

Last update 3//2/23

Table 1

Observed and predicted β -delayed particle emission from the even-Z, $T_z = +5$ nuclei. Unless otherwise stated, all Q-values are taken from [2021Wa16] or deduced from values therein.

NT 1'1	г	τπ	T	0	0	00	0	0	
Nuchde	EX	J^{n}	$I_{1/2}$	$Q_{\mathcal{E}}$	$Q_{\varepsilon p}$	Βκ _β ρ	$Q_{\epsilon 2p}$	Qεα	Experimental
¹¹⁴ Te		0^+	15.2(7) m	2.610(30)	-0.851(24)		-8.477(25)	2.155(27)	[1976Wi11]
¹¹⁸ Xe		0^{+}	3.8(9) m	2.892(22)	-0.273(17)		-5.835(12)	3.993(22)	[1976Be61]
¹²² Ba		0^{+}	1.95(15) m	3.540(40)	0.583(30)		-5.440(32)	3.937(34)	[1978Bo32]
¹²⁶ Ce		0^+	51.0(4) s	4.150(90)	1.559(30)		-3.657(29)	4.899(44)	[2002Ko02]
¹³⁰ Nd		0^+	13(3) s	4.580(70)	2.402(40)		-2.549(61)	5.952(95)	[2000Xu08]
¹³⁴ Sm		0^{+}	9.3(8) s	5.39(20)#	3.67(20)#		-0.73(20)#	7.37(21)#	[1990Ko25]
138Gd		0^+	4.7(9) s	6.09(20)#	5.04(20)#		0.93(21)#	8.68(21)#	[1999Xi04]
¹⁴² Dy		0^+	2.3(3) s	6.44(20)#	5.82(73)#	0.06(3) %	2.29(73)#	9.20(73)#	[1991Fi03, 1986Wi15]
¹⁴⁶ Er		0^+	1.7(6) s	6.916(9)	6.632(9)		3.468(29)	9.813(70)	[1993To05]
¹⁵⁰ Yb		0^+	\geq 200 ns	7.66(36)#	7.62(30)#		4.58(31)#	9.98(30)#	[2000So11]
¹⁵⁴ Hf		0^{+}	2(1) s	6.94(36)#	7.14(36)#		4.41(31)#	11.34(36)#	[1981Ho10]
¹⁵⁸ W		0^+	1.5(2) ms	7.43(36)#	7.87(36)#		5.43(31)#	13.55(36)#	[2000Ma95]
^{158m}W	1.888(8)	(8^{+})	143(19) µs	9.32(36)#	9.76(36)#		7.32(31)#	15.44(36)#	[2000Ma95]
162Os		0^{+}	2.05(10) ms	7.95(36)#	8.72(36)#		6.75(31)#	14.19(36)#	[2000Mu95]
¹⁶⁶ Pt		0^+	$260^{+100}_{-60} \ \mu s$	8.52(36)#	9.68(36)#		8.11(31)#	15.25(36)#	[2019Hi06]
¹⁷⁰ Hg		0^+	$80^{+40}_{-4}\mu\mathrm{s}$	9.12(36)#	10.59(36)#		9.504(31)#	16.30(36)#	[2019Hi06]

Table 2

Particle emission from the even-Z, $T_z = +5$ nuclei. Unless otherwise stated, all Q-values and separation energies are taken from [2021Wa16] or deduced from values therein.

Nuclide	S _n	BR _n	S_{2n}	Ο _α	BRα	Experimental
	P	P	- <u>-</u> P	-Cu		X
¹¹⁴ Te	4.762(30)		7.813(24)	1.527(28)		
¹¹⁸ Xe	4.929(28)		7.393(26)	1.386(27)		
¹²² Ba	4.796(31)		7.014(308)	1.045(30)		
¹²⁶ Ce	4.350(38)		6.309(31)	1.363(40)		
¹³⁰ Nd	4.112(41)		5.640(40)	1.799(40)		
¹³⁴ Sm	3.26(20)#		4.53(20)#	2.80(20)#		
¹³⁸ Gd	2.80(20)#		3.43(20)#	3.29(28)#		
¹⁴² Dy	2.87(74)#		2.92(73)#	3.12(76)#		
¹⁴⁶ Er	2.49(10)		2.330(10)	3.37(73)		
¹⁵⁰ Yb	2.18(36)#		1.93(30)#	3.07(30)#		
¹⁵⁴ Hf	1.64(34)#		1.04(34)#	3.68(42)#		
^{158}W	1.39(34)#		0.45(34)#	6.612(3)	100 %	[2000Ma95, 2005Se11, 1996Pa01, 1989Ho12]
^{158m}W	-0.50(34)#		-1.44(34)#	8.503(8)	100 %	[2000Ma95, 2005Se11, 2017Jo09, 1996Pa01, 1989Ho12]
¹⁶² Os	0.95(34)#		-0.25(34)#	6.768(3)	100 %	[2000Mu95, 2004Jo12, 1996Bi07, 1989Ho1]
¹⁶⁶ Pt	0.48(34)#		-1.06(34)#	7.292(7)	100 %	[2019Hi06 , 1996Bi07]
¹⁷⁰ Hg	0.09(42)#		-1.85(34)#	7.773(30)*	100 %	[2019Hi06]

