

Last updated 5/27/25

Table 1

Observed and predicted β -delayed particle emission from the even-Z, $T_z = +59/2$ nuclei. Unless otherwise stated, all Q-values are taken from [2021Wa16] or deduced from values therein.

Nuclide	J^{π}	$T_{1/2}$	$Q_{arepsilon}$	Q _β -	Q_{β} - α	Experimental	
²³¹ Rn		obs		4 47(30)#		[20104]24]	
235 R.a		005		3.77(30)#			
²³⁹ Th				3.16(45)#			
24311				2 67(30)#			
²⁴⁷ Pu*		2.27(23) d		2.06(22)#		[1983Po14]	
²⁵¹ Cm*		16.8(2) m		1.420(20)		[1978Lo13]	
²⁵⁵ Cf*		85(18) m		0.72(20)#		[1981Lo15]	
²⁵⁹ Fm		1.57(9) s**		0.14(30)#		[1985So03, 1981Ho32, 1980Hu03]	
				$Q_{\varepsilon p}$	$Q_{\mathcal{E} \alpha}$		
²⁶³ No							
²⁶⁷ Rf		$1.3^{+2.3}_{-0.5}$ h				[2011Og07]	
²⁷¹ Sg		$1.9^{+2.4}_{-0.6}$ m				[2011Og07]	
²⁷⁵ Hs		190^{+220}_{-70} s	0.71(84)#			[2011Og07]	
²⁷⁹ Ds		200^{+70}_{-40} ms	1.44(90)#	-1.49(68)#	10.82(85)#	[2011Og07]	
²⁸³ Cn		$3.8^{+1.2}_{-0.7}$ s	1.96(92)#	-0.74(68)#	11.33(91)#	[2011Og07]	
²⁸⁷ Fl		480^{+160}_{-00} ms	2.47(84)#	0.19(93)#	12.12(92)#	[2011Og07]	
²⁹¹ Lv		18_{-6}^{+22} ms	3.06(96)#	1.22(94)#	13.36(94)#	[2011Og07]	
²⁹⁵ Og		-0				-	

* 100% β^- -emitter.

** Weighted average of 1.6(1) s [1985So03], 1.5(2) s [1981Ho32] and 1.5(3) s [198Hu003].

Table 2

Particle separation, Q-values, and measured values for direct particle emission of the even-Z, $T_z = +59/2$ nuclei. Unless otherwise stated, all S and Q-values are taken from [2021Wa16] or deduced from values therein.

Nuclide	S_p	Qα	BRα	BR _{SF}	Experimental
235 D		0.16(40)#			
230 Ka		2.16(42)#			
²³⁹ Th		2.95(50)#			
²⁴³ U		3.56(50)#			
²⁴⁷ Pu		4.31(36)#			
²⁵¹ Cm		5.01(20)#			
²⁵⁵ Cf	6.87(36)#	5.74(20)#			
²⁵⁹ Fm	6.29(49)#	6.47(20)#		100%	[1985So03, 1981Ho32, 1980Hu03, 1982GhZZ, 1976HoYT, 1976HoZP,
		~ /			1976HoZS]
²⁶³ No	5.83(66)#	7.00(40)#			
²⁶⁷ Rf	5.51(79)#	7.89(30)#		100%	[2016Ho09, 2011Og07]
²⁷¹ Sg	5.07(82)#	8.75(14)#	70%	30%	[2016Ho09, 2011Og07, 2006Og05, 2005Og03, 2005OgZZ, 2004OgZZ]
²⁷⁵ Hs	4.56(83)#	9.450(54)#	100%		[2016Ho09, 2011Og07, 2006Og05, 2005Og03, 2005OgZZ, 2004OgZZ]
²⁷⁹ Ds	4.03(84)#	10.11(12)#	10%	90%	[2016Ho09, 2011Og07, 2006Og05, 2005Og03, 2005OgZZ, 2004Og12,
					2004OgZZ]
²⁸³ Cn	3.69(85)#	9.89(11)#	100%		[2016Ho09, 2011Og07, 2006Og05, 2005Og03, 2005OgZZ, 2004Og12,
		. ,			2004OgZZ]
²⁸⁷ Fl	3.32(85)#	10.170(50)	100%		[2016Ho09, 2011Og07, 2006Og05, 2005Og03, 2005OgZZ, 2004Og12,
					2004OgZZ]
²⁹¹ Lv	2.84(86)#	10.791(12)	100%		[2016Ho09, 2011Og07, 2006Og05, 2004Og12]
²⁹⁵ Og	2.32(88)#	11.70(20)#			
- 5	==(00)	(=0)			

