

Fig. 1: Known experimental values for heavy particle emission of the even-Z T_z = +9/2 nuclei.

Last updated 3/21/23

Table 1

Observed and predicted β -delayed particle emission from the even-Z, $T_z = +9/2$ nuclei. Unless otherwise stated, all Q-values are taken from [2021Wa16] or deduced from values therein. All J^{π} values taken from ENSDF.

		-		_					
Nuclide	Ex	J^{π}	$T_{1/2}$	$Q_{\mathcal{E}}$	$Q_{\varepsilon p}$	$BR_{\beta p}$	$Q_{\varepsilon 2p}$	$Q_{\varepsilon \alpha}$	Experimental
105 0 1		5 /0+	55 4(4) *	2 727(4)	0.000(0)		10.000/2)	0 (54(6)	10521 A0 10/00 A5 10/00/101
109 Cd		5/2 '	55.4(4) m*	2.737(4)	-2.228(2)		-10.880(3)	0.654(6)	[1953J020, 1968B025, 1969St18]
10 ⁹ Sn		5/2+	18.1(2) m**	3.859(9)	-0.667(8)		-8.801(8)	2.016(9)	[1969Ba04, 1972Ba41, 1956Pe56]
¹¹⁵ Te		$(7/2^{+})$	1.6(2) m	6.07(30)	3.019(28)		-4.533(28)	5.718(28)	[1976Wil1]
¹¹ /Xe		$5/2(^{+})$	61(2) s	6.253(28)	3.789(26)	0.0029(6)%	-1.760(19)	7.807(20)	[1971Ho07]
¹²¹ Ba		$5/2(^+)$	29.7(15) s	6.36(14)	4.14(14)	obs	-1.545(144)	7.27(14)	[1974Ka31]
¹²⁵ Ce		$(7/2^{-})$	9.9(5) s***	7.10(20)#	5.14(20)#	obs	-0.19(20)#	8.02(20)#	[1998Be64, 1983Ni05, 1986Wi15]
¹²⁹ Nd		$(5/2^+)$	6.7(4) s	7.40(20)#	5.87(20)#	obs	0.94(20)#	8.96(20)#	[2010Xu12, 1985Wi07, 2011MaZL,
									1977Bo02]
¹³³ Sm	y@	$(1/2^{-})$	$3.4(5) s^a$	8.18(30)#	6.91(30)#	obs	2.49(30)#	10.12(30)#	[2006Xu07,2001Xu04, 1993BrZU,
	-								1985Wi07, 1977Bo02]
^{133m} Sm [@]	x@	$(5/2^+)$	2.8(5) s	8.18(30)#+x	6.91(30)#+x	obs	2.49(30)#+x	10.12(30)#+x	[2006Xu07, 2001Xu04, 1985Wi07,
									1977Bo02]
¹³⁷ Gd		(7/2)	2.2(2) s	8.93(30)#	8.301(30)#	obs	4.27(31)#	11.77(30)#	[2005Xu04]
¹⁴¹ Dy		$(9/2^{-})$	0.9(2) s	9.16(32)#	9.11(30)#	obs	5.44(30)#	12.34(30)#	[2006Xu03, 1984Ni03, 1986Wi15]
¹⁴⁵ Er		$(1/2^+)$		9.88(20)#	10.04(20)#	obs	6.60(21)#	12.88(23)#	[2010Ma20]
$^{145m}{ m Er}^{@@}$	0.253(1)	$(11/2^{-})$	0.9(3) s	10.13(20)#	10.29(20)#	obs	6.86(21)#	13.13(23)#	[2010Ma20, 2006Ta08, 1989Vi02,
									1988WiZN]
¹⁴⁹ Yb		$(1/2^+)$	0.7(2) s	10.61(36)#	10.86(30)#	$\approx 6\%$	7.849(30)#	13.37(30)#	[2005Xu04]
¹⁵³ Hf			> 200 ns	11.08(34)#	11.68(34)#		8.89(30)#	14.22(36)#	[2006Xu07]
¹⁵⁷ W		$(7/2^{-})$	275(40) ms	9.91(43)#	10.84(43)#		8.28(40)#	6.26(423)#	[2019Hi06, 2010Bi03, 2008PaZV]
¹⁶¹ Os		$(7/2^{-})$	640(60) μs	10.65(43)#	11.84(43)#		9.67(40)#	16.97(43)#	[2010Bi03, 2019Hi06, 2008BiZT,
		. /							2008PaZV]
¹⁶⁵ Pt		(7/2 ⁻)	$0.26^{+.26}_{09}$ ms	11.28(43)#	12.82(43)#		11.11(40)#	18.10(43)#	[2019Hi06]