* From [2019Hi06], 7.77(31)# in [2021Wa16].

Table 3

direct α emission from ¹⁵⁸ W*, J ^{π} = 0 ⁺ , T _{1/2} = 1.5(2) ms, BR _{α} = 100 %.										
$E_{\alpha}(\text{c.m.})$	$E_{\alpha}(\text{lab})$	<i>I_p</i> (absb)	J_f^π	$E_{daughter}(^{154}\mathrm{Hf})$	coincident γ -rays	R ₀ (fm)	HF			
6.612(3)	6.445(3)	100%	0^+	0.0		1.557(10)	1.0			

* All values from [2000Ma95].

Table 4

direct α emission from ^{158m} W*, Ex = 1.888(8) MeV, J ^{π} = 0 ⁺ , T _{1/2} = 143(19) μ s, BR_{α} = 100 %.										
$E_{\alpha}(\text{c.m.})$	$E_{\alpha}(\text{lab})$	<i>I_p</i> (absb)	${f J}_f^\pi$	$E_{daughter}(^{154}\mathrm{Hf})$	coincident γ -rays	R ₀ (fm)	HF			
8.501(7)	8.286(7)	100%	0^+	0.0		1.557(10)	1.0			

* All values from [2000Ma95].

Table 5

	· •/=						
$E_{\alpha}(\text{lab})$	$I_n(absb)$	J^{π}_{c}	$E_{daughter}(^{158}W)$	coincident γ -rays	R_0 (fm)	HF	
u()	<i>p</i> ()	Ĵ	uuugnier		0()		
6.600(3)	100%	0^+	0.0		1.561(3)	1.0	
es from [2000Ma9	5].						
ion from 166 Dt* 17	и – 0 ⁺ т. – 260 ⁺	100 us PR	- 100 0/				
ion from "Pt", J	$=0^{+}, 1_{1/2}=200^{-}$	$_{60}$ µs, BR_{α}	= 100 %.				
$E_{\alpha}(\text{lab})$	$I_p(absb)$	J_f^π	$E_{daughter}(^{162}\mathrm{Os})$	coincident γ -rays	R ₀ (fm)	HF	
7.118(8)	100%	0^+	0.0		1.555(26)	1.0	
es from [2019Hi06	5].						
170		0					
ion from ¹⁷⁰ Hg*, J	$^{n} = 0^{+}, T_{1/2} = 80^{+4}_{-4}$	$^{\circ} \mu s, BR_{\alpha} =$	100 %.				
$E_{\alpha}(lab)$	$I_p(absb)$	J_f^{π}	$E_{daughter}(^{168}\mathrm{Pt})$	coincident γ -rays	R ₀ (fm)	HF	
7.590(30)	100%	0^+	0.0		1.532(38)	1.0	
	$ \frac{E_{\alpha}(\text{lab})}{6.600(3)} $ es from [2000Ma9 ion from ¹⁶⁶ Pt*, J ⁷ <u>E_{\alpha}(\text{lab})</u> 7.118(8) es from [2019Hi06 ion from ¹⁷⁰ Hg*, J <u>E_{\alpha}(\text{lab})</u> 7.590(30)	$E_{\alpha}(lab) \qquad I_{p}(absb)$ 6.600(3) 100% es from [2000Ma95]. ion from ¹⁶⁶ Pt*, J ^{\$\pi\$} = 0 ⁺ , T_{1/2}= 260 ⁺ _{-} $E_{\alpha}(lab) \qquad I_{p}(absb)$ 7.118(8) 100% es from [2019Hi06]. ion from ¹⁷⁰ Hg*, J ^{\$\pi\$} = 0 ⁺ , T_{1/2}=80 ⁺⁴ _{-4} $E_{\alpha}(lab) \qquad I_{p}(absb)$ 7.590(30) 100%	$E_{\alpha}(\text{lab}) \qquad I_{p}(\text{absb}) \qquad J_{f}^{\pi}$ 6.600(3) 100% 0 ⁺ es from [2000Ma95]. ion from ¹⁶⁶ Pt*, J ^{\$\pi\$} = 0 ⁺ , T_{1/2}= 260^{+100}_{-60} \$\mu\$s, BR\$_{\$\pi\$} = $E_{\alpha}(\text{lab}) \qquad I_{p}(\text{absb}) \qquad J_{f}^{π}$ 7.118(8) 100% 0 ⁺ es from [2019Hi06]. ion from ¹⁷⁰ Hg*, J ^{\$\pi\$} = 0 ⁺ , T_{1/2}=80^{+40}_{-4} \$\mu\$s, BR\$_{\$\pi\$} = $E_{\alpha}(\text{lab}) \qquad