

Fig. 1: Known experimental values for heavy particle emission of the even-Z T_z = +49/2 nuclei.

Last updated 10/21/2024

Observed and predicted β -delayed particle emission from the even-*Z*, $T_z = +49/2$ nuclei. Unless otherwise stated, all Q-values are taken from [2021Wa16] or deduced from values therein. J^{π} values for ²⁰⁹Hg, ²¹³Pb, ²¹⁷Po, ²²¹Rn, ²²⁵Ra, ²³⁷Pu, ²⁴¹Cm, ²⁴⁵Cf, and ²⁴⁹Fm are taken from ENSDF.

Nuclide	Ex.	J^{π}	$T_{1/2}$	$Q_{\mathcal{E}}$	Q _β -	Q_{β} - α	Experimental
²⁰⁹ Hg*		$(9/2^{+})$	35^{+9}_{-6} s	-6.38(43)#	5.040(150)#	7.72(26)#	[1998Zh19]
²¹³ Pb*		$(9/2^+)$	10.2(3) m	-4.987(28)	2.028(8)	8.196(9)	[1964Bu05]
²¹⁷ Po		$(9/2^+)$	1.52(3) s**	-2.847(19)	1.489(8)	8.870(9)	[2003Ku25, 2004Li28]
²²¹ Rn		$(7/2^+)$	25(2) m	-2.311(15)	1.194(7)	7.831(8)	[1956Mo15]
²²⁵ Ra		1/2+	14.8(2) d	-1.828(12)	0.356(5)	6.471(6)	[1950Ha52]
²²⁹ Th		5/2+	7894(40) y***	-1.104(12)	-0.311(4)		[1989Go19, 2014Va04, 2018Es07]
²³³ U		$5/2^{+}$	$1.5903(13) \times 10^5 y$	-0.570(2)	-1.030(5)		[2009Po15]
					$Q_{\varepsilon p}$	$Q_{\varepsilon \alpha}$	
²³⁷ Pu		$7/2^{-}$	45.31(3) d [@]	0.220(1)	-4.642(1)	5.177(2)	[1994Ta25, 1981Ba15]
^{237m1} Pu	2.90(20)@@		94.8 ns ^{@@@}	2.92(20)	-1.74(20)	8.08(20)	[1971Ru03, 1974Ba82]
^{237m2} Pu	$3.20(25)^a$		1.12(8) µs	3.40(25)	-1.44(25)	8.38(25)	[1971Ru03]
²⁴¹ Cm		$(1/2^+)$	32.8(2) d	0.767(1)	-3.713(1)	6.405(2)	[1974Po08]
^{241m} Cm	$2.45(20)^{b}$		15.3(10) ns	3.22(20)	-1.26(20)	8.86(20)	[1972Vy07, 1971Br39, 1971Re11]
²⁴⁵ Cf		$(1/2^+)$	46.4(3) m	1.571(3)	-2.356(2)	8.026(3)	[1996Ma72]
²⁴⁹ Fm		$(7/2^+)$	99(6) s ^c	2.340(30)#	-1.008(8)	9.280(6)#	[2004He28, 2006Ni09]
²⁵³ No		(9/2-)	1.56(2) m	3.190(30)#	0.253(9)	10.759(31)#	[2009He23]
²⁵⁷ Rf		$(1/2^+)$	5.5(4) s	3.200(50)#	0.754(13)	12.268(33)#	[2010St14]
^{257m} Rf	0.074(16)	$(11/2^{-})$	4.9(7) s	3.274(52)#	0.828(21)	12.342(37)#	[2010St14]
²⁶¹ Sg		$(3/2^+)$	184(5) ms	3.700(11)#	1.567(20)#	12.915(48)#	[2010St14]
²⁶⁵ Hs			1.9(2) ms	4.51(24)#	2.83(28)#	14.17(11)#	[2009He20]
265mHs	\mathbf{x}^d		$300^{+200}_{-100} \mu s$	4.51(24)#+x	2.83(28)#+x	14.17(11)#+x	[2009He20]
²⁶⁹ Ds			$170_{70}^{-100} \mu s$	5.54(31)#	4.58(30)#	16.02(24)#	[1999He07]

* 100% β^- emitter.

** Weighted average of 1.53(3) s [2003Ku25] and 1.48(5) s [2004Li28].

*** Weighted average of 7880(120) y [1989Go19], 7917(48) y [2014Va04] and 7825(87) y [2018Es07].

[@] Weighted average of 45.66(4) d [1994Ta25], and 45.12(3) d [1981Ba15].

Weighted average of 45.00(1) a [1971Ru03], and 110(9) ns [1974Ba82].
^a [1973Va16] reports 300(150) keV above ^{237m1}Pu.
^b Weighted average of 2.30(20) MeV [1971Br39], and 2.60(20) MeV [1972Vy07].

^d The ordering of the two isomers is uncertain.

Particle separation, Q-values, and measured values for direct particle emission of the even-Z, $T_z = +49/2$ nuclei. Unless otherwise stated, all S and Q-values are taken from [2021Wa16] or deduced from values therein.

Nuclide	S _p	Qα	BRα	BR _{SF}	BR _{cluster}	type	Experimental
²⁰⁹ Hg	9.99(34)#	1.79(34)#					
²¹³ 1977Vv02Pb	8.94(20)#	2.98(15)					
²¹⁷ Po	7.280(13)	6.662(2)	$\approx 100\%$				[2004Li28. 2003Ku25. 1997Li23. 1977Vv02. 1956Mo15]
²²¹ Rn	7.193(15)	$6.148(2)^{*}$	22(1)%				[2004Li28, 1997Li23, 1977Vv02, 1956Mo15]
225Ra	7.045(11)	5.097(5)	$\frac{2}{2}6(8) \times 10^{-3}\%$	[2000Li37]			[
²²⁹ Th	6 598(3)	5.097(3)	100%	[20001137]			[2000Ga52, 1987He28, 1970Ba20, 2018Es07, 2014Va04
111	0.570(5)	5.100(1)	100%				1998Ga48 1995Vo07 1987AbZV 1986He06 1986He12
							1983Ra01, 1981Di14, 1971Bb10, 1970BaZZ, 1969Ba57,
							1968Ba46, 1964Hv02, 1961Ko11, 1961Tr08, 1959Go87.
							1950Ha52, 1949SeZU, 1947Ha02]
²³³ U	6.316(8)	4.909(1)	100%		$7.2(12) \times 10^{-11}\%$	²⁴ Ne	[2003Ba78, 1991Pr01, 1967Ba43, 2024Gr01, 2020Si22,
							2009Po15, 1998Ya17, 1992El01, 1986Ba65, 1985AlZO,
							1984Re05, 1979Ce04, 1977Ca04, 1976Kr03, 1976Va02,
							1968 Ba25, 1968Ke15, 1967Ga15, 1967Mo28, 1967Tr07,
							1966Ba43, 1964Ba42, 1961An08, 1961Po10, 1960Dz07,
							1959Do63, 1958Cl49, 1953AsZZ, 1950Ha52, 1949SeZU,
							1947Ha02]
²³⁷ Pu	5.575(50)	5.748(2)	$4.2(4) \times 10^{-3}\%$				[1979El05, 1957Ho68, 1957Th10]
^{237m1} Pu	2.38(21)	8.65(20)		obs			[1978De07, 1974Ba82, 1971Br39, 1971Ru03, 1982Ra04
							1979Gu03, 1973Va16, 1972Vi10, 1971Te07, 1970Bu02,
							1970Po01, 1970RuZS, 1969Me11, 1979VaZX]
^{237m2} Pu	2.38(26)	8.95(25)		obs			[1973Va16, 1979Gu03, 1974Ba82, 1972Vi10, 1971Ru03,
							1971Te07, 1970Po01]
²⁴¹ Cm	5.097(14)	6.185(1)	1.0(1)%				[1975Ah05, 1974Po08, 1971Bb10, 1969Ba57, 1967Ba42,
							1965Ba51, 1952Hi11]
^{241m} Cm	2.65(20)	8.64(20)		obs			[1972Vy07, 1971Br39, 1971Re11, 1974SpZS, 1972Ga42,
							1970Po01]
²⁴⁵ Cf	4.618(15)	7.258(2)	36.0(26)%				[1996Ma72, 2004He28, 1968Ku12, 1967Fi04, 1956Ch43]
²⁴⁹ Fm	4.069(53)	7.709(6)	15.6(1)%				[2012He09, 2011Lo06, 2006Ni09, 2004He28, 1967Mi03,
							1966Ak01, 1959Pe27]
²⁵³ No	3.397(92)	8.415(4)	55(3)%				[2012He09, 2011An13, 2011Lo06, 2006Lo12, 2015KaZX,
							2008DoZZ, 2006Po10, 2004He04, 2004He28, 1997He29,
							1971GhZV, 1967Gh01, 1967Mi03]
²⁵⁷ Rf	3.169(84)	9.083(8)	79.3(17)%	1.3(3)%			[2022Ha04, 2010St14, 1997He29, 2016He08, 2009He20,
							2008Dr05, 2002HeZS, 2001He35, 1985He06, 1985So03,
							1974BeYN, 1969Gh01]
$^{25/m}$ Rf	3.095(86)	9.157(18)	81.0(25)%	14(9)%			[2022Ha04, 2010St14, 1997He29, 1985So03, 2016He08,
							2009He20, 2008Dr05, 2002HeZS, 2001He35, 1985He06,
261							1974BeYN, 1969Gh01]
²⁰¹ Sg	2.957(95)#	9.714(15)	98.1(5)%	0.6(2)%			[2010St14 , 2010Be16, 2007St12, 2004He23, 1985Mu11,
2(5							1984De07, 1984Mu17, 1984Og03, 1983DeZH]
²⁰³ Hs	2.35(18)#	10.470(15)	$\approx 100\%$	<1%			[2009He20, 2000HoZZ, 2011Sa41, 1999He11, 1987Mu15,
265							1984DeZO, 1984Mu17]
^{203m} Hs	2.35(18)#-x	10.470(15)+x	$\approx 100\%$				[2009He20 , 2011Sa41, 1999He11, 1984DeZO,
²⁰⁹ Ds	1.61(24)#	11.510(30)	100%				[199He07 , 2002Ho11, 1995Ho03]
4 D 1 1 7		(1(2)2): 22	001337 173				
* Deduced f	rom α energy	v, 6.163(3) in [20	021Wa16].				
Table 2							

Table 3

direct α emission from ²¹⁷Po, $J^{\pi} = (9/2^+)$, $T_{1/2} = 1.52(3)$ s*, $BR_{\alpha} = \approx 100\%$.

$E_{\alpha}(\text{c.m.})$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(abs)$	\mathbf{J}_f^{π}	$E_{daughter}(^{213}\text{Pb})$	coincident γ -rays	R ₀ (fm)	HF
6.664(3)	6.541(3)**	$\approx 100\%$	(9/2+)	0.0		1.53953(24)	1.63(5)

* Weighted average of 1.53(3) s [2003Ku25] and 1.48(5) s [2004Li28]. ** Weighted average of 6.543(4) MeV [2003Ku25] and 6.539(4) MeV (adjusted to 6.537(4) MeV in [1991Ry01]) [1977Vy02].

Table 4 direct α emission from ²²¹Rn*, $J^{\pi} = (7/2^+)$, $T_{1/2} = 25(2)$ m**, $BR_{\alpha} = 22(1)\%$.