Table 3

direct α emiss	sion from ²⁷¹ Sg*,	$T_{1/2} = 1.9^{+2.4}_{-0.6} m,$	$BR_{\alpha} = 70\%$				
$E_{\alpha}(\text{c.m.})$	$E_{\alpha}(lab)$	$I_{\alpha}(abs)$	$\mathbf{J}_{f}^{m{\pi}}$	$E_{daughter}(^{267}\mathrm{Rf})$	coincident γ -rays (keV)	HF	
8.67(8)	8.54(8)	70%					
* All valu	ues from [2011Og	07], which contai	ns all measu	red data.			
Table 4 direct α emiss	sion from ²⁷⁵ Hs*,	$T_{1/2} = 190^{+220}_{-70} \text{ s},$	$BR_{\alpha} = 100$	%.			
$E_{\alpha}(c.m.)$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(abs)$	J_f^π	$E_{daughter}(^{271}\mathrm{Sg})$	coincident γ-rays (keV)	HF	
9.44(6)	9.30(6)	100%					
* All valu	ues from [2011Og	07], which contai	ns all measu	red data.			
Table 5 direct α emiss	sion from ²⁷⁹ Ds*,	$T_{1/2} = 200^{+50}_{-40} \text{ ms}$	s, $BR_{\alpha} = 10^{\circ}$	%.			
$E_{\alpha}(c.m.)$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(abs)$	J_f^π	$E_{daughter}(^{275}\text{Hs})$	coincident γ -rays (keV)	HF	
9.84(6)	9.70(6)	10%					
* All valu	ues from [2011Og	07], which contai	ns all measu	red data.			
Table 6 direct α emiss	sion from ²⁸³ Cn*,	$T_{1/2} = 3.8^{+1.2}_{-0.7} $ s,	$BR_{\alpha} = 100\%$	ь.			
$E_{\alpha}(c.m.)$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(abs)$	J_f^π	$E_{daughter}(^{275}\text{Hs})$	coincident γ-rays (keV)	HF	
9.67(6)	9.54(6)	100%					
* All valu	ues from [2011Og	07], which contai	ns all measu	red data.			
Table 7 direct α emiss	sion from ²⁸⁷ Fl*, 7	$\Gamma_{1/2} = 480^{+160}_{-90} \text{ m}$	s, $BR_{\alpha} = 10$	0%.			
$E_{\alpha}(c.m.)$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(abs)$	J_f^π	$E_{daughter}(^{283}Cn)$	coincident γ -rays (keV)	HF	
10.16(6)	10.02(6)	100%					
* All valu	ues from [2011Og	07], which contai	ns all measu	red data.			
Table 8 direct α emiss	sion from ²⁹¹ Lv*,	$T_{1/2} = 18^{+22}_{-6} \text{ ms},$	$BR_{\alpha} = 100^{\circ}$	%.			
$E_{\alpha}(\text{c.m.})$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(abs)$	J_f^{π}	$E_{daughter}(^{287}\text{Fl})$	coincident γ -rays (keV)	HF	
10.89(6)	10.74(6)	100%	J		· · ·		

* All values from [2011Og07], which contains all measured data.