I_{p}(\text{absb}) \qquad J_{f}^{π}$ 7.590(30) 100% 0 ⁺	$E_{\alpha}(\text{lab}) \qquad I_{p}(\text{absb}) \qquad J_{f}^{\pi} \qquad E_{daughter}(^{158}\text{W})$ 6.600(3) 100% 0 ⁺ 0.0 es from [2000Ma95]. ion from ¹⁶⁶ Pt*, J ^π = 0 ⁺ , T _{1/2} = 260 ⁺¹⁰⁰ ₋₆₀ µs, BR _α = 100 %. $E_{\alpha}(\text{lab}) \qquad I_{p}(\text{absb}) \qquad J_{f}^{\pi} \qquad E_{daughter}(^{162}\text{Os})$ 7.118(8) 100% 0 ⁺ 0.0 es from [2019Hi06]. ion from ¹⁷⁰ Hg*, J ^π = 0 ⁺ , T _{1/2} =80 ⁺⁴⁰ ₋₄ µs, BR _α = 100 %. $E_{\alpha}(\text{lab}) \qquad I_{p}(\text{absb}) \qquad J_{f}^{\pi} \qquad E_{daughter}(^{168}\text{Pt})$ 7.590(30) 100% 0 ⁺ 0.0	$E_{\alpha}(lab) \qquad I_{p}(absb) \qquad J_{f}^{\pi} \qquad E_{daughter}(^{158}W) \qquad \text{coincident } \gamma\text{-rays}$ $6.600(3) \qquad 100\% \qquad 0^{+} \qquad 0.0 \qquad$ es from [2000Ma95]. ion from ¹⁶⁶ Pt*, J ^{\pi} = 0^{+}, T_{1/2}= 260^{+100}_{-60} \ \mu\text{s}, BR_{\alpha} = 100 \ \%. $E_{\alpha}(lab) \qquad I_{p}(absb) \qquad J_{f}^{\pi} \qquad E_{daughter}(^{162}\text{Os}) \qquad \text{coincident } \gamma\text{-rays}$ $7.118(8) \qquad 100\% \qquad 0^{+} \qquad 0.0 \qquad$ es from [2019Hi06]. ion from ¹⁷⁰ Hg*, J ^{\pi} = 0^{+}, T_{1/2}= 80^{+40}_{-4} \ \mu\text{s}, BR_{\alpha} = 100 \ \%. $E_{\alpha}(lab) \qquad I_{p}(absb) \qquad J_{f}^{\pi} \qquad E_{daughter}(^{168}\text{Pt}) \qquad \text{coincident } \gamma\text{-rays}$ $7.590(30) \qquad 100\% \qquad 0^{+} \qquad 0.0 \qquad$	$E_{\alpha}(\text{lab}) \qquad I_{p}(\text{absb}) \qquad J_{f}^{\pi} \qquad E_{daughter}(^{158}\text{W}) \qquad \text{coincident } \gamma\text{-rays} \qquad R_{0} \text{ (fm)}$ $6.600(3) \qquad 100\% \qquad 0^{+} \qquad 0.0 \qquad \qquad 1.561(3)$ es from [2000Ma95]. ion from ¹⁶⁶ Pt*, J^{\pi} = 0^{+}, T_{1/2} = 260^{+100}_{-60} \ \mu\text{s}, BR_{\alpha} = 100 \ \%. $E_{\alpha}(\text{lab}) \qquad I_{p}(\text{absb}) \qquad J_{f}^{\pi} \qquad E_{daughter}(^{162}\text{Os}) \qquad \text{coincident } \gamma\text{-rays} \qquad R_{0} \text{ (fm)}$ $7.118(8) \qquad 100\% \qquad 0^{+} \qquad 0.0 \qquad \qquad 1.555(26)$ es from [2019Hi06]. ion from ¹⁷⁰ Hg*, J^{\pi} = 0^{+}, T_{1/2} = 80^{+40}_{-4} \ \mu\text{s}, BR_{\alpha} = 100 \ \%. $E_{\alpha}(\text{lab}) \qquad I_{p}(\text{absb}) \qquad J_{f}^{\pi} \qquad E_{daughter}(^{168}\text{Pt}) \qquad \text{coincident } \gamma\text{-rays} \qquad R_{0} \text{ (fm)}$ $7.590(30) \qquad 100\% \qquad 0^{+} \qquad 0.0 \qquad \qquad 1.532(38)$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