$E_{\alpha}(\text{c.m.})$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(\text{rel})$	$I_{\alpha}(abs)$	$\mathrm{J}_{f}^{\pi***}$	$E_{daughter}(^{217}\text{Po})^{***}$	coincident γ-rays***	R ₀ (fm)	HF
5.882(2)	5.776(2)	9%	1.5%	$(11/2^+)$	0.265	0.265	1.55206(14)	12
5.893(2)	5.786(2)	15%	2.6%	$(7/2^+)$	0.254	0.254	1.55206(14)	8.1
6.148(2)	6.037(2)	100%	17.6%	$(9/2^+)$	0.0		1.55206(14)	17

* All values from [1977Vy02], except where noted. $E_{\alpha}(lab)$ values are adjusted by -1.7 keV in [1991Ry01]. [1977Vy02] lists uncertainties as 3 keV, which was reduced to 2 keV in [1997Li23].

** [1956Mo15]. *** [2018Ko01].

Table 5

direct α emission from ²²⁵ Ra*, J^{π} =	$1/2^+, T_1$	$_{/2} = 14.2(8) \text{ d}^{**}, BR_{\alpha} = 2.6(8) \times 10^{-3}\%.$

$E_{\alpha}(\text{c.m.})$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(\text{rel})$	$I_{\alpha}(abs)$	$\mathbf{J}_f^{\boldsymbol{\pi}}$	$E_{daughter}(^{221}\mathrm{Rn})$	coincident γ -rays	R ₀ (fm)	HF
5.066(5) 5.097(5)	4.976(5) 5.006(5)	30(17)% 100(25)%	$6(3) \times 10^{-4}\%$ 2.0(5)×10 ⁻³ %7/2 ⁺	(3/2 ⁺) 0.0	0.030(10)			

* All values from [2000Li37], except where noted.

** [1950Ha52].

Table 6

direct α emission from ²²⁹Th, $J^{\pi} = 5/2^+$, $T_{1/2} = 7894(40)$ y*, $BR_{\alpha} = 100\%$ (1 of 3).

$E_{\alpha}(\text{c.m.})^{**}$	$E_{\alpha}(\text{lab})^{***}$	$I_{\alpha}(\text{rel})$	$I_{\alpha}(abs)$	$J_f^{\pi@@}$	E _{daughter} (²²⁵ Ra) ^{@@}	coincident γ -rays (keV) ^{@@}	HF ^{@@@}
4.5044(10)	4.426**	0.011%	0.006%	(5/2+,7/2+)	0.6632	11.1, 17.3, 23.6, 25.4 , 28.7, 29.9, 31.4, 37.8 , 42.4, 42.8, 44.0 , 49.7, 51.0, 53.8 , 55.2, 56.5, 59.3, 63.7, 65.0 , 68.1, 68.8 , 75.2, 77.6, 78.5 , 86.3 , 89.1, 94.7, 94.8, 98.9, 100.8, 107.1, 109.1, 110.3, 115.9, 118.1, 120.1, 123.2, 124.6, 126.1, 126.5, 131.9 , 134.2, 137.0, 139.8, 142.0, 142.9 , 147.7, 148.2, 149.9, 151.6, 154.3, 156.4 , 166.9, 167.5, 171.2, 174.1, 179.8, 185.6, 190.6, 193.5, 194.9, 200.8, 204.7, 210.3 , 210.9, 217.4, 218.2, 221.2, 225.3, 228.6, 234.8, 236.3, 242.6, 252.4 , 296.2, 303.8, 310.1, 313.3, 317.8, 349.4, 327.9, 341.1 , 414.6, 419.9, 483.7, 513.5, 543.0, 551.7, 594.4	16
4.5587(10)	4.478 [@]	0.016%	0.0091%		0.6089	11.1, 17.3 , 23.6 , 25.4 , 31.4 , 37.8, 42.4, 42.8 , 44.0, 55.2, 68.8, 75.2 , 86.3, 94.7, 102.5 , 107.1 , 118.1, 124.6 , 149.9, 169.2 , 182.1, 193.5, 216.0 , 225.3 , <i>281.3</i> , 327.9, 459.1 , 565.7	26
4.5631(10)	4.484(2)	0.070%	0.0396%	(5/2+)	0.6045	11.2, 17.3 , 22.0, 23.6 , 25.4 , 29.9, 31.4 , 33.1, 37.8, 42.4, 42.8 , 44.0, 51.0, 55.2, 59.3, 63.7, 65.0 , 68.1, 68.8 , 75.2, 77.6, 86.3 , 89.1, 94.7, 94.8, 102.5, 107.1 , 109.1, 110.3, 114.8 , 115.9, 118.1, 120.1, 123.2, 124.6 , 126.1, 131.9 , 134.2, 137.0 , 139.8, 142.9 , 147.7, 148.2, 149.9, 151.6, 154.3, 156.4, 166.9, 154.3, 167.5, 169.2, 171.2, 174.1, 179.8, 182.1, 183.0, 185.6 , 189.3 , 190.6, 193.5 , 194.9, 200.8, 204.7, 210.9, 216.0, 217.4, 218.2, 225.3, 228.6, 234.8, 236.3, 242.6, 250.1, 267.4, 276.9 , 298.7, 320.8, 327.9, 349.4, 328.2, 336.7, 344.4 , 358.0, 361.0, 366.5, 368.1 , 377.4, 379.4 , 403.3, 408.5, 424.8 , 452.6, 453.3, 454.8 , 478.0, 492.9 , 503.6, 523.5, 535.1 , 549.8, 561.8 , 573.0 , 579.2, 592.5	6.5
4.5748(10)	4.4949**	0.048%	0.027%	(3/2 ⁻ ,5/2 ⁻)	0.5928	11.1 , 17.3 , 22.0, 23.6, 25.4 , 29.9, 31.4 , 33.1 , 37.8 , 42.4 , 42.8, 44.0 , 51.0, 55.2, 59.3, 63.7, 65.0 , 68.1, 68.8 , 75.2, 77.6, 86.3, 89.1 , 94.7, 94.8, 110.3 , 107.1 , 109.1, <i>114.8</i> , 118.1, 120.1, 123.2, 124.6 , 126.1, 131.9 , 134.2, 137.0, 139.8 , 142.9 , 148.2, 149.9, 151.6, 154.3, 171.2, 174.1, 179.8, 183.0, 185.6 , 189.3 , 190.6, 194.9, 200.8, 217.4 , 218.2, 228.6, 234.8 , 250.1, 267.4, 298.7, 320.8, 349.4, 328.2, 358.0, 366.5, 377.4, 403.3, 408.5, 453.3, 452.6, 478.0, 523.5, 549.8, 592.5	11.6
4.6323(10)	4.5514**	0.026%	0.0145%	(5/2 ⁺)	0.5353	11.1 , 17.3 , 23.6 , 25.4 , 28.7, 29.9, 31.4 , 37.8, 42.4, 42.8 , 44.0, 49.7, 53.8 , 55.2, 56.5, 59.3, 63.7, 65.0 , 68.1, 68.8 , 75.2, 77.6, 78.5 , 86.3 , 51.0, 89.1, 94.7, 94.8, 98.9, 100.8, 110.3, 107.1, 109.1, 115.9, 118.1, 120.1, 123.2, 124.6, 126.1, 126.5, 131.9 , 134.2, 137.0, 142.0, 142.9 , 147.7, 148.2, 149.9, 151.6, 154.3, 156.4 , 166.9, 167.5, 171.2, 174.1, 179.8, 193.5, 194.9, 200.8, 204.7, 210.3, 210.9, 213.5 , 218.2, 221.2, 225.3, 236.3, 242.6, 252.4, 296.2, 465, 503.6, 535.1	57

Fable 7	
lirect α emission from ²²⁹ Th, $J^{\pi} = 5/2^+$, $T_{1/2} = 7894(40)$ y*, $BR_{\alpha} = 100\%$ (continued, 2 of .	3).