* Weighted average of 54.7(8) m [1953Jo20], 57.0(6) m [1968Bo25] and 56.0(5) [1969St18]. ** Weighted average of 518.0(2) m [1969Ba04], 18.3(3) m [1972Ba41] and 18.1(3) m [1956Pe56].

*** Weighted average of 10.5(5) s [1998Be64], 8.9(7) s [1983Ni05] and 9.2(10 s [1986Wi15].

^a Weighted average of 3.2(7) s [2006Xu07], 3.4(5) s [2001Xu04], 3.7(7) s [1993BrZU].

[@] The relative energy placement of the two isomers is unknown.

Table 2

Particle separation and emission from the even-Z, $T_z = +9/2$ nuclei. Unless otherwise stated, all Q-values and separation energies are taken from [2021Wa16] or deduced from values therein.

Nuclide	S_p	BR_p	S_{2p}	Qα	BR_{α}	Experimental
¹⁰⁵ Cd	6.506(4)		11.455(2)	-1.327(5)		
¹⁰⁹ Sn	5.799(12)		10.218(8)	-0.721(8)		
¹¹³ Te	4.037(33)		6.986(28)	1.858(29)		
¹¹⁷ Xe	4.054(76)		6.701(30)	1.737(30)		
¹²¹ Ba	4.15(142)		6.53(14)	1.02(14)		
¹²⁵ Ce	3.69(20)#		5.58(20)#	1.66(24)#		
¹²⁹ Nd	3.33(20)#		4.97(20)#	1.86(28)#		
¹³³ Sm	2.89(33)#		4.04(30)#	2.72(36)#		
133mSm*	2.89(33)#-x		4.04(30)#-x	2.72(36)#+x		
¹³⁷ Gd	2.26(36)#		2.93(34)#	3.59(42)#		
¹⁴¹ Dy	2.19(85)#		2.33(36)#	3.41(42)#		
¹⁴⁵ Er	1.92(20)#		1.65(20)#	3.72(36)#		
145mEr**	1.67(20)#		1.90(20)#	3.97(36)#		
¹⁴⁹ Yb	1.85(30)#		1.30(30)#	3.49(36)#		
¹⁵³ Hf	1.17(36)#		0.34(43)#	3.61(42)#		
¹⁵⁷ W	0.98(50)#		-0.04(50)#	5.19(50)#		
¹⁶¹ Os	0.61(50)#		-0.66(50)#	7.069(11)#	5.9(27)%	[2010Bi03 , 2019Hi06, 2008BiZT]
¹⁶⁵ Pt	0.12(51) #		-1.44(50)#	7.453(14)#	100%	[2019Hi06]

