$\begin{array}{c} 293 Og\\ Qvp = 3.48~MeV\\ QvQ = 15.78~MeV\\ Q\alpha = 10.928~MeV \end{array}$

Fig. 1: Known experimental values for heavy particle emission of the even-Z T_z = +57/2 nuclei.

Last updated 5/2/25

Table 1

Observed and predicted β -delayed particle emission from the even-Z, $T_z = +57/2$ nuclei. Unless otherwise stated, all Q-values are taken from [2021Wa16] or deduced from values therein. J^{π} values are taken from ENSDE.

Nuclide	J^{π}	$T_{1/2}$	$Q_{arepsilon}$	Q _β -	Q_{β} - α	Experimental	
²²⁹ Rn*		$12.0^{+1.2}$ s	-5 53(40)#	3 694(14)	6 82(30)#	[2009Ne03]	
²³³ Ra*	$(1/2^+)$	30(5) s	-4 586(21)	3.026(16)	6 421(10)	[1990Me13]	
²³⁷ Th*	$(5/2^+)$	4.69(60) m	-4.07(40)#	2.427(21)	6.402(21)	[2000Xu02]	
²⁴¹ U*	(0) _)	obs	-3.54(36)#	1.88(22)#	6.43(20)#	[2023Ni04]	
²⁴⁵ Pu*	$(9/2^{-})$	10.59(2) h	-2.67(20)#	1.278(14)	6.61(10)	[1967Bu09]	
²⁴⁹ Cm*	1/2+	64.15(3) m	-2.35(30)#	0.904(3)	6.605(3)	[1973DrZM]	
²⁵³ Cf	$(7/2^+)$	17.81(8) d	-1.63(36)#	0.291(4)	7.211(4)	[1969DrZZ]	
				$Q_{\varepsilon p}$	$Q_{\varepsilon \alpha}$		
²⁵⁷ Fm	$(9/2^+)$	100.5(2) d	-0.81(41)#			[1973Wi03]	
²⁶¹ No			-0.12(55)#				
²⁶⁵ Rf		$1.1^{+0.8}_{-0.3}$ m	0.46(66)#	-3.61(69)#	7.689(66)#	[2018Ut02]	
²⁶⁹ Sg		14^{+10}_{-4} m	0.54(72)#	-3.07(76)#	9.03(72)#	[2018Ut02]	
²⁷³ Hs		$0.51^{+0.30}_{-0.14}$ s	1.08(75)#	-2.04(79)#	10.19(75)#	[2018Ut02]	
²⁷⁷ Ds		$3.5^{+2.1}_{0.0}$ ms	2.08(77)#	-0.38(82)#	11.98(77)#	[2018Ut02]	
²⁸¹ Cn		180^{+100}_{-50} ms	2.61(87)#	0.34(85)#	12.51(77)#	[2018Ut02]	
²⁸⁵ Fl		100^{+60}_{-20} ms	3.16(87)#	1.23(86)#	13.17(87)#	[2018Ut02]	
²⁸⁹ Lv		-30	3.77(93)#	2.25(91)#	14.27(92)#		
²⁹³ Og			4.4(11)#	3.4(10)#	15.7(11)#		

* 100% β^- -emitter.

Table 2

Particle separation, Q-values, and measured values for direct particle emission of the even-Z, $T_z = +57/2$ nuclei. Unless otherwise stated, all S and Q-values are taken from [2021Wa16] or deduced from values therein.