$E_{\alpha}(\text{c.m.})^{**}$	$E_{\alpha}(\text{lab})^{***}$	$I_{\alpha}(\text{rel})$	$I_{\alpha}(abs)$	$\mathbf{J}_{f}^{\pi@@}$	E _{daughter} (²²⁵ Ra) ^{@@}	coincident γ -rays (keV) ^{@@}	HF ^{@@@}
4.6804(10)	4.5986**	0.092%	0.0519%		0.4872	11.1, 17.3, 23.6, 25.4 , 28.7, 29.9, 31.4, 37.8, 42.4, 42.8, 44.0, 49.7, 51.0, 53.8, 55.2, 56.5, 59.3, 63.7, 65.0, 68.1, 68.2, 68.8, 75.2 , 77.6, 78.5, 86.3, 89.1, 94.7, 94.8, 97.0 , 98.9, 100.8, 110.3, 107.1, 109.1, 115.9 , 118.1, 120.1, 123.2, 124.6, 126.1, 126.5 , 131.9, 134.2, 137.0, 142.0, 142.9, 147.7, 148.2, 149.9, 151.6, 154.3, 156.4, 163.2 , 166.9, 1 67.5, 169.2, 171.2, 174.1 , 179.8, 193.5, 194.9, 200.8, 204.7, 210.3, 210.9, 218.2, 221.2, 225.3, 236.3, 242.6, 252.4, 278.7, 289.6 , 296.2	35
4.6808(10)	4.600(2)	0.037%	0.021%	(5/2 ⁺)	0.4868	11.1 , 17.3 , 23.6, 25.4 , 29.9, 31.4, 37.8, 42.4, 42.8 , 44.0, 51.0, 55.2, 59.3, 65.0, 68.1, 68.8, 77.6, 86.3, 89.1, 94.7, 94.8, 110.3, 107.1, 118.1, 124.6, 137.0 , 148.2, 149.9, 154.3 , 179.8, 307.3 , 336.7, 366.5, 375.1, 386.4, 417.4, 444.1, 461.4 , 487.3	87
4.6895(10)	4.608(2)	0.089%	0.05%	(5/2+)	0.4781	11.1 , 17.3 , 22.0, 23.6, 25.4 , 29.9, 31.4 , 33.0 , 37.8 , 42.4, 42.8 , 44.0 , 51.0, 55.2, 59.3, 63.7, 65.0, 68.1, 68.8 , 75.2 , 77.6, 86.3 , 89.1, 94.7, 94.8, 110.3, 107.1, 118.1, 123.2, 124.6, 131.9 , 137.0, 139.8 , 142.9 , 148.2, 149.9, 154.3, 174.1, 179.8, <i>185.6</i> , 190.6, 200.8, 217.4 , 218.2, 228.6, 234.8, 250.1, 267.4, 298.7 , 328.2, 358.0, 366.5, 377.4, 408.5, 453.3,452.6, 478.0	42
4.7211(10)	4.639**	0.082%	0.046%	(7/2 ⁺ ,9/2 ⁻)	0.4465	11.1, 17.3, 22.0, 23.6 , 25.4 , 28.7 , 29.9, 31.4 , 37.8 , 42.4, 42.8, 44.0 , 51.0, 59.3, 63.7, 65.0 , 68.1, 68.8, 75.2 , 77.6, 86.3, 89.1, 94.7, 94.8, 107.1, 110.3, 118.1, 123.2, 124.6, 131.9 , 137.0, 139.8 , 142.9 , 148.2, 149.9, 154.3, 174.1, 174.7 , 179.8, 186.1 , 190.6 , 200.8, 218.2, 217.4, 219.8 , 228.6, 234.8, 250.1, 267.4, 334.7, 345.8	76
4.7508(10)	≈4.667 [@]	0.002%	0.00113%		0.4168	11.1, 17.3, 23.6, 25.4 , 31.4 , 37.8 , 42.4, 42.8, 44.0 , 55.2, 68.8, 75.2 , 86.3, 89.1 , 94.7, 102.5 , 107.1 , 118.1, 124.6 , 149.9, 169.2 , 182.1, 193.5, 216.0 , 225.3 , 327.9, 347.4	5×10 ³
4.7641(10)	4.681**	0.021%	0.012%	(3/2 ⁺ ,5/2 ⁺)	0.4035	11.1, 17.3, 25.4 , 31.4, 37.8, 42.4, 42.8 , 44.0, 49.7 , 68.8 , 75.2 , 86.3 , 109, 1, 120, 1, 126, 1, 151, 6 , <i>183, 0</i> , 194, 9, 403, 3,	580
4.7681(10)	4.685**	0.008%	0.0046%	(3/2-)	0.3995	11.1 , 17.3 , 23.6, 25.4 , 29.9, 31.4 , 37.8 , 42.4, 42.8 , 44.0 , 51.0, 55.2, 59.3, 65.0, 68.1, 68.8, 77.6, 86.3, 89.1, 94.7, 94.8, 110.3, 107.1, 118.1, 124.6, 137.0 , 148.2, 149.9, 154.3, 179.8, 219.8 , 329.9 , 344.4, 399.9	1.6×10 ³
4.7731(10)	4.690(2)	0.80%	0.45%	(5/2)+	0.3945	11.1 , 17.3 , 23.6, 25.4 , 28.7, 29.9, 31.4 , 37.8, 42.4, 42.8 , 44.0, 49.7, 51.0, 53.8 , 55.2, 56.5 , 59.3, 63.7, 65.0, 68.1, 68.8 , 72.8 , 75.2, 77.6, 78.5 , 86.3 , 89.1, 94.7, 94.8, 98.9, 100.8, 110.3, 107.1 , 109.1, 115.9, 118.1, 120.1, 123.2, 124.6 , 126.1, 126.5, 131.9 , 134.2, 137.0 , 142.0, 142.9 , 147.7, 148.2, 149.9, 151.6 , 154.3, 156.4 , <i>158.4</i> , 166.9, 167.5, 171.2, 174.1, 179.8, 193.5, 194.9, 200.8, 204.7, 210.3 , 210.9 , 218.2, 225.3, 236.3, 242.6, 252.4, 282.6, 293.8, 296.2, 351.7, 395.3	18
4.7734(10)	4.690(2)	0.019%	0.0104%	(3/2 ⁻ ,5/2 ⁻)	0.3942	17.3 , 22.0, 23.6 , 25.4 , 31.4, 33.0 , 37.8 , 42.8 , 44.0 , 51.0 , 55.2, 65.0 , 75.2, 77.6, 89.1, 94.7, 94.8, 101.6, 107.1, 10.3, 118.1, 124.6 , 134.2 , 139.8 , 149.9, <i>16</i> 9.2, 182.1 , 190.6 , 193.5, 217.4, 225.3, 228.6, 234.8, 244.4 , 250.1, 267.4, 324.6, 368.9	780
4.7774(10)	4.695(2)	0.21%	0.12%	(11/2 ⁺)	0.3902	11.1 , 17.3, 23.6, 25.4 , 28.7, 29.9, 31.4 , 37.8 , 42.4, 42.8, 44.0, 49.7, 51.0, 53.8, 55.2, 56.5, 59.3, 63.7, 65.0, 68.1, 68.2, 68.8 , 75.2 , 77.6, 78.5, 86.3, 89.1, 94.7, 94.8, 98.9, 100.8, 110.3, 107.1, 109.1, 115.9 , 118.1, 120.1, 123.2, 124.6, 126.1, 126.5 , 131.9, 134.2, 137.0, 142.0, 142.9, 147.7, 148.2, 149.9, 151.6, 154.3, 156.4, <i>163.2</i> , 166.9, 167.5, 169.2 , 171.2, 174.1 , 179.8, 193.5, 194.9, 200.8, 204.7, 210.3, 210.9, 218.2, 221.2, 225.3, 236.3, 242.6, 252.4, 278.7, 289.6 , 296.2	72
4.8182(10)	≈4.737 [@]	0.019%	0.0107%	(3/2,5/2 ⁺)	0.3494	11.1 , 17.3 , 23.6, 25.4 , 31.4, 37.8, 42.8 , 44.0, 51.0, 55.2, 65.0, 68.8 77.6, 89.1 , 86.3 , 94.7, 94.8, 107.1 , 110.3 , 118.1, 124.6, 139.8 , 149.9, 190.6 , 217.4, 228.6, 234.8, 317.8, 349.4	860
4.8322(10)	≈4.748 [@]	0.010%	0.0054%	(1/2 ⁺ ,3/2,5/2)	0.3354	17.3, 23.6, 125.4 , 31.4, 37.8, 42.8, 44.0, 51.0, 55.2, 65.0, 77.6, 89.1, 94.7, 94.8, 107.1, 110.3, 118.1, 124.6, 139.8, 149.9, 1185.6 , 90.6, 217.4, 228.6, 234.8, 303.8, 310.1	3.8×10 ³
4.8404(10)	≈4.754 [@]	0.23%	0.13%	(3/2 ⁺ ,5/2 ⁺)	0.3277	11.1, 17.3, 23.6, 25.4, 31.4 , 37.8, 42.4, 42.8 , 44.0, 55.2, 68.8 , 75.2 , 86.3 , 94.7, <i>102.5</i> , 107.1 , 118.1, 124.6, 149.9, 169.2 , 182.1 , 193.5 , 216.0 , 225.3 , 327.9	180

Table 8	
direct α emission from ²²⁹ Th, $J^{\pi} = 5/2^+$, $T_{1/2} = 7894(40)$ y*, $BR_{\alpha} = 100\%$	(continued, 3 of 3).

$E_{\alpha}(\text{c.m.})^{**}$	$E_{\alpha}(\text{lab})^{***}$	$I_{\alpha}(\text{rel})$	$I_{\alpha}(abs)$	$J_f^{\pi@@}$	E _{daughter} (²²⁵ Ra) ^{@@}	coincident γ -rays (keV) ^{@@}	HF ^{@@@}
4.8458(10)	4.760(2)	3.19%	1.79%	(9/2+)	0.3218	11.1 , 17.3 , 23.6, 25.4 , 28.7, 29.9, 31.4 , 37.8, 42.4, 42.8 , 44.0, 49.7, 51.0, 53.8 , 55.2, 56.5, 59.3, 63.7, 65.0, 68.1 , 68.8 , 75.2 , 77.6, 78.5 , 86.3 , 89.1, 94.7 , 94.8, 98.9, 100.8 , 107.1, 109.1, 110.3, 115.9, 118.1, 120.1, 123.2, 124.6, 126.1, 126.5 , 131.9 , 134.2, 137.0, 142.0, 142.9 , 147.7, 148.2, 149.9, 151.6, 154.3, 156.4 , 166.9, 167.5, 171.2, 174.1, 179.8, 193.5, 194.9, 200.8, 204.7, 210.3 , 210.9, 218.2, 221.2, 225.3, 236.3, 242.6, 252.4 , 296.2	14
4.8833(10)	4.798(2)	2.67%	1.5%	7/2+	0.2843	11.1, 17.3, 23.6, 25.4 , 29.9, 31.4 , 37.8, 42.4, 42.8 , 44.0 , 51.0, 55.2, 59.3, 63.7 , 65.0, 68.1, 68.8, 75.2, 77.6, 86.3, 89.1, 94.7, 94.8, 104.3 , 110.3, 107.1, 109.1 , 118.1, 120.1 , 124.6, 126.1, 134.2, 137.0 , 148.2, 149.9, 151.6, 154.3 , <i>172.9</i> , 179.8, 183.9 , 194.9, 215.1 , 259.1	30
4.8954(10)	≈4.809 [@]	0.75%	0.42%	(7/2 ⁻ ,9/2 ⁻)	0.2722	11.1 , 17.3, 23.6, 25.4 , 28.7 , 11.1 , 29.9, 31.4 , 37.8 , 42.4, 42.8, 44.0 , 51.0, 55.2, 59.3, 63.7, 65.0, 68.1, 68.8 , 75.2 , 77.6, 86.3 , 89.1, 94.7, 94.8, 98.9, 110.3, 118.1, 123.2, 124.6, 124.9 , 131.9 , 134.2, 137.0, 148.2, 149.9, 154.3, 171.8 , 174.1, 179.8, 200.8, 218.2	129
4.8997(10)	4.815(2)	16.55%	9.3%	7/2+	0.2679	11.1, 17.3 , 23.6, 25.4 , 29.9, 31.4 , 37.8, 42.4, 42.8 , 44.0, 51.0, 55.2, 56.5, 59.3, 65.0, 68.1, 68.8 , 75.2, 77.6, 86.3 , 89.1, 94.7, 94.8, 107.1, 110.3, 115.9, 118.1, 124.6 , 137.0, 147.7, 148.2, 149.9, 154.3, 156.4 , 166.9, 167.5, 179.8, 193.5, 204.7, 210.9, 225.3, 236.3, 242.6	6.2
4.9074(10)	4.822**	0.05%	0.026%	(5/2) ⁻	0.2602	11.1. 17.3, 23.6, 25.4, 31.4, 37.8, 42.8, 44.0, 51.0, 55.2, 65.0 , 77.6, 89.1, 94.7, 94.8, 107.1, 110.3 , 118.1, 124.6, 139.8 , 149.9, 190.6 , 217.4, 228.6, 234.8	2.5×10^{3}
4.919(10)	≈4.833 [@]	0.45%	0.253%	(3/2 ⁺ ,5/2,7/2 ⁺)	0.2486	11.1, 17.3 , 23.6, 25.4 , 29.9, 31.4, 37.8, 42.4, 42.8 , 44.0, 51.0, 55.2, 59.3, 65.0, 68.1, 68.8 , 77.6, 86.3, 89.1, 94.7, 94.8, 98.9 , 110.3, 107.1 , 118.1, 124.6 , 137.0 , 148.2, 149.9, 154.3 , 179.8	310
4.9241(10)	4.838(2)	8.90%	5%	7/2+	0.2435	11.1 , 17.3 , 23.6, 25.4 , 29.9, 31.4 , 37.8 , 42.4, 42.8 , 44.0 , 51.0, 55.2, 59.3, 63.7, 65.0, 68.1, 68.8 , 75.2 , 77.6, 86.3, 89.1, 94.7, 94.8, 110.3, 107.1, 118.1, 123.2, 124.6, <i>131.9</i> , 137.0, 142.9 , 148.2, 149.9, 154.3, 174.1, 179.8, 200.8, 218.2	17
4.9313(10)	4.845(2)	100.00%	56.2%	5/2+	0.2363	11.1, 17.3 , 23.6, 25.4 , 29.9, 31.4 , 37.8 , 42.4, 42.8 , 44.0 , 51.0, 55.2, 56.5 , 59.3, 65.0, 68.1, 68.8, 77.6, 86.3 , 89.1, 94.7, 94.8, 110.3, 107.1 , 115.9, 118.1, 124.6 , 137.0 , 148.2, 149.9, 154.3 , 166.9, 179.8, 193.5 , 204.7, 210.9 , 236.3	1.7
4.9407(10)	≈4.852 [@]	0.053%	0.03%	$(11/2^+)$	0.2269	25.4 , 31.4 , 37.8, 44.0, 75.2 , <i>126.5</i>	3.6×10^{3}
4.9425(10)	4.856**	0.023%	0.013%	3/2-	0.2251	17.3 , 23.6 , 25.4 , 31.4 , 42.8 , 55.2 , 75.2 , 94.7, 107.1 , 118.1, 124.6 , 149.9, 169.2 , <i>182.1</i> , 193.5 , 225.3	8.5×10^{3}
4.947(10)	4.860(2)	0.50%	0.28%	(7/2 ⁺ ,9/2 ⁺)	0.2206	11.1, 17.3 , 25.4 , 31.4 , 37.8 , 42.4, 42.8 , 44.0 , 49.7 , 68.8 , 75.2 , 86.3 , 101,6 , 109.1 , 120.1 , 126.1 , 151.6, 194.9	420
4.9513(10)	≈4.865 [@]	0.073%	0.041%	$(13/2^+)$	0.2163	25.4, 31.4, 37.8, 44.0, 75.2, 115.9	3.1×10^{3}
4.9641(10)	$\approx 4.878^{@}$	0.14%	0.077%	(9/2 ⁻)	0.2035	25.4 , 31.4 , 37.8 , 44.0 , <i>134.2</i>	2.0×10^{3}
4.9879(10)	4.901(2)	18.15%	10.2%	5/2+	0.1797	11.1 , 17.3 , 23.6, 25.4 , 29.9, 31.4 , 37.8 , 42.4, 42.8 , 44.0 , 51.0, 55.2,	21
						59.3, 65.0, 68.1 , 68.8, 75.2 , 77.6, 86.3 , 89.1, 94.7, 94.8, 110.3, 107.1, 118.1, 124.6, <i>137.0</i> , 148.2 , 149.9, 154.3 , 179.8	
5.0182(10)	4.930(2)	0.28%	0.16%	3/2+	0.1499	17.3 , 23.6, 25.4 , 31.4, 42.8 , 55.2, 94.7, <i>107.1</i> , 118.1, 124.6 , 149.9	2.1×10^{3}
5.056(10)	4.968(2)	10.62%	5.97%	7/2+	0.1116	11.1, 17.3, 25.4, 31.4, 37.8, 44.0, 42.4, 42.8, 68.8, 75.2, 86.3	99
5.0671(10)	4.979(2)	5.64%	3.17%	$(9/2)^+$	0.1005	25.4, 31.4, 37.8, 44.0, 75.2	220
$\frac{5.0982(10)}{5.1124(10)}$	5.009(2)	0.16%	0.09%	$(1/2)^{-}$	0.0694	25.4, 31.4, 37.8, 44.0	1.2×10*
5.1124(10) 5.1240(10)	5.025(2) 5.036(2)	0.02%	0.009%	(1/2)	0.0552	23.0, 31.4, 33.2 17 3 25 4 42 8	$1.3 \times 10^{\circ}$ 6.6 × 10 ³
5 136(10)	5.030(2)	0.45%	0.2+70 0.2%	3/2-	0.0427	314	9.0×10^{3}
5.1422(10)	5.053(2)	11.74%	6.6%	5/2+	0.254	25.4	310
5.1676(10)	5.077(2)	0.089%	0.05%	1/2+	0.0		5.8×10^{4}