* All values from [2019Hi06].

direct α emission from ¹⁶²Os*, J^{π} = 0⁺, T_{1/2}= 2.05(10) ms, BR_{α} = 100 %.

References used in the Tables

- [1] 1976Be61 E. E. Berlovich, L. K. Batist, Y. S. Blinnikov, V. A. Bondarenko, V. V. Gavrilov, Y. V. Elkin, G. G. Lemeshko, K. A. Mezilev, Y. T. Mironov, F. V. Moroz, Y. N. Novikov, S. Y. Orlov, V. N. Panteleev, A. G. Polyakov, V. A. Sergienko, S. L. Smolskii, V. K. Tarasov, V. I. Tikhonov, N. D. Shchigolev, Izv. Akad. Nauk SSSR, Ser. Fiz. 40, 2036 (1976); Bull. Acad. Sci. USSR, Phys. Ser. 40, No. 10, 10 (1976).
- [2] 1976Wi11 M. E. J. Wigmans, R. J. Heynis, P. M. A. van der Kam, H. Verheul, Phys. Rev. C14, 243 (1976). https://doi.org/10.1103/PhysRevC.14.243
- [3] 1978Bo32 D. D. Bogdanov, A. V. Demyanov, V. A. Karnaukhov, M. Nowicki, L. A. Petrov, J. Voboril, A. Plochocki, Nucl. Phys. A307, 421 (1978). https://doi.org/10.1016/0375-9474(78)90457-8
- [4] 1981Ho10 S. Hofmann, G. Munzenberg, F. Hessberger, W. Reisdorf, P. Armbruster, B. Thuma, Z. Phys. A299, 281 (1981). https://doi.org/10.1007/BF01443948
- [5] 1986Wi15 P. A. Wilmarth, J. M. Nitschke, R. B. Firestone, J. GilatZ. Phys. A325, 485 (1986).
- [6] 1989Ho12 S. Hofmann, P. Armbruster, G. Berthes, T. Faestermann, A. Gillitzer, F. P. Hessberger, W. Kurcewicz, G. Munzenberg, K. Poppensieker, H. J. Schott, I. Zychor, Z. Phys. A333, 107 (1989).
- [7] 1990Ko25 M. O. Kortelahti, B. D. Kern, R. A. Braga, R. W. Fink, I. C. Girit, R. L. Mlekodaj, Phys. Rev. C42, 1267 (1990). https://doi.org/10.1103/PhysRevC.42.1267
- [8] 1991Fi03 R. B. Firestone, J. Gilat, J. M. Nitschke, P. A. Wilmarth, K. S. Vierinen, Phys. Rev. C43, 1066 (1991). https://doi.org/10.1103/PhysRevC.43.1066
- [9] 1993To05 K. S. Toth, P. A. Wilmarth, J. M. Nitschke, D. C. Sousa, Phys. Rev. C48, 445 (1993). https://doi.org/10.1103/PhysRevC.48.445
- [10] 1996Bi07 C. R. Bingham, K. S. Toth, J. C. Batchelder, D. J. Blumenthal, L. T. Brown, B. C. Busse, L. F. Conticchio, C. N. Davids, T. Davinson, D. J. Henderson, R. J. Irvine, D. Seweryniak, W. B. Walters, P. J. Woods, B. E. Zimmerman, Phys. Rev. C54, R20 (1996). https://doi.org/10.1103/PhysRevC.54.R20
- [11] 1996Pa01 R. D. Page, P. J. Wood, R. A. Cunningham, T. Davinson, N. J. Davis, A. N. James, K. Livingston, P. J. Sellin, A. C. Shotter, Phys. Rev. C53, 660 (1996). https://doi.org/10.1103/PhysRevC.53.660
- [12] 1999Xi04 Y. Xie, S. Xu, Z. Li, Y. Yu, Q. Pan, C. Wang, T. Zhang, Eur. Phys. J. A 6, 239 (1999). https://doi.org/10.1007/s100500050340