References used in the Tables

- [1] 1976HoYT D. C. Hoffman. J. Weber. J. B. Wilhelmy. E. K. Hulet. J. H. Landrum. J. F. Wild, LA-UR-76-1055 (1976).
- [2] 1976HoZP D. C. Hoffman. J. Weber. J. B. Wilhelmy. E. K. Hulet. R. W. Lougheed. J. H. Landrum. J. F. Wild, Proc. 4th Intern. Transplutonium Element Symp., Baden Baden. 1975. W. Muller. R. Lindner. Eds. p. 353 (1976).
- [3] 1976HoZS D. C. Hoffman. J. Weber. J. B. Wilhelmy. E. K. Hulet. J. H. Landrum. R. W. Lougheed. J. F. Wild, Contrib. Int. Conf. Nuclei Far from Stability. Cargese. Corsica. p. A2 (1976); CERN 76-13 (1976)

- [4] 1978Lo13 R. W. Lougheed, J. F. Wild, E. K. Hulet, R. W. Hoff, J. H. Landrum, J. Inorg. Nucl. Chem. 40, 1865 (1978). https://doi.org/10.1016/0022-1902(78)80244-9
- [5] 1980Hu03 E. K. Hulet. R. W. Lougheed. J. H. Landrum. J. F. Wild. D. C. Hoffman. J. Weber. J. B. Wilhelmy, Phys. Rev. C21. 966 (1980). https://doi.org/10.1103/PhysRevC.21.966
- [6] 1981Ho32 D. C. Hoffman. D. Lee. A. Ghiorso. M. J. Nurmia. K. Aleklett. M. Leino, Phys. Rev. C 24. 495 (1981). https://doi. org/10.1103/PhysRevC.24.495
- [7] 1981Lo15 R. W. Lougheed, E. K. Hulet, J. F. Wild, B. J. Qualheim, J. E. Evans, R. J. Dupzyk, J. Inorg. Nucl. Chem. 43, 2239 (1981). https://doi.org/10.1016/0022-1902(81).80239-4
- [8] 1982GhZZ A. Ghiorso. L. P. Somerville. R. M. McFarland. R. Lougheed. E. K. Hulet, LBL-13366. p. 46 (1982).
- [9] 1983Po14 Yu. S. Popov, P. A. Privalova, G. A. Timofeev, V. B. Mishenev, A. V. Mamelin, B. I. Levakov, V. M. Prokopev, Radiokhimiya 25, 482 (1983); Sov. Radiochemistry 25, 458 (1984).
- [10] 1985So03 L. P. Somerville, M. J. Nurmia, J. M. Nitschke, A. Ghiorso, E. K. Hulet, R. W. Lougheed, Phys. Rev. C 31, 1801 (1985). https://doi.org/10.1103/PhysRevC.31.1801
- [11] 2004OgZZ Yu. Ts. Oganessian, V. K. Utyonkov, Yu. V. Lobanov, F. Sh. Abdullin, A. N. Polyakov, I. V. Shirokovsky, Yu. S. Tsyganov, G. G. Gulbekian, S. L. Bogomolov, B. N. Gikal, A. N. Mezentsev, S. Iliev, V. G. Subbotin, A. M. Sukhov, A. A. Voinov, G. V. Buklanov, K. Subotic, V. I. Zagrebaev, M. G. Itkis, J. B. Patin, K. J. Moody, J. F. Wild, M. A. Stoyer, N. J. Stoyer, D. A. Shaughnessy, J. M. Kenneally, P. A. Wilk, R. W. Lougheed, R. I. Ilkaev, S. P. Vesnovskii, JINR-E7-2004-160 (2004).