* Weighted average of 7880(120) y [1989Go19], 7917(48) y [2014Va04] and 7825(87) y [2018Es07]. ** Deduced from γ energies [2000Ga52] and $Q_{\alpha} = 5167.6(10)$ keV [2021Wa16].

*** [1987He28]

*** [198/He28] @ [1970Ba20]. @@ [2000Ga52]. The 100% peak decaying from $E_{daughter}$ (i.e. the state that the α populated) is marked in **bolditalic**, and peaks 10% or larger of the aforementioned peak are marked in **bold**. @@@ R_0 (fm) = 1.53355(71) fm

Table 9		
direct α emission from ²³³ U, $J^{\pi} = 5/2^+$, $T_{1/2} = 1.5903(13) \times 10^5$ y	$y^*, BR_{\alpha} = 100\% (1)$	of 2).

$E_{\alpha}(\text{c.m.})^{**}$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(\text{rel})$	$I_{\alpha}(abs)$	$\mathrm{J}_{f}^{\pi @}$	E _{daughter} @ (²²⁹ Th)	coincident γ -rays (keV) ^{@@}	HF ^{@@@}
4.1596	4.0882	$1.7 \times 10^{-5}\%$	$1.44{ imes}10^{-5}\%$	(5/2 ⁺ ,7/2,9/2 ⁺)	0.7491	25.3, 29.2, 42.4 , 42.6, 54.7 , 67.9, 71.8, 74.6, 76.3, 86.3, 88.7, 97.1, 117.2, 119.0, 146.3, 148.2, 514.7, 652.8, 707.4 , 740.6, 749.8	13.5
4.2437	4.1708	$1.1{\times}10^{-6}\%$	$9.3 \times 10^{-7}\%$	(1/2,3/2)-	0.6650	29.2, 135.3, 164.5, 500.4, 665.0	1.1×10^3
4.2518	4.1788	7.0×10 ⁻⁶ %	6.1×10 ⁻⁶ %	(5/2+,7/2,9/2+)	0.6569	25.3, 29.2 , 37.8, 42.4, 42.6 , 53.6 , 54.7, 66.1, 67.9, 71.8, 83.0, 96.2, 97.1, 120.8, 125.4, 177.9, 315.9, 381.5, 406.6, 436.2, 494.5, 478.6, 531.5 , 559.9 , 584.9, <i>614.6</i> , 627.7 , 657.3	200
4.2713	4.1979	1.2×10 ⁻⁵ %	1.03×10 ⁻⁵ %	(5/2 ⁺ ,7/2,9/2 ⁺)	0.6375	25.3, 29.2 , 42.4, 42.6, 54.7 67.9, 71.8, 74.6, 76.3, 86.3, 87.3, 88.7 , 97.1, 117.2 , 119.0, 146.3 , 148.2, 212.3, <i>402.4</i> , 425.3 , 480.7, 540.7 , 608.2, 637.3	1.7×10^{3}
4.2879	42143	8.4×10 ⁻⁶ %	7.3×10 ⁻⁶ %	(5/2 ⁺ ,7/2)	0.6208	25.3 , 29.2 , 42.4 , 42.6, 54.7 , 67.9, 71.8, 74.6, 97.1, 117.2, 146.3 , 474.4 , 523.6 , 578.6, 591.6 , 620.6	330
4.3035	4.2296	$1.0 \times 10^{-5}\%$	$8.7 \times 10^{-6}\%$	5/2+,7/2+	0.6052	29.2 , 42.4 , 42.6 , 71.8 , 76.3, 119.0, 148.2, 456.9, 533.5 , 563.0 , 576.1 , <i>605.2</i>	370
4.3236	4.2494	9.5×10 ⁻⁶ %	8.3×10 ⁻⁶ %	(5/2 ⁺ ,7/2,9/2 ⁺)	0.5851	29.2 , 42.4, 42.6 , 53.6 , 71.8 , 76.3, 119.0, 148.2, 459.7 , 513.2, 542.4, 584.9	570
4.3394	4.2649	1.8×10 ⁻⁵ %	1.58×10 ⁻⁵ %	3/2+,5/2+	0.5693	25.3 , 29.2 , 32.7, 42.4 , 42.6 , 43.7 , 51.0, 52.6, 53.6, 54.7 , 63.8, 67.9, 68.9, 71.8 , 74.6, 76.3, 83.0, 85.2, 86.3, 87.3 , 88.7, 89.4, 91.0, 96.2, 97.1, 97.4 , 101.7, 103.8, 111.9, 114.2, 117.2, 119.0, 125.4, 131.2, 135.3 , 139.7, 146.3, 148.2, 156.2, 162.5, 164.5, 165.6, 172.3, 174.2, 188.0, 208.2, 212.3, 216.1, 217.1, 223.4, 226.2, 248.7, 255.9, 261.9, 278.1, 291.4, 307.3 , <i>313,5</i> , 320.6, 404.3 , 423.1, 569.3	350
4.3724 4.384	4.2973 4.309***	$\frac{3.0 \times 10^{-6}\%}{9.2 \times 10^{-4}\%}$	$\frac{2.6 \times 10^{-6}\%}{8.0 \times 10^{-4}\%}$	(1/2 ⁻) (5/2,7/2) ⁻	0.5363 05265	29.2 , 135.3 , 164.5 , <i>371.3</i> , 536.4 29.2 , 42.4 , 42.6 , 52.6, 68.9, 71.8 , 74.6 , 76.3, 86.3, 88.7, 97.4, 117.2 , 119.0, 135.3, 142.7, 145.3, 146.3 , 148.2, 164.5, 167.1 , 188.0, 217.1, 261.9, 291.5 , 309.6 , 317.2 , 359.4, 455.1, 484.8	4.5×10 ³ 18
4.3953	4.3198	5.6×10 ⁻⁵ %	4.9×10 ⁻⁵ %	(5/2+,7/2,9/2+)	0.5134	25.3, 29.2, 42.4, 42.6 , 53.6, 54.7 , 67.9, 71.8, 83.0, 96.2, 97.1, 125.4, 387.6 416.2 , 441.5, 471.1, 513.2	370
4.4301	4.3540	$5.7 \times 10^{-5}\%$	$5.0 \times 10^{-5}\%$	(7/2 ⁺ ,9/2 ⁺)	0.4787	25.3, 29.2, 37.8, 42.4, 42.6, 53.6, 54.7, 66.1, 67.9, 71.8, 83.0, 96.2, 97 1 120 8 125 4 315 9 381 5 406 6 436 2 494 5 478 6	680
4.4433	4.3670	$1.4 \times 10^{-4}\%$	1.19×10 ⁻⁴ %	(5/2 ⁻ ,7/3,9/2 ⁺)	0.4654	25.3 , 29.2 , 42.4, 42.6 , 53.6, 54.7, 63.8, 65.6, 67.9, 71.8, 74.6, 76.3 83.0, 89.4, 91.0, 96.2, 97.1, 101.7, 111.9, 117.2, 119.0 , 125.4, 131.2, 146.3, 148.2, 154.8, 162.5, 165.6, 177.9, 205.9, 208.2, 260.5, 273.7, 291.9 , 303.0, 393.6, 423.1, 465.4	360
4.4719	4.3952	8.3×10 ⁻⁴ %	7.2×10 ⁻⁴ %	(7/2 ⁻)	0.4368	25.3,29.2, 32.7, 42.4 , 42.6, 51.0, 52.6, 53.6, 54.7, 63.8, 67.9, 68.9, 71.8, 74.6, 76.3, 77.1 , 83.0, 85.2, 86.3, 87.3, 88.7, 89.4, 91.0, 96.2, 97.1, 97.4, 101.7, 103.8, 111.9, 114.2, 116.3 , 117.2, 119.0, 125.4, 131.2, 135.3, 139.7, 142.7, 146.3, 148.2, 156.2, 162.5, 164.5, 165.6, 172.3, 174.2, 188.0, 208.2, 212.3, 216.1, 217.1, 223.4, 224.4, 248.7, 261.9, 272.4, 278.1, 291.4 , 311.9, 317.2 , 320.6, 339.2, 359.4	101
4.481	4.404***	3.3×10 ⁻⁴ %	2.90×10 ⁻⁴ %	(5/2+	0.4280	25.3, 29.2 , 32.6, 42.4, 42.6 , 43.7 , 53.6 , 54.7, 63.8, 65.6, 67.9, 71.8, 74.6, 76.3, 83.0, 87.3 , 89.4, 91.0, 96.2, 97.1, 101.7, 111.9, 117.2, 119.0, 125.0, 125.4 , 131.2, <i>139.3</i> , 142.0, 146.3, 148.2, 154.8, 165.6, 177.9, 205.9, 208.2, 212.3, 226.2, 255.9, 259.3, 260.5, 273.7, 288.5, 303.0	290
4.4828	4.4059	6.2×10 ⁻⁴ %	5.40×10 ⁻⁴ %	(9/2+)	0.4259	25.3, 29.2, 37.8, 42.4, 42.6, 53.6, 54.7, 63.8, 66.1, 67.9, 70.3, 71.8, 74.6, 76.3, 78.2 , 83.0, 89.4, 91.0, 96.2, 97.1, 101.7, 111.9, 116.3, 117.2, 119.0, 120.8, 123.9, 125.4, 131.2, 144.4 , 146.3, 148.2, 153.1, 165.6, 184.1 , 188.7, 208.2, 230.1 , 328.5 , 354.1 , 383.5 , 390.6	160
4.488	4.411***	$4.6 \times 10^{-4}\%$	4.0×10 ⁻⁴ %***		0.421***		240
4.5262	4.4485	6.6×10 ⁻⁵ %	5.70×10 ⁻⁵ %	(7/2 ⁻ ,9/2,11/2 ⁺)	0.3825	25.3 , 29.2, 42.4 , 42.6, 71.8 , 76.3, 101.7, 119.0 , 131.2, 148.2, 209.1 , <i>310.7</i>	3.3×10^{3}
4.535	4.457***	3.1×10 ⁻³ %	2.70×10 ⁻³ %	(7/2+)	0.3748	25.3, 29.2 , 32.6 , 42.4, 42.6 , 43.7, 53.6 , 54.7, 67.9, 71.8, 74.6, 76.3, 86.3 , 87.3 , 88.7, 97.1, 117.2, 119.0, 139.3, 142.0, 146.3, 148.2, 212.3, 226.2, 259.3, 288.5, 255.9, 303.0, 374.7	81
4.543	4.465***	5.2×10 ⁻³ %	$4.50 \times 10^{-3}\%$	7/2+	0.3658	25.3, 29.2, 42.4, 42.6, 53.6, 54.7 , 67.9, 71.8 , 74.6, 76.3, 83.0, 96.2 , 97.1, 101.7, 117.2, 119.0, 125.4, 131.2, 146.3, 148.2, 192.3, 219.4 , 240.4, 268.7, 294.0, 323.3, 336.6, 365.8	66
4.5491	4.4710	$6.9 \times 10^{-4}\%$	$6.00 \times 10^{-4}\%$	(7/2+)	0.3596	29.2, 42.4 , 97.4, 135.3, 164.5, 261.9, 142.7, <i>317.2</i> , 359.4	470
4.561	4.483***	1.6×10 ⁻³ %	1.40×10 ⁻³ %	(5/2+)	0.3478	25.3, 29.2, 42.4 , 42.6, 43.7 , 44.8 , 53.6, 54.7, 63.8, 65.6, 67.9, 71.8, 74.6, 76.3, 83.0, 87.3 , 89.4, 91.0, 92.2 , 96.2, 97.1, 101.7, 111.9, 117.2, 119.0 , 125.4, 131.2, 146.3, 148.2, 154.8 , 165.6, 177.9, 205.9, 208.2, 212.3, 226.2, 255.9, 260.5 , 273.7, 303.0	250