Nuclide	\mathbf{S}_p	Qα	BRα	BR _{SF}	Experimental
²²⁹ Rn ²³³ Ra ²³⁷ Th ²⁴¹ U	9.81(40)# 9.028(16) 8.555(41) 8.10(28)#	2.36(30)# 2.547(16) 3.196(18) 3.82(20)#			
²⁴⁵ Pu ²⁴⁹ Cm ²⁵³ Cf ²⁵⁷ Fm	7.35(10)# 7.10(20)# 6.52(20)# 5.88(10)#	4.56(20)# 5.148(13) 6.126(4) 6.864(1)	0.31(4)% 99.790(4)%	0.210(4)%	[1968Be21, 1966Rg01 , 1968BeZY, 1966Rg01] [1982Ah01, 1973Wi03 , 2000Ho27, 1998SiZX, 1985Wi10, 1974BaXU, 1973BaTX, 1973Ve10, 1971Ba03, 1971Ch14, 1971Jo13, 1967As02, 1966Rg01, 1965Si14, 1964Hu02, 1962Br45, 1962Ga24]
²⁶¹ No 265 Rf 269 Sg 273 Hs 277 Ds 281 Cn 285 Fl 289 Lv 293 Og	5.38(37)# 4.97(57)# 4.66(65)# 4.301(65)# 3.51(66)# 3.23(66)# 2.95(67)# 2.50(74)# 2.11(98)#	7.44(20)# 7.81(30)# 8.577(75) 9.650(64) 10.90(12)# 10.430(64) 10.560(71) 11.10(30)# 11.92(50)#	100%* 100%* 100%* 100%* 100%*	100%	[2018Ut02, 2015Ut02, 2010El06] [2018Ut02, 2015Ut02, 2010El06] [2018Ut02, 2015Ut02, 2010El06] [2018Ut02, 2015Ut02, 2010El06] [2018Ut02, 2015Ut02, 2010El06] [2018Ut02, 2015Ut02, 2010El06]

* Only α -decay has been observed.

Table 3			
direct α emission from	$^{253}Cf^*, J^{\pi} = (7/2^+),$	$T_{1/2} = 17.81(8) d^{**}$	$BR_{\alpha} = 0.31(4)\%^{***}$

$E_{\alpha}(c.m.)$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(\text{rel})$	$I_{\alpha}(abs)$	${ m J}_f^\pi$	$E_{daughter}(^{249}\mathrm{Cm})$	coincident γ-rays (keV)	HF	
6.015(5) 6.076(5)	5.920(5) 5.978(5)	5.5(20)% 100%	0.016(6)% 0.29(4)%	(9/2 ⁺) (7/2 ⁺)	0.110 0.050		1.509(12) 1.509(12)	$11^{+8}_{4}\\1.3^{+0.5}_{-0.4}$

* All values from [1993Mo18], except where noted. E_{α} values are adjusted by -0.6 keV as recommended in [1991Ry01]. *** [1969DrZZ]. *** [1966Ryg01].

Table 4

|--|

$E_{\alpha}(c.m.)$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(\text{rel})$	$I_{\alpha}(abs)$	\mathbf{J}_f^{π}	$E_{daughter}(^{253}\mathrm{Cf})$	coincident γ -rays (keV)	HF	
(117(5)	(247(5)	0.2(1)0/	0.2(1)0/	$(12/2^{\pm})$	0.417		1 5040(52)	(0 ⁺³²
6.447(5)	6.347(5)	0.3(1)%	0.3(1)%	$(13/2^+)$	0.417		1.5040(53)	60^{+52}_{-17}
6.544(3)	6.442(3)	2.1(2)%	2.0(2)%	$(7/2^+)$	0.3212	61.6, 75.0, 80.2, 104.4, 136.7, 179.4, 241.0	1.5040(53)	26^{+3}_{-4}
6.624(2)	6.521(2)	100%	93.6(10)%	$(11/2^+)$	0.2410	61.6, 75.0, 104.4, 136.7, 179.4, 241.0	1.5040(53)	1.3(2)
6.802(3)	6.696(3)	3.7(3)%	3.5(3)%	$(9/2^+)$	0.0616	61.6	1.5040(53)	230(40)
6.864(3)	6.757(3)	0.64(6)%	0.60(6)%	$(7/2^+)$	0.0		1.5040(53)	$2.5^{+0.5}_{-0.4} imes 10^3$

* All values from [1982Ah01], except where noted. E_{α} values are adjusted by +0.5 keV as recommended in [1991Ry01]. ** [1973Wi03].