direct a emis		$r, J^{n} = (1/2),$	$T_{1/2} = 040(00)$	μ s, $BK_{\alpha} = 3$.	9(27)%.				
$E_{\alpha}(c.m.)$	$E_{\alpha}(la$	b)	$I_{\alpha}(\text{rel})$	Iα	(absb)	$\mathbf{J}_f^{\boldsymbol{\pi}}$	E_{daught}	_{ter} (¹⁵⁷ W)	coincident γ -ray
6.747(30) 7.066(12)	6.580 6.890	(30) (12)	100% 100%		9(27)% 9(27)%	(9/2 ⁻) (7/2 ⁻)			
* All val	lues from [2010B	i03].							
Table 4 direct p emis	sion from ¹⁶⁵ Pt*,	$J^{\pi} = (7/2^{-}), T$	$\Gamma_{1/2} = 0.26^{+26}_{-9} \mu$	$\iota s, BR_{\alpha} = 100$	0%.				
$E_{\alpha}(c.m.)$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(\text{rel})$	<i>I_p</i> (abs)	$\mathbf{J}_f^{\boldsymbol{\pi}}$	$E_{daughter}(^{161}\mathrm{Os})$	coincide	ent γ-rays	R ₀ (fm)	HF
7.453(14)	7.272(14)	100%	100%	(7/2 ⁻)	0.0			1.551(19)	$2.6^{+1.5}_{-1.2}$

* All values from [2019Hi06].

References used in the Tables

- [1] **1953Jo20** F. A. Johnson, Can. J. Phys. **31**, 1136 (1953). https://doi.org/10.1139/p53-098
- [2] 1956Pe56 M. D. Petroff, unpublished, Thesis, Univ. California (1956); UCRL-3538 (1956)
- [3] 1968Bo25 M. Bormann, A. Behrend, I. Riehle, O. Vogel, Nucl. Phys. A115, 309 (1968).
- [4] 1969Ba04 C A R Bain, F D Brooks, Nucl Phys A125, 312(1969). https://doi.org/10.1016/0375-9474(69)91076-8
- [5] 1971H007 P. Hornshoj, K. Wilsky, P. G. Hansen, B. Jonson, M. Alpsten, G. Andersson, A. Appelqvist, B. Bengtsson, O. B. Nielsen, Phys. Lett. 34B, 591 (1971). https://doi.org/10.1016/0370-2693(71)90145-6
- [6] 1972Ba41 F. C. Barker, Astrophys. J. 173, 477 (1972). https://doi.org/10.1086/151439
- [7] 1974Ka31 V. A. Karnaukhov, D. D. Bogdanov, A. V. Demyanov, G. I. Koval, L. A. Petrov, Nucl. Instrum. Methods 120, 69 (1974). https://doi.org/10.1016/0029-554X(74)90106-2
- [8] 1976Wi11 M. E. J. Wigmans, R. J. Heynis, P. M. A. van der Kam, H. Verheul, Phys. Rev. C14, 243 (1976). https://doi.org/10.1103/PhysRevC.14.243