Table 10	
direct α emission from ²³³ U, $J^{\pi} = 5/2^+$, $T_{1/2} = 1.5903(13) \times 10^{-10}$	$10^5 \text{ y*}, BR_{\alpha} = 100\% \text{ (continued, 2 of 2)}$

$E_{\alpha}(\text{c.m.})^{**}$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(\text{rel})$	$I_{\alpha}(abs)$	$J_f^{\pi @}$	E _{daughter} [@] (²²⁹ Th)	coincident γ -rays (keV) ^{@@}	HF ^{@@@}
4.582	4.503***	$01.2 \times 10^{-3}\%$	$1.02 \times 10^{-3}\%$	(15/2+)	0.3278	29.2, 37.8, 42.4, 42.6, 53.6, 54.7, 66.1 , 71.8, 78.2 , 83.0, 96.2, 120.8 ,	480
4.586	4.507***	0.024%	0.0205%	(5/2)+	0.3205	125.4, 144.4 , <i>164.5</i> 25.3 , 29.2 , 32.7 , 42.4 , 42.6 , 51.0 , 52.6, 53.6, 54.7, 63.8, 67.9, 68.9, 71.8, 74.6, 76.3, 83.0, 85.2, 86.3, 88.7, 89.4, 91.0, 96.2, 97.1, 101.7, 103.8, 111.9, 114.2 , 117.2, 119.0 , 125.4, 131.2, 135.3, 139.7, 146.3, 148.2, 156.2, 162.5, 164.5, 165.6, 172.3, 174.2, 188.0, 208.2 , 216.1, 217.1, 223.4, 248.7 , 278.1 , 291.4 , 320.6	27
4.592	4.513***	0.023%	0.020%	(5/2)+	0.3172	29.2 , 42.6 , 52.6, 68.9, 71.8, 74.6, 76.3, 100.0, 117.2, 119.0, 135.3, 145.3, 146.3, 148.2, 152.6, 164.5, 169.1, 170.8, 188.0, 217.1, 245.3 , 274.7, 288.0 , 317.2	30
4.6057	4.5267	5.7×10 ⁻³ %	5.0×10 ⁻³ %	(7/2 ⁺)	0.3030	25.3 , 29.2 , 42.4 , 42.6 , 53.6 , 54.7, 63.8, 65.6 , 67.9, 71.8, 74.6, 76.3, 83.0, 89.4, 91.0 , 96.2, 97.1, 101.7, 111.9, 117.2, 119.0 , 125.4, 129.3 , 131.2, 146.3 , 148.2, 154.8 , 165.6, 177.9 , 205.9 , 208.2 , <i>260.5</i> , 273.7 , 303.0	150
4.617	1 538***	4.6×10^{-3} %	4.0×10^{-3} %***		0 202***	505.0	230
4.017	4.530	4.0×10^{-4}	2 00 × 10 ^{−4} 0⁄-		0.292	25 2 20 2 22 6 42 4 42 6 42 7 54 7 67 0 71 8 74 6 87 2 07 1	$\frac{230}{1.2 \times 10^3}$
4.0202	4.5409	9.2×10 %	8.00×10 %		0.2883	25.5, 25.2 , 25.0 , 42.4 , 42.0 , 43.7 , 54.7 , 54.7 , 67.9 , 71.0 , 74.0 , 67.9 , 71.1 , 117.2 , 135.3 , 142.0, 146.3, 164.5 , 212.3, 226.2, 259.3 , 255.9, 261.9 , 288.5	1.2×10
4.6208	4.5415	$1.1 \times 10^{-3}\%$	$1.0 \times 10^{-3}\%$	(7/2 ⁻)	0.2879	25.3 , 29.2 , 42.4, 42.6 , 51.0 , 53.6, 54.7, 63.8, 67.9, 71.8, 74.6, 76.3, 83.0, 89.4, 91.0, 96.2, 97.1, 101.7, 111.9, 114.2 , 117.2, 119.0 , 125.4, 131.2, 139.7, 146.3 , 148.2, 162.5, 165.6, 208.2 , 216.1	980
4.645	4.565***	$3.3 \times 10^{-3}\%$	$2.9 \times 10^{-3}\%$	$(1/2^+)$	0.2619	29.2, 97.4, 135.3, 164.5, 261.9	530
4.652	4.572***	$1.1 \times 10^{-3}\%$	$1.0 \times 10^{-3}\%$	(3/2,5/2+,7/2+)	0.2560	29.2 , 42.4, 42.6 , 43.6, 53.6 , 71.8, 83.0, 87.3 , 96.2 , 125.4, 212.1 , 226.2 , 255.9	1.7×10^{3}
4.6671	4.5870	1.8×10 ⁻³ %	1.57×10 ⁻³ %	13/2+	0.2416	25.3 , 29.2 , 37.8 , 42.4 , 42.6 , 53.6 , 54.7 , 66.1 , 67.9, 71.8, 78.2, 83.0, 96.2, 97.1 , 116.3, 120.8 , 125.4, <i>144.4</i>	1.4×10^{3}
4.670	4.590	$\approx 3.4 \times 10^{-3}\%$	$\approx 3.0 \times 10^{-3}\%$	(7/2 ⁻)	0.2374	25.0 , 25.3 , 29.2 , 42.4, 42.6, 53.6 , 63.8 , 71.8, 74.6 , 76.3, 83.0, 87.3 , 89.4 , 91.0 , 96.2, 101.7, 111.9, 117.2 , 119.0 , 125.4, 131.2, 146.3 , 148.2, 165.6, 208.2	≈770
4.6734	4.5931	$8.0 \times 10^{-4}\%$	$7.00 \times 10^{-4}\%$	$(5/2^{-},7/2^{-})$	0.2351	29.2, 42.6 , 71.8, 74.6 , 76.3, 86.3, 88.7 , 117.2 , 119.0, 146.3 , 148.2	3.4×10^{3}
4.692	4.611***	0.013%	0.0115%	(5/2 ⁻)	0.2172	29.2 , 42.6 , 52.6 , 68.9 , 71.8, 76.3, 119.0 , 135.3 , 145.3 , 148.2, 164.5 , 188.0 , <i>217.1</i>	280
4.696	4.615***	$5.7 \times 10^{-4}\%$	$5.00 \times 10^{-4}\%$	$(5/2^+)$	0.2123	25.3, 29.2 , 42.4, 42.6 , 53.6, 54.7, 67.9, 71.8, 87.3 , 96.2 , 212.3	7.0×10^{3}
4.707	4.626***	$<4.6\times10^{-3}\%$	$<4 \times 10^{-3}$ ***	11/2-	0.2024		$>1.0 \times 10^{3}$
4.715	4.634***	0.016%	0.0137%	$(11/2^+)$	0.1957	25.3, 29.2 , 42.4, 42.6 , 53.6 , 54.7, 67.9, 70.3 , 71.8, 97.1 , 123.9 , 153.1	340
4.722	4.641***	$3.4 \times 10^{-3}\%$	$3 \times 10^{-3}\%$ ***		0.1870***	25.3, 29.2 , 42.4 , 42.6 , 54.7 , 67.9 , 71.8, 92.9 , 97.1	1.8×10^{3}
4.7352	4.6539	$8.0 imes 10^{-4}\%$	$7.00 \times 10^{-4}\%$	(9/2 ⁻)	0.1735	25.3 , 29.2 , 42.4, 42.6, 71.8, 76.3, 101.7, 119.0 , 131.2, 148.2	9.5×10^{3}
4.737	4.656***	$\approx 6 \times 10^{-3}\%$	$\approx 5 \times 10^{-3} \% * * *$		0.171***		$\approx 1.4 \times 10^3$
4.7442	4.6627	$4.8 \times 10^{-3}\%$	$4.2 \times 10^{-3}\%$	$(3/2^{-})$	0.1645	29.2, 135.3, 164.5	1.8×10^{3}
4.745	4.664***	0.074%	0.064%***	11/2+	0.1633	25.3 , 29.2 , 37.8 , 42.4 , 42.6 , 53.6 , 54.7 , <i>66.1</i> , 71.8, 83.0, 96.2 , 97.1 , 120.8, 125.4	123
4.7606	4.6788	$1.0 \times 10^{-3}\%$	$9.00 \times 10^{-4}\%$	$(7/2^{-})$	0.1482	29.2 , 42.6, 71.8, 76.3, 119.0 , 148.2	1.1×10^{4}
4.763	4.681***	$7.5 \times 10^{-3}\%$	$6.50 \times 10^{-3}\%$	$(5/2^{-})$	0.1464	29.2, 42.6 , 71.8, 74.6, 117.2, <i>146.3</i>	1.6×10^{3}
4.769	4.687***	$3.2 \times 10^{-3}\%$	$2.8 \times 10^{-3}\%$ ***		0.140***	25.3, 29.2, 42.4, 42.6, 43.7, 54.7, 65.6, 67.9, 71.8, 97.1, 120.8	4.1×10^{3}
4.783	4.701***	0.12%	0.107%	$(9/2)^+$	0.1254	29.2 , 42.4, 42.6 , 53.6 , 71.8 , 83.0, 96.2 , 125.4	136
4.812	4.729***	1.94%	1.69%	9/2+	0.0971	25.3, 29.2, 42.4, 42.6, 54.7, 67.9, 71.8, 97.1	13.6
4.834	4.751***	0.011%	0.01%***		0.075***	54.7	3.3×10^{3}
4.837	4.754***	0.47%	0.41%	$(7/2^+)$	0.0718	29.2, 42.6, 71.8	84
4.841	4.758***	0.018%	0.016%***		0.067***	25.3, 42.4, 67.9	2.3×10^{3}
4.867	4.783***	11.49%	10%	7/2+	0.0424	42.4	5.5
4.880	4.796***	0.57%	0.5.%	$(5/2^+)$	0.0292	29.2	135
4.888	4.804***	0.059%	0.051%***		0.0204***		1.5×10^{3}
4.9087	4.8244	100.00%	87%	5/2+	0.0		1.22

* [2009Po15].