- [13] 2000Ma95 H. Mahmud, C. N. Davids, P. J. Woods, T. Davinson, D. J. Henderson, R. J. Irvine, D. Seweryniak, W. B. Walters, Phys. Rev. C62, 057303 (2000). https://doi.org/10.1103/PhysRevC.62.057303
- [14] 2000So11 G. A. Souliotis, Phys. Scr. T88, 153 (2000). https://doi.org/10.1238/Physica.Topical.088a00153
- [15] 2000Xu08 S. Xu, Y. Xie, Y. Yu, Z. Li, Q. Pan, C. Wang, J. Xing, T. Zhang , Eur. Phys. J. A 8, 435 (2000). https://doi.org/10.1007/s100500070065
- [16] 2002Ko02 Y. Kojima, M. Asai, M. Shibata, K. Kawade, A. Taniguchi, A. Osa, M. Koizumi, T. Sekine, Appl. Radiat. Isot. 56, 543 (2002). https://doi.org/10.1016/S0969-8043(01)00248-2
- [17] 2004Jo12 D. T. Joss, K. Lagergren, D. E. Appelbe, C. J. Barton, J. Simpson, B. Cederwall, B. Hadinia, R. Wyss, S. Eeckhaudt, T. Grahn, P. T. Greenlees, P. M. Jones, R. Julin, S. Juutinen, H. Kettunen, M. Leino, A. -P. Leppanen, P. Nieminen, J. Pakarinen, P. Rahkila, C. Scholey, J. Uusitalo, R. D. Page, E. S. Paul, D. R. Wiseman, Phys. Rev. C 70, 017302 (2004). https://doi.org/10.1103/PhysRevC.70.017302
- [18] 2005Se11 D. Seweryniak, J. Uusitalo, P. Bhattacharyya, M. P. Carpenter, J. A. Cizewski, K. Y. Ding, C. N. Davids, N. Fotiades, R. V. F. Janssens, T. Lauritsen, C. J. Lister, A. O. Macchiavelli, D. Nisius, P. Reiter, W. B. Walters, P. J. Woods, Phys. Rev. C 71, 054319 (2005). https://doi.org/10.1103/PhysRevC.71.054319
- [19] 2017J009 D. T. Joss, R. D. Page, A. Herzan, L. Donosa, J. Uusitalo, R. J. Carroll, I. G. Darby, K. Andgren, B. Cederwall, S. Eeckhaudt, T. Grahn, P. T. Greenlees, B. Hadinia, U. Jakobsson, P. M. Jones, R. Julin, S. Juutinen, M. Leino, A. -P. Leppanen, M. Nyman, D. O'Donnell, J. Pakarinen, P. Rahkila, M. Sandzelius, J. Saren, C. Scholey, D. Seweryniak, J. Simpson, J. Sorri, Phys. Lett. B 772, 703 (2017). https://doi.org/10.1016/j.physletb.2017.07.031
- [20] 2019Hi06 J. Hilton, J. Uusitalo, J. Saren, R. D. Page, D. T. Joss, M. A. M. AlAqeel, H. Badran, A. D. Briscoe, T. Calverley, D. M. Cox, T. Grahn, A. Gredley, P. T. Greenlees, R. Harding, A. Herzan, E. Higgins, R. Julin, S. Juutinen, J. Konki, M. Labiche, M. Leino, M. C. Lewis, J. Ojala, J. Pakarinen, P. Papadakis, J. Partanen, P. Rahkila, P. Ruotsalainen, M. Sandzelius, C. Scholey, J. Sorri, L. Sottili, S. Stolze, F. Wearing, Phys. Rev. C 100, 014305 (2019). https://doi.org/10.1103/PhysRevC.100.014305
- [21] 2021Wa16 M. Wang, W. J. Huang, F. G. Kondev, G. Audi, S. Naimi, Chin. Phys. C 45, 030003 (2021). https://doi.org/ 10.1088/1674-1137/abddaf