Table 5

direct α emis	sion from ²⁶⁹ Sg*	$T_{1/2} = 14^{+10}_{-4} n$	n, $BR_{\alpha} = 100$	0%**.			
$E_{\alpha}(\text{c.m.})$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(abs)$	$\mathbf{J}_f^{\boldsymbol{\pi}}$	$E_{daughter}(^{265}\mathrm{Rf})$	coincident γ -rays (keV)	HF	
8.54(4)	8.41(4)	100%					
* All val ** Only	lues from [2018U α -decay has been	t02]. The reported	ed values are	e from that work and [201	5Ut02, 2010El06].		
Table 6 direct α emised	ssion from ²⁷³ Hs*	$T_{1/2} = 0.51^{+0.2}_{-0.2}$	$^{30}_{14}$ s, $BR_{\alpha} = 1$	100%**.			
$E_{\alpha}(\text{c.m.})$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(abs)$	$\mathbf{J}_f^{\boldsymbol{\pi}}$	$E_{daughter}(^{269}Sg)$	coincident γ-rays (keV)	HF	
9.65(4)	9.51(4)	100%					
* All val ** Only	lues from [2018U α -decay has been	t02]. The reportent observed.	ed values are	from that work and [201	5Ut02, 2010El06].		
Table 7 direct α emised	ssion from ²⁷⁷ Ds*	$T_{1/2} = 3.5^{+2.1}_{-0.9}$	ms, $BR_{\alpha} = 1$	100%**.			
$E_{\alpha}(\text{c.m.})$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(abs)$	${ m J}_f^\pi$	$E_{daughter}(^{273}\mathrm{Hs})$	coincident γ-rays (keV)	HF	
10.70(4)	10.55(4)	100%					
* All val ** Only	lues from [2018U α -decay has been	t02]. The reportent observed.	ed values are	from that work and [201	5Ut02, 2010El06].		
Table 8 direct α emises	ssion from ²⁸¹ Cn*	4 , $T_{1/2} = 180^{+100}_{-50}$	0 ms, BR_{α} =	100%**.			
$E_{\alpha}(\text{c.m.})$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(abs)$	J_f^{π}	$E_{daughter}(^{277}\text{Ds})$	coincident γ -rays (keV)	HF	

10.43(4) 10.28(4) 100%

 \ast All values from [2018Ut02]. The reported values are from that work and [2015Ut02, 2010El06].

** Only α -decay has been observed.

Table 9	
direct α emission from ²⁸⁵ Fl*, T _{1/2} = 100 ⁺⁶⁰ ₋₃₀ ms, BR _{α} = 100%*	*.

$E_{\alpha}(\text{c.m.})$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(abs)$	${ m J}_f^{m \pi}$	$E_{daughter}(^{277}\text{Ds})$	coincident γ-rays (keV)	HF	
10.56(4)	10 41(4)	100%					

* All values from [2018Ut02]. The reported values are from that work and [2015Ut02, 2010El06]. ** Only α -decay has been observed.