** Deduced from γ energies [2003Ba78] and $Q_{\alpha} = 4908.7(12)$ keV [2021Wa16], except where noted. *** Measured α energies from[1967Ba43]. $I_{\alpha}(abs)$ indicates the transition was not observed in [2000Ga52].

*** Measured α energies from [150/Da+5]. $r_{\alpha}(\alpha\sigma)$, measured α [@] [2008Br17]. [@] α γ 's from [2003Ba78]. The 100% peak decaying from $E_{daughter}$ (i.e. the state that the α populated) is marked in **bolditalic**, and peaks 10% or larger of the aforementioned peak are marked in **bold**. [@] α α R_0 (fm) = 1.52555(39) fm

Table 11 direct α emission from ²³⁷Pu*, $J^{\pi} = 7/2^{-}$, $T_{1/2} = 45.31(3) d^{**}$, $BR_{\alpha} = 4.2(4) \times 10^{-3} \%$.

$E_{\alpha}(c.m.)$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(\text{rel})$	$I_{\alpha}(abs)$	${ m J}_f^{\pi}$	$E_{daughter}(^{233}\mathrm{U}^{***})$	coincident γ -rays (keV)	R ₀ (fm)	HF
5.186(3)	5.099(3)	≈1.1%	$\approx 2.1 \times 10^{-3}\%$		0.5615(20)	40.4, 51.5, 92.0, 228.6, 241, 280.4, 320.8, 521.1	1.50884(18)	≈17
5.244(2)	5.155(2)	14.7%	0.027%		0.50362(10)	40.4, 51.5, 92.0, 181.8, 205.0, 228.6, 258.5, 280.4, 298.9, 320.8, 411.1, 463.1, 503.9	1.50884(18)	3.1
5.350(2)	5.260(2)	≈1.6%	≈2.9×10 ⁻³ %		0.39755(21)	32.9, 40.4, 43.7, 51.5, 54.8, 63.1, 76.7, 92.0, 114.7, 198.6, 228.6, 258.5, 261.7, 280.4, 298.9, 305.4, 313.3, 320.8	1.50884(18)	≈130
5.394(2)	5.303(2)	28.0%	0.051%		0.35378(12)	32.9, 40.4, 51.5, 54.8, 63.1, 92.0, 114.7, 198.6, 228.6, 258.5, 261.7, 280.4, 298.9, 313.3, 320.8	1.50884(18)	14
5.427(2)	5.335(2)	100%	0.18%	5/2-	0.32077(5)	40.4, 51.5, 92.0, 228.6, 280.4, 320.8	1.50884(18)	5.9
5.449(2)	5.357(2)	39.5%	0.072%	5/2-	0.29882(1)	40.4, 258.5, 298.9	1.50884(18)	20
5.592(2) 5.656(2) 5.707(2) 5.748(2)	5.498(2) 5.560(2) 5.611(2) 5.651(2)	≈16.3% 16.6% 8.3% 4.8%	$\approx 0.030\%$ 0.030% 0.015% $8.8 \times 10^{-3}\%$	(11/2 ⁺) 9/2 ⁺ 7/2 ⁺ 5/2 ⁺	0.15523(8) 0.09215(4) 0.04035(1) 0.0	40.4, 51.5, 63.1, 114.7 40.4, 51.5, 92.0 40.4	1.50884(18) 1.50884(18) 1.50884(18) 1.50884(18)	≈ 330 730 2.8×10^{3} 8.0×10^{3}

* All values from [1979El05], except where noted. ** Weighted average of 45.66(4) d [1994Ta25], and 45.12(3) d [1981Ba15]. *** [2020Si28].

Table 12

direct α emission from ²⁴¹ Cm*, J ^{π} = (1/2 ⁺), T _{1/2} = 32.8(2) d**, BR _{α} = 1.0(1)%*

$E_{\alpha}(c.m.)$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(\text{rel})$	$I_{\alpha}(abs)$	\mathbf{J}_f^{π}	$E_{daughter}(^{237}\mathrm{Pu}^{***})$	coincident γ-rays (keV)***	R ₀ (fm)	HF
5.783(3)	5.687(3)	0.32(8)%	2.2(5)×10 ⁻³ %	5/2+	0.4042	9.9, 45.7, 55.6, 68.8, 79.1, 123.8, 124.7, 179.9, 203.0, 248.7, 280.2	1.49798(88)	33 ⁺¹¹ -7
5.816(3)	5.719(3)	0.12(6)%	8(4)×10 ⁻⁴ %	3/2+	0.3704	9.9, 214.9, 224.9	1.49798(88)	140^{+150}_{-50}
5.882(3)	5.784(3)	$\approx 0.10\%$	$\approx 7 \times 10^{-4}$	9/2+	0.304		1.49798(88)	≈360
5.962(3)	5.863(3)	0.20(8)%	$1.4(5) \times 10^{-3}\%$	$7/2^{+}$	0.2243	9.9, 68.8	1.49798(88)	480^{+290}_{-130}
5.984(3)	5.885(3)	17(2)%	0.118(13)%	5/2+	0.2012	9.9, 45.7, 55.6	1.49798(88)	$7.5^{+1.0}_{-0.8}$
6.014(3)	5.914(3)	0.17(7)%	$1.2(5) \times 10^{-3}\%$	$13/2^{-}$	0.175		1.49798(88)	$1.0^{+0.8}_{-0.3} \times 10^3$
6.029(3)	5.929(3)	26.3(27)%	0.0181(19)%	3/2+	0.1555	9.9	1.49798(88)	$8.4^{+1.5}_{-1.1}$
6.039(3)	5.939(3)	100(10)%	0.689(70)%	$1/2^{+}$	0.1455		1.49798(88)	2.5(3)
6.079(3)	5.978(3)	0.41(11)%	$2.8(8) \times 10^{-3}\%$	112^{-}	0.106		1.49798(88)	$1.0^{+0.4}_{-0.2} \times 10^3$
6.138(3)	6.036(3)	0.17(6)%	$1.2(4) \times 10^{-3}\%$	9/2-	0.0477	47.7	1.49798(88)	$4.5^{+2.4}_{-1.2} \times 10^{3}$
6.185(3)	6.082(3)	0.22(8)%	$1.5(5) \times 10^{-3}\%$	$7/2^{-}$	0.0		1.49798(88)	$6.2^{+3.4}_{-1.7} \times 10^3$

* All values from [1975Ah05], except where noted. ** [1974Po08].

*** [2006Ba41].

Table 13				
direct α emission from ²	$^{45}Cf^*, J^{\pi} = (1/2)$	2^+), $T_{1/2} = 46.4(3)$	m, $BR_{\alpha} = 36.0(26)\%$	

$E_{\alpha}(c.m.)$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(\text{rel})$	$I_{\alpha}(abs)$	${\sf J}_f^\pi$	$E_{daughter}(^{241}\mathrm{Cm})$	coincident γ -rays (keV)	R ₀ (fm)	HF
7.101	6.985	0.34%	0.11%	9/2+	0.160		1.497(31)	150
7.140	7.023	0.34%	0.11%	7/2+	0.122		1.497(31)	220
7.182	7.065	0.74%	0.24%	$5/2^{+}$	0.080		1.497(31)	150
7.208 7.261(2)	7.090 7.142(5)**	7.6% 100%	2.5% 33.0%	5/2 ⁺ 1/2 ⁺	0.0561 0.0	50.6, 56.1	1.497(31) 1.497(31)	$\frac{18}{2.2^{2.4}_{1.2}}$

 \ast All values from [1996Ma72], except where noted.

** [2004He28].

direct α emissio	n from ²⁴⁹ Fm*	$, J^{\pi} = (7/2^+)$	$T_{1/2} = 99(6)$	5) s**, BR_{α} =	= 15.6(1)%.
-------------------------	---------------------------	-----------------------	-------------------	-------------------------	-------------

$E_{\alpha}(\text{c.m.})$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(abs)$	${ m J}_f^{\pi}$	$E_{daughter}(^{245}\mathrm{Cf})$	coincident γ -rays (keV)	R ₀ (fm)	HF
7.652	7.529	15.6(1)%	(1/2+)	0.047	0.047	1.4867(57)	0.73^{+12}_{-10}

* All values from [2012He09], except where noted.

** Weighted average of 96(9) s [2004He28], and 117(15) s [2006Ni09].

Table 15

direct α emission from ²⁵³ No*, J ^{π} = (9/2 ⁻), T _{1/2} =	$= 1.56(2) \text{ m}, BR_{\alpha} = 55(3)\%^{***}$
---	--

$E_{\alpha}(c.m.)$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(\text{rel})$	$I_{\alpha}(abs)$	\mathbf{J}_f^{π}	$E_{daughter}(^{249}\mathrm{Fm})$	coincident γ-rays (keV)***	$R_{0}\left(fm\right)$	HF
								9
7.742(15)	7.620(15)**	0.26(6)%**	$0.14(3)\%^{**}$	$(7/2^{-})$	0.6695**	669.5**	1.4730(54)	$22^{+\circ}_{-6}$
8.132(5)	8.003(5)	100(1)%	53(3)%	(9/2-)	0.279	58, 71, 129, 150, 221, 279	1.4730(54)	1.4(2)
8.200(10)	8.070(10)	4.4(6)%	2.3(4)%	$(5/2^{-}+)$	0.211	211	1.4730(54)	56^{+14}_{-11}
8.281(20)	8.150(20)		obs	$(11/2^+)$	0.129	58, 71, 129	1.4730(54)	
8.352(20)	8.220(20)		obs	$(9/2^+)$	0.058	58	1.4730(54)	
8.413(20)	8.280(20)		obs	$(7/2^+)$	0.0		1.4730(54)	

* All values from [2006Lo12], except where noted.

** [2012He09].

*** [2011An13].

Table 16

direct α emission from ²⁵⁷Rf*, J^{π} = (1/2⁺), T_{1/2} = 5.5(4) s, *BR*_{α} = 79.3(17)%.

$E_{\alpha}(c.m.)$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(\text{rel})$	$I_{\alpha}(abs)$	\mathbf{J}_f^{π}	$E_{daughter}(^{253}\text{No})$	coincident γ-rays (keV)	R ₀ (fm)	HF
9 594(15)	9 450(15)				0.510		1 468(22)	
8.637(11)	8.503(11)***				0.450	0.167, 0.283	1.468(22)	
8.823(15)	8.686(15)				0.258	0.091, 0.167	1.468(22)	
8.923(5)	8.784(5)**			(5/2+)	0.167	0.167	1.468(22)	
9.092(15)	8.950(15)			(9/2 ⁻)	0.0		1.468(22)	

 \ast All values from [2010St14], except where noted.