- [12] 2005Og03 Yu. Ts. Oganessian, V. K. Utyonkov, Yu. V. Lobanov, F. Sh. Abdullin, A. N. Polyakov, I. V. Shirokovsky, Yu. S. Tsyganov, G. G. Gulbekian, S. L. Bogomolov, B. N. Gikal, A. N. Mezentsev, S. Iliev, V. G. Subbotin, A. M. Sukhov, A. A. Voinov, G. V. Buklanov, K. Subotic, V. I. Zagrebaev, M. G. Itkis, J. B. Patin, K. J. Moody, J. F. Wild, M. A. Stoyer, N. J. Stoyer, D. A. Shaughnessy, J. M. Kenneally, P. A. Wilk, R. W. Lougheed, Eur. Phys. J. A 25, Supplement 1, 589 (2005). https://doi.org/10.1140/epjad/i2005-06-134-9
- [13] 2005OgZZ Yu. Ts. Oganessian, V. K. Utyonkov, Yu. V. Lobanov, F. Sh. Abdullin, A. N. Polyakov, I. V. Shirokovsky, Yu. S. Tsyganov, G. G. Gulbekian, S. L. Bogomolov, B. N. Gikal, A. N. Mezentsev, S. Iliev, V. G. Subbotin, A. M. Sukhov, A. A. Voinov, G. V. Buklanov, K. Subotic, V. I. Zagrebaev, M. G. Itkis, J. B. Patin, K. J. Moody, J. F. Wild, M. A. Stoyer, N. J. Stoyer, D. A. Shaughnessy, J. M. Kenneally, P. A. Wilk, R. W. Lougheed, Proc. Intern. Symposium Exotic Nuclei, Peterhof, Russia, July 5-12,
- [14] 2006Og05 Yu. Ts. Oganessian. V. K. Utyonkov. Yu. V. Lobanov. F. Sh. Abdullin. A. N. Polyakov. R. N. Sagaidak. I. V. Shirokovsky. Yu. S. Tsyganov. A. A. Voinov. G. G. Gulbekian. S. L. Bogomolov. B. N. Gikal. A. N. Mezentsev. S. Iliev. V. G. Subbotin. A. M. Sukhov. K. Subotic. V. I. Zagrebaev. G. K. Vostokin. M. G. Itkis. K. J. Moody. J. B. Patin. D. A. Shaughnessy. M. A. Stoyer. N. J. Stoyer. P. A. Wilk. J. M. Kenneally. J. H. Landrum. J. F. Wild. R. W. Lougheed, Phys. Rev. C 74, 044602 (2006).https://doi.org/10.1103/PhysRevC.74.044602
- [15] 2010Al24 H. Alvarez-Pol, J. Benlliure, E. Casarejos, L. Audouin, D. Cortina-Gil, T. Enqvist, B. Fernandez-Dominguez, A. R. Junghans, B. Jurado, P. Napolitani, J. Pereira, F. Rejmund, K. -H. Schmidt, O. Yordanov, Phys. Rev. C 82, 041602 (2010). https://doi.org/10.1103/PhysRevC.82.041602
- [16] 2011Og07 Yu. Ts. Oganessian, Radiochim. Acta 99, 429 (2011). https://doi.org/10.1524/ract.2011.1860
- [17] 2016Ho09 S. Hofmann, S. Heinz, R. Mann, J. Maurer, G. Munzenberg, S. Antalic, W. Barth, H. G. Burkhard, L. Dahl, K. Eberhardt, R. Grzywacz, J. H. Hamilton, R. A. Henderson, J. M. Kenneally, B. Kindler, I. Kojouharov, R. Lang, B. Lommel, K. Miernik, D. Miller, K. J. Moody, K. Morita, K. Nishio, A. G. Popeko, J. B. Roberto, J. Runke, K. P. Rykaczewski, S. Saro, C. Scheidenberger, H. J. Schott, D. A. Shaughnessy, M. A. Stoyer, P. Thorle-Pospiech, K. Tinschert, N. Trautmann, J. Uusitalo, A. V. Yeremin, Eur. Phys. J. A 52, 180 (2016). https://doi.org/10.1140/epja/i2016-16180-4
- [18] 2021Wa16 M. Wang, W. J. Huang, F. G. Kondev, G. Audi, S. Naimi, Chin. Phys. C 45, 030003 (2021). https://doi.org/10.1088/1674-1137/abddaf