References used in the Tables

- [1] 1962Br45 R. Brandt, UCRL-10481 (1962).
- [2] 1962Ga24 R. C. Gatti, R. Brandt, L. Phillips, S. G. Thompson, UCRL-18456 (1962).; Nuclear Sci. Abstr.17, 3200, Abstr. 24404 (1963).
- [3] 1964Hu02 E. K. Hulet, R. W. Hoff, J. E. Evans, R. W. Lougheed, Phys. Rev. Letters 13, 343 (1964). https://doi.org/10.1103/PhysRevLett.13.343
- [4] 1965Si14 T. Sikkeland, A. Ghiorso, R. Latimer, A. E. Larsh, Phys. Rev. 140, B277 (1965). https://doi.org/10.1103/PhysRev.140.B277
- [5] 1966Rg01 Combined Radiochemistry Group LRL, LASL, UCRL, ANL, Phys. Rev. 148, 1192 (1966). https://doi.org/10.1103/PhysRev.148.1192
- [6] 1967As02 F. Asaro, I. Perlman, Phys. Rev. 158, 1073 (1967). https://doi.org/10.1103/PhysRev.158.1073
- [7] 1967Bu09 M. E. Bunker, D. C. Hoffman, C. J. Orth, J. W. Starner, Nucl. Phys. A97, 593 (1967). https://doi.org/10.1016/0375-9474(67).90523-4
- [8] 1968Be21 C. E. Bemis, Jr., J. Halperin, Nucl. Phys. A121, 433 (1968). https://doi.org/10.1016/0375-9474(68).90431-4
- [9] 1968BeZY C. E. Bemis, Jr., J. Halperin, ORNL-4306, p. 28(1968).
- [10] 1969DrZZ R. E. Druschel, J. Halperin, C. E. Bemis, Jr., ORNL-4437, p. 28 (1969).
- [11] 1971Ba03 J. P. Balagna, G. P. Ford, D. C. Hoffman, J. D. Knight, Phys. Rev. Lett. 26, 145 (1971). https://doi.org/10.1103/PhysRevLett.26.145
- [12] 1971Ch14 E. Cheifetz, H. R. Bowman, J. B. Hunter, S. G. Thompson, Phys. Rev. C3, 2017 (1971). https://doi.org/10.1103/PhysRevC.3.2017
- [13] 1971Jo13 W. John, E. K. Hulet, R. W. Lougheed, J. J. Wesolowski, Phys. Rev. Lett. 27, 45 (1971). https://doi.org/10.1103/PhysRevLett.27.45
- [14] 1973Ve10 L. R. Veeser, J. B. Wilhelmy, D. C. Hoffman, A. Hemmendinger, G. P. Ford, J. A. Farrell, J. P. Balagna, Trans. Amer. Nucl. Soc. 16, 315 (1973).
- [15] 1973BaTX J. P. Balagna, J. A. Farrell, G. P. Ford, A. Hemmendinger, D. C. Hoffman, L. R. Veeser, J. B. Wilhelmy, LA-UR-73-1010 (1973).
- [16] 1973Wi03 J. F. Wild, E. K. Hulet, R. W. Lougheed, J. Inorg. Nucl. Chem. 35, 1063 (1973). https://doi.org/10.1016/0022-1902(73).80176-9
- [17] 1973DrZM R. E. Druschel, R. D. Baybarz, J. Halperin, ORNL-4891, p. 23 (1973).
- [18] 1974BaXU J. P. Balagna, J. A. Farrell, G. P. Ford, A. Hemmendinger, D. C. Hoffman, L. R. Veeser, J. B. Wilhelmy, Proc. Symp. Phys. Chem. Fission, 3rd, Rochester, N. Y. (1973), Int. At. En. Agency, Vienna, Vol. 2, p. 191 (1974).
- [19] 1982Ah01 I. Ahmad, E. P. Horwitz, Nucl. Phys. A373, 434 (1982). https://doi.org/10.1016/0375-9474(82).90543-7
- [20] 1985Wi10 J. F. Wild, P. A. Baisden, R. J. Dougan, E. K. Hulet, R. W. Lougheed, J. H. Landrum Phys. Rev. C32, 488 (1985). https://doi.org/10.1103/PhysRevC.32.488
- [21] 1990Me13 K. A. Mezilev, Yu. N. Novikov, A. V. Popov, Yu. Ya. Sergeev, V. I. Tikhonov, Z. Phys. A337, 109 (1990).
- [22] 1998SiZX K. Siemon, R. A. Esterlund, J. van Aarle, W. Westmeier, P. Patzelt, NEA/NSC/DOC(98) 7 (Jul-3350), p. 39 (1998).
- [23] 2000Ho27 N. E. Holden, D. C. Hoffman, Pure Appl. Chem. 72, 1525 (2000).; Erratum Pure Appl. Chem. 73, 1225 (2001). https://doi.org/10.1351/pac200072081525