** Weighted average of 8.778(10) MeV [2010St14] and 8.785(5) MeV [2022Ha04].

*** Weighted average of 8.510(15) MeV [2010St14] and 8.497(15) MeV [2022Ha04].

Table 17

Tuble 17		
direct α emission from ²⁵⁷	m Rf*, Ex. = 74(16) keV, J ^{π} = (11/2 ⁻), T _{1/2} = 4.9(7) s**, BR _{α} = 81.0(2	25)%

$E_{\alpha}(c.m.)$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(\text{rel})$	$I_{\alpha}(abs)$	J_f^{π}	$E_{daughter}(^{253}\text{No})$	coincident γ -rays (keV)	R ₀ (fm)	HF
8.417(5) 9.107(5) 9.166(5)	8.286(5) 8.965(5) 9.023(5)	3.1(9)% 100(36)% 8.1(27)%	1.8(2)% 58(15)% 4.7(11)%	(9/2-)	0.750 0.063 0.0		1.468(22) 1.468(22) 1.468(22)	$\begin{array}{c} 3.5^{+2.8}_{-1.7} \\ 15^{+13}_{-8} \\ 280^{+240}_{-150} \end{array}$

* All values from [2022Ha04], except where noted.

** [2010St14].

Table 18

direct α emission from ²⁶¹Sg*, J^{π} = (3/2⁺), T_{1/2} = 184(5) ms, *BR*_{α} = 98.1(5)%.

$E_{\alpha}(c.m.)$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(abs)$	J_f^π	$E_{daughter}(^{257}\mathrm{Rf})$	coincident γ -rays	R ₀ (fm)	HF
9.556(10)	9.410(10)	98.1(5)%	(1/2 ⁺)	0.157	0.107, 0.157	1.459(22)	$1.2^{+0.9}_{-0.5}$

* All values from [2010St14].

direct α emission from ²⁶⁵ H	$s^*, T_{1/2} =$	1.9(2) ms, B	$R_{\alpha} = \approx 100\%$
--	------------------	--------------	------------------------------

$E_{\alpha}(c.m.)$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(\text{rel})$	$I_{\alpha}(abs)$	\mathbf{J}_f^{π}	$E_{daughter}(^{253}\text{No})$	coincident γ-rays (keV)	R ₀ (fm)	HF
10 440(15)	10.282(15)							
10.470(15)	10.312(15)							
10.588(15)	10.428(15)							
10.735(15)	10.573(15)							

* All values from [2009He20], From the text of this reference: " α lines were modified by energy summing with conversion electrons; therefore line intensities could not be deduced unambiguously."

Table 20

Table 20			
direct α emission fr	om 265 Hs*, Ex. = unk	$T_{1/2} = 300^{+200}_{-100} \mu$	s, $BR_{\alpha} = \approx 100\%$

$E_{\alpha}(\text{c.m.})$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(abs)$	${\sf J}_f^\pi$	$E_{daughter}(^{253}\text{No})$	coincident γ -rays (keV)	R_0 (fm)	HF
10.700(15)	10.538(15)	$\approx 100\%$				1.483(18)	$0.7\substack{+0.6 \\ -0.4}$
* All value	es from [2009He20]].					
Table 21direct α emissi	on from ²⁶⁹ Ds*, T ₁	$_{/2} = 170^{160}_{70} \ \mu \text{s},$	$BR_{\alpha} = 100^{\circ}$	%.			
$E_{\alpha}(\text{c.m.})$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(abs)$	J_f^π	$E_{daughter}(^{217}\text{Po})^{***}$	coincident γ-rays***	R ₀ (fm)	HF
11.280(20)	11.112(20)	100%		0.0?		1.450(27)	$1.1^{+1.5}_{-1.2}$

* All values from [1999He07].

References used in the Tables

- [1] 1947Ha02 F. Hagemann, L. I. Katzin, M. H. Studier, A. Ghiorso, G. T. Seaborg, Phys. Rev. 72, 252 (1947). https://doi.org/10.1103/PhysRev.72.252
- [2] 1949SeZU G. T. Seaborg, The Transuranium Elements: Research Papers, Book 2, Vol. 14B, paper 22. 3, G. T. Seaborg ed., p. 1572 (1949).
- [3] 1950Ha52 F. Hagemann, L. I. Katzin, M. H. Studier, G. T. Seaborg, A. Ghiorso, Phys. Rev. 79, 435 (1950). https://doi.org/10.1103/PhysRev.79.435
- [4] 1952Hi11 G. H. Higgins, K. Street, Jr., Phys. Rev. 86, 252 (1952). https://doi.org/10.1103/PhysRev.86.252
- [5] 1953AsZZ F. Asaro, Thesis, Univ. California (1953); UCRL-2180 (1953).
- [6] 1956Ch43 A. Chetham-Strode, Jr., G. R. Choppin, B. G. Harvey, Phys. Rev. 102, 747 (1956). https://doi.org/10.1103/PhysRev.102.747
- [7] 1956Mo15 F. F. Momyer, Jr., E. K. Hyde, Phys. Rev. 101, 136 (1956). https://doi.org/10.1103/PhysRev.101.136
- [8] 1957Ho68 D. C. Hoffman, J. Inorg. Nuclear Chem. 4, 383 (1957). https://doi.org/10.1016/0022-1902(57)80032-3
- [9] 1957Th10 T. D. Thomas, R. Vandenbosch, R. A. Glass, G. T. Seaborg, Phys. Rev. 106, 1228 (1957). https://doi.org/10.1103/PhysRev.106.1228
- [10] 1958Cl49 F. L. Clark, H. J. Spencer-Palmer, R. N. Woodward, J. S. African Chem. Inst. 11, 82 (1958).
- [11] 1959Do63 Y. P. Dokuchaev, I. S. Osipov, Atomnaya Energ. 6, 73 (1959); J. Nuclear Energy 11A, 194 (1959).
- [12] 1959Go87 L. L. Goldin, G. I. Novikova, N. I. Pirogova, E. F. Tretyakov, Zhur. Eksptl. i Teoret. Fiz. 37, 1155 (1959); Soviet Phys. JETP 10, 822 (1960).
- [13] 1959Pe27 V. P. Perelygin, E. D. Donets, G. N. Flerov, Zhur. Eksptl. i Teoret. Fiz. 37, 1558 (1959); Soviet Phys. JETP 10, 1106 (1960).
- [14] 1960Dz07 B. S. Dzhelepov, R. B. Ivanov, V. G. Nedovesov, Y. T. Puzynovich, Izvest. Akad. Nauk SSSR, Ser. Fiz. 24, 258 (1960); Columbia Tech. Transl. 24, 247 (1961).

- [15] 1961An08 T. Andersen, K. M. Bisgard, P. G. Hansen, Nucl. Phys. 27, 673 (1961). https://doi.org/10.1016/0029-5582(61)90311-X
- [16] 1961Ko11 G. E. Kocharov, G. A. Korolev, Izv. Akad. Nauk SSSR, Ser. Fiz. 25, 237 (1961); Columbia Tech. Transl. 25, 227 (1962).
- [17] 1961Po10 D. S. Popplewell, J. Nuclear Energy, Pts. A and B 14, 50 (1961). https://doi.org/10.1016/0368-3230(61)90073-8
- [18] 1961Tr08 E. F. Tretyakov, N. I. Pirogova, L. L. Goldin, Izvest. Akad. Nauk SSSR, Ser. Fiz. 25, 274 (1961); Columbia Tech. Transl. 25, 260 (1962).
- [19] 1964Ba42 I. A. Baranov, A. N. Silantev, Izv. Akad. Nauk SSSR, Ser. Fiz. 28, 237 (1964); Bull. Acad. Sci. USSR, Phys. Ser. 28, 154 (1965).
- [20] 1965Ba51 S. A. Baranov, I. G. Aliev, Program and Theses, Proc. 15th All-Union Conf. Nucl. Spectroscopy and Nucl. Struct. , Minsk, p. 112 (1965).
- [21] **1964Hy02** E. K. Hyde, I. Perlman, G. T. Seaborg, The Nuclear Properties of the Heavy Elements, Vol. II, Prentice-Hall, Inc. , Englewood Cliffs, N. J. (1964).
- [22] 1966Ak01 G. N. Akapev, A. G. Demin, V. A. Druin, E. G. Imaev, I. V. Kolesov, Y. V. Lobanov, L. P. Pashchenko, At. Energ. USSR 21, 243 (1966); Soviet J. At. Energy 21, 908 (1966).
- [23] 1966Ba43 A. Barone, G. Greco, P. R. Speranza, R. A. Ricci, P. Blasi, P. R. Maurenzig, P. Sona, Nuovo Cimento 46B, 134 (1966). https://doi.org/10.1007/BF02710646
- [24] 1967Ba42 S. A. Baranov, I. G. Aliev, L. V. Chistyakov, Yadern. Fiz. 5, 241 (1967); Soviet J. Nucl. Phys. 5, 169 (1967).
- [25] 1967Ba43 S. A. Baranov, M. K. Gadzhiev, V. M. Kulakov, V. M. Shatinskii, Yadern. Fiz. 5, 518 (1967); Soviet J. Nucl. Phys. 5, 365 (1967).
- [26] 1967Ga15 R. Gaeta, J. L. Butragueno, J. L. Monleon, Anales Real Soc. Espan. Fis. Quim (Madrid) 63A, 165 (1967).
- [27] 1967Gh01 A. Ghiorso, T. Sikkeland, M. J. Nurmia, Phys. Rev. Letters 18, 401 (1967). https://doi.org/10.1103/PhysRevLett.18.401
- [28] 1967Mi03 V. L. Mikheev, V. I. Ilyushchenko, M. B. Miller, S. M. Polikanov, G. N. Flerov, Y. P. Kharitonov, At. Energ. USSR 22, 90 (1967); Soviet J. At. Energy 22, 93 (1967).
- [29] 1967Mo28 J. L. Monleon, R. Gaeta, Anales Real Soc. Espan. Fis. Quim. (Madrid) 63A, 387 (1967).
- [30] 1967Tr07 O. A. Trojan, K. G. McNeill, N. R. Steenberg, Nucl. Phys. A100, 609 (1967). https://doi.org/10.1016/0375-9474(67)90125-X
- [31] 1968Ba46 S. A. Baranov, V. M. Shatinskii, V. M. Kulakov, V. M. Shubko, Contrib. Intern. Conf. Nucl. Struct., Dubna, p. 184 (1968).
- [32] 1968Ke15 R. L. G. Keith, J. Nucl. Energy 22, 471 (1968). https://doi.org/10.1016/0022-3107(68)90094-4
- [33] 1968Ku12 W. Kusch, Z. Szeglowski, JINR-E6-3992 (1968).
- [34] 1969Ba57 S. A. Baranov, V. M. Shatinskii, V. M. Kulakov, Yadern. Fiz. 10, 1110 (1969); Soviet J. Nucl. Phys. 10, 632 (1970).
- [35] 1969Gh01 A. Ghiorso, M. Nurmia, J. Harris, K. Eskola, P. Eskola, Phys. Rev. Letters 22, 1317 (1969). https://doi.org/10.1103/PhysRevLett.22.1317
- [36] 1969Me11 V. Metag, R. Repnow, P. Von Brentano, J. D. Fox, Z. Physik 226, 1 (1969). https://doi.org/10.1007/BF01392778
- [37] 1970Ba20 S. A. Baranov, V. M. Shatinskii, V. M. Kulakov, Y. F. Rodionov, Yad. Fiz. 11, 925 (1970); Sov. J. Nucl. Phys. 11, 515 (1970).
- [38] 1970BaZZ S. A. Baranov, V. M. Shatinskii, V. M. Kulakov, Program and Theses, Proc. 20th Ann. Conf. Nucl. Spectrosc. Struct. At. Nuclei, Pt. 1, Leningrad, p. 169 (1970).
- [39] 1970Bu02 S. C. Burnett, H. C. Britt, B. H. Erkkila, W. E. Stein, Phys. Lett. 31B, 523 (1970). https://doi.org/10.1016/0370-2693(70).90080-8
- [40] 1970Po01 S. M. Polikanov, G. Sletten, Nucl. Phys. A151, 656 (1970). https://doi.org/10.1016/0375-9474(70)90403-3
- [41] 1970RuZS P. A. Russo, R. Vandenbosch, M. Mehta, J. R. Tesmer, K. L. Wolf, RLO-1388-130 (1970).
- [42] 1971Bb10 S. A. Baranov, V. M. Shatinskii, V. M. Kulakov, Yad. Fiz. 14, 1101 (1971); Sov. J. Nucl. Phys. 14, 614 (1972).
- [43] 1971Br39 H. C. Britt, S. C. Burnett, B. H. Erkkila, J. E. Lynn, W. E. Stein, Phys. Rev. C4, 1444 (1971). https://doi.org/10.1103/PhysRevC.4.1444

