayan, B. A. Brown, A. A. Chen, K. A. Chipps, C. Fry, B. E. Glassman, C. Langer, E. I. McNeice, Z. Meisel, W. -J. Ong, P. D. O'Malley, S. D. Pain, C. J. Prokop, H. Schatz, S. B. Schwartz, S. Suchyta, P. Thompson, M. Walters, X. Xu, Phys. Rev. C 98, 024309 (2018). https://doi.org/10.1103/PhysRevC.98.024309
- [47] 2019Si33 L. Sinclair, R. Wadsworth, J. Dobaczewski, A. Pastore, G. Lorusso, H. Suzuki, D. S. Ahn, H. Baba, F. Browne, P. J. Davies, P. Doornenbal, A. Estrade, Y. Fang, N. Fukuda, J. Henderson, T. Isobe, D. G. Jenkins, S. Kubono, Z. Li, D. Lubos, S. Nishimura, I. Nishizuka, Z. Patel, S. Rice, H. Sakurai, Y. Shimizu, P. Schury, H. Takeda, P. -A. Soderstrom, T. Sumikama, H. Watanabe, V. Werner, J. Wu, Z. Y. Xu, Phys. Rev. C 100, 044311 (2019). https://doi.org/10.1103/PhysRevC.100.044311
- [48] 2019Wi08 K. Wimmer, P. Doornenbal, W. Korten, P. Aguilera, A. Algora, T. Ando, T. Arici, H. Baba, B. Blank, A. Boso, S. Chen, A. Corsi, P. Davies, G. de Angelis, G. de France, D. T. Doherty, J. Gerl, R. Gernhauser, D. G. Jenkins, S. Koyama, T. Motobayashi, S. Nagamine, M. Niikura, A. Obertelli, D. Lubos, B. Rubio, E. Sahin, T. Y. Saito, H. Sakurai, L. Sinclair, D. Steppenbeck, R. Taniuchi, R. Wadsworth, M. Zielinska, Phys. Lett. B 795, 266 (2019). https://doi.org/10.1016/j.physletb.2019.06.014
- [49] 2020Bi11 J. Bishop, G. V. Rogachev, S. Ahn, E. Aboud, M. Barbui, A. Bosh, C. Hunt, H. Jayatissa, E. Koshchiy, R. Malecek, S. T. Marley, E. C. Pollacco, C. D. Pruitt, B. T. Roeder, A. Saastamoinen, L. G. Sobotka, S. Upadhyayula, Phys. Rev. C 102, 041303 (2020). https://doi.org/10.1103/PhysRevC.102.041303
- [50] 2020Bi15 J. Bishop, G. V. Rogachev, S. Ahn, E. Aboud, M. Barbui, P. Baron, A. Bosh, E. Delagnes, J. Hooker, C. Hunt, H.

Jayatissa, E. Koshchiy, R. Malecek, S. T. Marley, R. O'Dwyer, E. C. Pollacco, C. Pruitt, B. T. Roeder, A. Saastamoinen, L. G. Sobotka, S. Upadhyayula, Nucl. Instrum. Methods Phys. Res. A964, 163773 (2020). https://doi.org/10.1016/j.nima.2020.163773

- [51] 2020Gi02 J. Giovinazzo, T. Goigoux, B. Blank, P. Ascher, M. Gerbaux, S. Grevy, T. Kurtukian Nieto, C. Magron, P. Doornenbal, N. Fukuda, N. Inabe, G. G. Kiss, T. Kubo, S. Kubono, S. Nishimura, H. Sakurai, Y. Shimizu, C. Sidong, P.-A. Soderstrom, T. Sumikama, H. Suzuki, H. Takeda, P. Vi, J. Wu, D. S. Ahn, J. Agramunt, A. Algora, V. Guadilla, A. Montaner-Piza, A. I. Morales, S. E. A. Orrigo, B. Rubio, Y. Fujita, M. Tanaka, W. Gelletly, P. Aguilera, F. Molina, F. Diel, D. Lubos, G. De Angelis, D. Napoli, C. Borcea, A. Boso, R. B. Cakirli, E. Ganioglu, J. Chiba, D. Nishimura, H. Oikawa, Y. Takei, S. Yagi, K. Wimmer, G. De France, S. Go, B. A. Brown, Acta Phys.Pol. B51, 577 (2020). https://doi.org/10.5506/APhysPolB.51.577
- [52] 2021Or01 S. E. A. Orrigo, B. Rubio, W. Gelletly, P. Aguilera, A. Algora, A. I. Morales, J. Agramunt, D. S. Ahn, P. Ascher, B. Blank, C. Borcea, A. Boso, R. B. Cakirli, J. Chiba, G. de Angelis, G. de France, F. Diel, P. Doornenbal, Y. Fujita, N. Fukuda, E. Ganioglu, M. Gerbaux, J. Giovinazzo, S. Go, T. Goigoux, S. Grevy, V. Guadilla, N. Inabe, G. G. Kiss, T. Kubo, S. Kubono, T. Kurtukian-Nieto, D. Lubos, C. Magron, F. Molina, A. Montaner-Piza, D. Napoli, D. Nishimura, S. Nishimura, H. Oikawa, V. H. Phong, H. Sakurai, Y. Shimizu, C. Sidong, P. -A. Soderstrom, T. Sumikama, H. Suzuki, H. Takeda, Y. Takei, M. Tanaka, J. Wu, S. Yagi, Phys. Rev. C 103, 014324 (2021). https://doi.org/10.1103/PhysRevC.103.014324
- [53] **2021Wa06** Y. B. Wang, for the BRIF Collaboration, Phys. Rev. C **103**, L011301 (2021). https://doi.org/10.1103/PhysRevC.103.L011301
- [54] 2021Wa16 M. Wang, W. J. Huang, F. G. Kondev, G. Audi, S. Naimi, Chin. Phys. C 45, 030003 (2021). https://doi.org/ 10.1088/1674-1137/abddaf