- [9] 1977Bo02 D. D. Bogdanov, A. V. Demyanov, V. A. Karnaukhov, L. A. Petrov, A. Plochocki, V. G. Subbotin, J. Voboril, Nucl. Phys. A275, 229 (1977). https://doi.org/10.1016/0375-9474(77)90285-8
- [10] 1983Ni05 J. M. Nitschke, M. D. Cable, W. -D. Zeitz, Z. Phys. A312, 265 (1983). https://doi.org/10.1007/BF01412173
- [11] 1984Ni03 J. M. Nitschke, P. A. Wilmarth, P. K. Lemmertz, W. -D. Zeitz, J. A. Honkanen, Z. Phys. A316, 249 (1984). https://doi.org/10.1007/BF01412274
- [12] 1985Wi07 P. A. Wilmarth, J. M. Nitschke, P. K. Lemmertz, R. B. Firestone, Z. Phys. A321, 179 (1985). https://doi.org/10.1007/BF01411963
- [13] 1986Wi15 P. A. Wilmarth, J. M. Nitschke, R. B. Firestone, J. GilatZ. Phys. A325, 485 (1986).
- [14] 1988WiZN P. A. Wilmarth, unpublished (thesis), LBI-26101 (1988).
- [15] 1989Vi02 K. S. Vierinen, J. M. Nitschke, P. A. Wilmarth, R. M. Chasteler, A. A. Shihab-Eldin, R. B. Firestone, K. S. Toth, Y. A. Akovali, Phys. Rev. C39, 1972 (1989). https://doi.org/10.1016/0375-9474(89)90266-2
- [16] 1993BrZU J. Breitenbach, R. A. Braga, J. L. Wood, P. B. Semmes, J. Kormicki, Proc.6th Intern.Conf.on Nuclei Far from Stability + 9th Intern.Conf.on Atomic Masses and Fundamental Constants, Bernkastel-Kues, Germany, 19-24 July, 1992, R.Neugart, A.Wohr, Eds., p.575 (1993).
- [17] 1998Be64 R. Beraud, A. Emsallem, E. Chabanat, L. Ducroux, N. Redon, P. Dendooven, A. Jokinen, M. Huhta, M. Oinonen, J. Aysto, K. Perajarvi, A. Honkanen, H. Penttila, J. C. Wang, Acta Phys. Hung. N. S. 7, 115 (1998).
- [18] 2001Xu04 S. -W. Xu, Y. -X. Xie, X. -D. Wang, Z. -K. Li, B. Guo, C. -G. Leng, C. -F. Wang, Y. Yu, Eur. Phys. J. A11, 277 (2001); Erratum Eur. Phys. J. A12, 375 (2001). https://doi.org/10.1007/s100500170065
- [19] 2005Xu04 S. -W. Xu, Z. -K. Li, Y. -X. Xie, Q. -Y. Pan, W. -X. Huang, X. -D. Wang, Y. Yu, Y. -B. Xing, N. -C. Shu, Y. -S. Chen, F. -R. Xu, K. Wang, Phys. Rev. C 71, 054318 (2005). oi: 10.1103/PhysRevC.71.054318