- [24] 2000Xu02 Y. Xu, S. Yuan, W. Yang, J. He, Z. Li, T. Ma, B. Xiong, Phys. Rev. C61, 067308 (2000). https://doi.org/10.1103/PhysRevC.61.067308
- [25] 2009Ne03 D. Neidherr, G. Audi, D. Beck, K. Blaum, Ch. Bohm, M. Breitenfeldt, R. B. Cakirli, R. F. Casten, S. George, F. Herfurth, A. Herlert, A. Kellerbauer, M. Kowalska, D. Lunney, E. Minaya-Ramirez, S. Naimi, E. Noah, L. Penescu, M. Rosenbusch, S. Schwarz, L. Schweikhard, T. Stora, Phys. Rev. Lett. 102, 112501 (2009). https://doi.org/10.1103/PhysRevLett.102.112501
- [26] 2010El06 P. A. Ellison, K. E. Gregorich, J. S. Berryman, D. L. Bleuel, R. M. Clark, I. Dragojevic, J. Dvorak, P. Fallon, C. Fineman-Sotomayor, J. M. Gates, O. R. Gothe, I. Y. Lee, W. D. Loveland, J. P. McLaughlin, S. Paschalis, M. Petri, J. Qian, L. Stavsetra, M. Wiedeking, H. Nitsche, Phys. Rev. Lett. 105, 182701 (2010). https://doi.org/10.1103/PhysRevLett.105.182701
- [27] 2015Ut02 V. K. Utyonkov, N. T. Brewer, Yu. Ts. Oganessian, K. P. Rykaczewski, F. Sh. Abdullin, S. N. Dmitriev, R. K. Grzywacz, M. G. Itkis, K. Miernik, A. N. Polyakov, J. B. Roberto, R. N. Sagaidak, I. V. Shirokovsky, M. V. Shumeiko, Yu. S. Tsyganov, A. A. Voinov, V. G. Subbotin, A. M. Sukhov, A. V. Sabelnikov, G. K. Vostokin, J. H. Hamilton, M. A. Stoyer, S. Y. Strauss, Phys. Rev. C 92, 034609 (2015). https://doi.org/10.1103/PhysRevC.92.034609
- [28] 2018Ut02 V. K. Utyonkov, N. T. Brewer, Yu. Ts. Oganessian, K. P. Rykaczewski, F. Sh. Abdullin, S. N. Dmitriev, R. K. Grzywacz, M. G. Itkis, K. Miernik, A. N. Polyakov, J. B. Roberto, R. N. Sagaidak, I. V. Shirokovsky, M. V. Shumeiko, Yu. S. Tsyganov, A. A. Voinov, V. G. Subbotin, A. M. Sukhov, A. V. Karpov, A. G. Popeko, A. V. Sabelnikov, A. I. Svirikhin, G. K. Vostokin, J. H. Hamilton, Phys. Rev. C 97, 014320 (2018). https://doi.org/10.1103/PhysRevC.97.014320
- [29] 2021Wa16 M. Wang, W. J. Huang, F. G. Kondev, G. Audi, S. Naimi, Chin. Phys. C 45, 030003 (2021). https://doi.org/10.1088/1674-1137/abddaf
- [30] 2023Ni04 T. Niwase, Y. X. Watanabe, Y. Hirayama, M. Mukai, P. Schury, A. N. Andreyev, T. Hashimoto, S. Iimura, H. Ishiyama, Y. Ito, S. C. Jeong, D. Kaji, S. Kimura, H. Miyatake, K. Morimoto, J. -Y. Moon, M. Oyaizu, M. Rosenbusch, A. Taniguchi, M. Wada, Phys. Rev. Lett. 130, 132502 (2023). https://doi.org/10.1103/PhysRevLett.130.132502