Table 3 direct of emission from ${}^{161}O_{0}*~I^{\pi} = (7/2^{-})$ T $_{2} = 640(60)$ Us $PP_{2} = 5.0(27)\%$

- [20] 2005Xu05 S. -W. Xu, Z. -K. Li, Y. -X. Xie, X. -D. Wang, B. Guo, C. -G. Leng, Y. Yu, Eur. Phys. J. A 11, 375 (2001). https://doi.org/10.1103/PhysRevC.71.064901
- [21] 2006Ta08 M. N. Tantawy, C. R. Bingham, K. P. Rykaczewski, J. C. Batchelder, W. Krolas, M. Danchev, D. Fong, T. N. Ginter, C. J. Gross, R. Grzywacz, K. Hagino, J. H. Hamilton, D. J. Hartley, M. Karny, K. Li, C. Mazzocchi, A. Piechaczek, A. V. Ramayya, K. Rykaczewski, D. Shapira, A. Stolz, J. A. Winger, C. -H. Yu, E. F. Zganjar, Phys. Rev. C 73, 024316 (2006). https://doi.org/10.1103/PhysRevC.73.024316
- [22] 2006Xu03 S -W Xu, Y -X Xie, F -R Xu, H -L Liu, Z -K Li, Eur Phys J A28, 37 (2006). https://doi.org/10.1140/epja/i2006-10038-4
- [23] 2006Xu07 S -W Xu, Y -X Xie, Z -K Li, F -R Xu, H -L Liu, Y -B Xing, B Guo, J -P Xing, C -F Wang, Eur Phys J A 29, 161 (2006). https://doi.org/10.1140/epja/i2006-10089-5
- [24] 2008PaZV R. D. Page, L. Bianco, I. G. Darby, D. T. Joss, J. Simpson, J. S. Al-Khalili, A. J. Cannon, R. J. Cooper, S. Eeckhaudt, S. Erturk, B. Gall, T. Grahn, P. T. Greenlees, B. Hadinia, P. M. Jones, D. S. Judson, R. Julin, S. Juutinen, S. Ketelhut, M. Labiche, M. Leino, A. -P. Leppanen, M. Nyman, D. O'Donnell, P. Rahkila, P. J. Sapple, J. Saren, C. Scholey, A. N. Steer, P. D. Stevenson, E. B. Suckling, J. Thomson, J. Uusitalo, M. Venhart, Proc. Nuclear Physics and Astrophysics: From Stable Beams to Exotic Nuclei, Cappadocia, Turkey, June 25-30, 2008, I. Boztosun, A. B. Balantekin, Eds., p. 172 (2008); AIP Conf. Proc. 1072 (2008).
- [25] 2010Bi03 L. Bianco, R. D. Page, I. G. Darby, D. T. Joss, J. Simpson, J. S. Al-Khalili, A. J. Cannon, B. Cederwall, S. Eeckhaudt, S. Erturk, B. Gall, M. B. Gomez Hornillos, T. Grahn, P. T. Greenlees, B. Hadinia, K. Heyde, U. Jakobsson, P. M. Jones, R. Julin, S. Juutinen, S. Ketelhut, M. Labiche, M. Leino, A. -P. Leppanen, M. Nyman, D. O'Donnell, E. S. Paul, M. Petri, P. Peura, A. Puurunen, P. Rahkila, P. Ruotsalainen, M. Sandzelius, P. J. Sapple, J. Saren, C. Scholey, N. A. Smirnova, A. N. Steer, P. D. Stevenson, E. B. Suckling, J. Thomson, J. Uusitalo, M. Venhart, Phys. Lett. B 690, 15 (2010). https://doi.org/10.1016/j.physletb.2010.04.056
- [26] 2010Ma20 F. Ma, X. H. Zhou, Y. Zheng, S. W. Xu, Y. X. Xie, L. Chen, X. G. Lei, Y. X. Guo, Y. H. Zhang, Z. K. Li, Y. H. Qiang, S. Guo, H. X. Wang, H. B. Zhou, B. Ding, G. S. Li, N. T. Zhang, Phys. Rev. C81, 047301 (2010).
- [27] 2010Xu12 S. -W. Xu, Y. -X. Xie, F. Ma, X. -H. Zhou, Z. -K. Li, Y. Zheng, L. Chen, X. -G. Lei, Y. -H. Zhang, H. L. Lui, F. R. Xu, Eur. Phys. J. A 46, 55 (2010). https://doi.org/10.1103/PhysRevC.81.047301
- [28] 2011MaZL F. Ma, S. W. Xu, X. H. Zhou, Y. X. Xie, Y. Zheng, Proc. of the 4th Inter. Conf. Proton Emitting Nuclei and Related Topics (PROCON 2011), Bordeaux, France, 6-10 June 2011, LB. Blank Ed. p. 185 (2011); AIP Conf. Proc. 1409 (2011)
- [29] 2019Hi06 J. Hilton, J. Uusitalo, J. Saren, R. D. Page, D. T. Joss, M. A. M. AlAqeel, H. Badran, A. D. Briscoe, T. Calverley, D. M. Cox, T. Grahn, A. Gredley, P. T. Greenlees, R. Harding, A. Herzan, E. Higgins, R. Julin, S. Juutinen, J. Konki, M. Labiche, M. Leino, M. C. Lewis, J. Ojala, J. Pakarinen, P. Papadakis, J. Partanen, P. Rahkila, P. Ruotsalainen, M. Sandzelius, C. Scholey, J. Sorri, L. Sottili, S. Stolze, F. Wearing, Phys. Rev. C 100, 014305 (2019). https://doi.org/10.1103/PhysRevC.100.014305
- [30] 2021Wa16 M. Wang, W. J. Huang, F. G. Kondev, G. Audi, S. Naimi, Chin. Phys. C 45, 030003 (2021). https://doi.org/ 10.1088/1674-1137/abddaf