- [44] 1971GhZV A. Ghiorso, M. Nurmia, J. Harris, K. Eskola, P. Eskola, UCRL-20426, p. 47 (1971).
- [45] 1971Re11 R. Repnow, V. Metag, P. von Brentano, Z. Phys. 243, 418 (1971). https://doi.org/10.1007/BF01396616
- [46] 1971Ru03 P. A. Russo, R. Vandenbosch, M. Mehta, J. R. Tesmer, K. L. Wolf, Phys. Rev. C 3, 1595 (1971). https://doi.org/10.1103/PhysRevC.3.1595
- [47] 1971Te07 J. K. Temperley, J. A. Morrissey, S. L. Bacharach, Nucl. Phys. A175, 433 (1971). https://doi.org/10.1016/0375-9474(71)90295-8
- [48] 1972Ga42Y. P. Gangrskii, Nguen Kong Khan, D. D. Pulatov, At. Energ. 33, 829 (1972).; Sov. At. Energy 33, 948 (1973).
- [49] 1972Vi10 N. Vilcov, G. Griffith, I. Vilcov, R. B. Leachman, Rev. Roum. Phys. 17, 1031 (1972).
- [50] 1972Vy07 I. Vylkov, N. Vylkov, Y. P. Gangrskii, M. Marinescu, A. A. Pleve, D. Poenaru, I. F. Kharisov, Yad. Fiz. 16, 454 (1972); Sov. J. Nucl. Phys. 16, 253 (1973).
- [51] 1973Va16 R. Vandenbosch, P. A. Russo, G. Sletten, M. Mehta, Phys. Rev. C 8, 1080 (1973). https://doi.org/10.1103/PhysRevC.8.1080
- [52] 1974Ba82 S. L. Bacharach, P. S. Hoeper, J. A. Morrissey, J. K. Temperley, Phys. Rev. C 10, 2636 (1974). https://doi.org/10.1103/PhysRevC.10.2636
- [53] 1974BeYN C. E. Bemis, Jr., J. R. Tarrant, R. J. Silva, L. C. Hunt, D. C. Hensley, P. F. Dittner, O. L. Keller, Jr., R. L. Hahn, C. D. Goodman, ORNL-4937, p. 47 (1974).
- [54] 1974Po08 F. T. Porter, I. Ahmad, M. S. Freedman, J. Milsted, A. M. Friedman, Phys. Rev. C 10, 803 (1974). https://doi.org/10.1103/PhysRevC.10.803
- [55] 1974SpZS H. J. Specht, E. Konecny, J. Weber, C. Kozhuharov, Proc. Symp. Phys. and Chem. Fission, Rochester, N. Y., 3rd, (1973), IAEA, Vienna, Vol. 1, p. 285 (1974).
- [56] 1975Ah05 I. Ahmad, F. T. Porter, M. S. Freedman, R. K. Sjoblom, J. Lerner, R. F. Barnes, J. Milsted, P. R. Fields, Phys. Rev. C12, 541 (1975). https://doi.org/10.1103/PhysRevC.12.541
- [57] 1976Kr03 L. A. Kroger, C. W. Reich, Nucl. Phys. A259, 29 (1976). https://doi.org/10.1016/0375-9474(76)90494-2
- [58] 1976Va02 R. Vaninbroukx, P. De Bievre, Y. Le Duigou, A. Spernol, W. van der Eijk, V. Verdingh, Phys. Rev. C 13, 315 (1976). https://doi.org/10.1103/PhysRevC.13.315
- [59] 1977Ca04 M. J. Canty, R. D. Connor, D. A. Dohan, B. Pople, J. Phys. (London) G3, 421 (1977). https://doi.org/10.1088/0305-4616/3/3/017
- [60] 1977Vy02 T. Vylov, N. A. Golovkov, B. S. Dzhelepov, R. B. Ivanov, M. A. Mikhailova, Y. V. Norseev, V. G. Chumin, Izv. Akad. Nauk SSSR, Ser. Fiz. 41, 1635 (1977); Bull. Acad. Sci. USSR, Phys. Ser. 41, No. 8, 85 (1977).
- [61] 1978De07 H. Delagrange, A. Fleury, J. M. Alexander, Phys. Rev. C 17, 1706 (1978). https://doi.org/10.1103/PhysRevC.17.1706
- [62] 1979Ce04 A. Cesana, G. Sandrelli, V. Sangiust, M. Terrani, Energ. Nucl. (Milan) 26, 526 (1979).
- [63] 1979El05 Y. A. Ellis, J. F. Emery, K. S. Toth, Phys. Rev. C 20, 799 (1979). https://doi.org/10.1103/PhysRevC.20.799
- [64] **1979Gu03** W. Gunther, K. Huber, U. Kneissl, H. Krieger, H. J. Maier, Phys. Rev. C **19**, 433 (1979). https://doi.org/10.1103/PhysRevC.19.433
- [65] 1979VaZX V. M. Vakhtel, S. G. Kadmensky, S. D. Kurgalin, Program and Thesis, Proc. 29th Ann. Conf. Nucl. Spectrosc. Struct. At. Nuclei, Riga, p. 184 (1979).
- [66] 1981Ba15 H. Baba, T. Suzuki, K. Hata, J. Inorg. Nucl. Chem. 43, 1059 (1981). https://doi.org/10.1016/0022-1902(81)80177-7
- [67] 1981Di14 J. K. Dickens, J. W. McConnell, Radiochem. Radioanal. Lett. 47, 331 (1981).
- [68] 1982Ra04 M. H. Rafailovich, E. Dafni, G. Schatz, S. Y. Zhu, K. Dybdal, S. Vajda, C. Alonso-Arias, G. D. Sprouse, Phys. Rev. Lett. 48, 982 (1982); Erattum Phys. Rev. Lett. 49, 244 (1982). https://doi.org/10.1103/PhysRevLett.48.982
- [69] 1983DeZH A. G. Demin, S. P. Tretyakova, V. K. Utenkov, I. V. Shirokovsky, JINR-D7-83-576 (1983).
- [70] 1983Ra01 S. S. Rattan, A. V. Reddy, V. S. Mallapurkar, R. J. Singh, S. Prakash, M. V. Ramaniah, Phys. Rev. C 27, 327 (1983). https://doi.org/10.1103/PhysRevC.27.327
- [71] 1984De07A. G. Demin, S. P. Tretyakova, V. K. Utyonkov, I. V. Shirokovsky, Z. Phys. A315, 197 (1984). https://doi.org/10.1007/BF01419379
- [72] 1984DeZO A. G. Demin, M. Yussonua, Yu. P. Kharitonov, S. P. Tretyakova, V. K. Utenkov, I. V. Shirokovsky, O. Constan-

tinescu, Yu. S. Korotkin, H. Bruchertseifer, V. G. Subbotin, Kh. Esteves, A. V. Rykhlyuk, V. M. Plotko, Yu. Ts. Oganesyan, JINR-P7-84-233 (1984).

- [73] 1984Mu17 G. Munzenberg, P. Armbruster, H. Folger, F. P. Hessberger, S. Hofmann, J. Keller, K. Poppensieker, W. Reisdorf, K. -H. Schmidt, H. -J. Schott, M. E. Leino, R. Hingmann, Z. Phys. A317, 235 (1984).
- [74] 1984Og03 Yu. Ts. Oganessian, M. Hussonnois, A. G. Demin, Yu. P. Kharitonov, H. Bruchertseifer, O. Constantinescu, Yu. S. Korotkin, S. P. Tretyakova, V. K. Utyonkov, I. V. Shirokovsky, J. Estevez, Radiochim. Acta 37, 113 (1984).
- [75] 1985Mu11 G. Munzenberg, S. Hofmann, H. Folger, F. P. Hessberger, J. Keller, K. Poppensieker, B. Quint, W. Reisdorf, K. -H. Schmidt, H. J. Schott, P. Armbruster, M. E. Leino, R. Hingmann, Z. Phys. A322, 227 (1985).
- [76] 1984Re05 C. W. Reich, R. G. Helmer, J. D. Baker, R. J. Gehrke, Int. J. Appl. Radiat. Isotop. 35, 185 (1984). https://doi.org/10.1016/0020-708X(84)90232-1
- [77] 1985AIZQ D. V. Aleksandrov, Yu. A. Glukhov, E. Yu. Nikolsky, B. G. Novatsky, A. A. Ogloblin, D. N. Stepanov, Program and Theses, Proc. 35th Ann. Conf. Nucl. Spectrosc. Struct. At. Nuclei, Leningrad, p. 358 (1985).
- [78] 1985He06 F. P. Hessberger, G. Munzenberg, S. Hofmann, W. Reisdorf, K. H. Schmidt, H. J. Schmidt, P. Armbruster, R. Hingmann, B. Thuma, D. Vermeulen, Z. Phys. A321, 317 (1985).
- [79] 1985So03 L. P. Somerville, M. J. Nurmia, J. M. Nitschke, A. Ghiorso, E. K. Hulet, R. W. Lougheed, Phys. Rev. C 31, 1801 (1985). https://doi.org/10.1103/PhysRevC.31.1801
- [80] 1986Ba65 A. Ya. Balysh, A. A. Gurov, A. V. Demekhin, A. G. Zelenkov, I. V. Kondratenko, B. G. Novatsky, G. A. Pik-Pichak, V. A. Pchelin, Yu. F. Rodionov, L. V. Chistyakov, V. M. Shubko, Zh. Eksp. Teor. Fiz. 91, 37 (1986).
- [81] 1986He06 R. G. Helmer, C. W. Reich, M. A. Lee, I. Ahmad, Int. J. Appl. Radiat. Isotop. 37, 139 (1986). https://doi.org/10.1016/0883-2889(86)90062-6
- [82] 1986He12 R. G. Helmer, C. W. Reich, Nucl. Instrum. Methods Phys. Res. A242, 475 (1986). https://doi.org/10.1016/0168-9002(86)90449-3
- [83] 1987AhZV I. Ahmad, R. R. Chasman, R. Holzmann, R. V. F. Janssens, W. C. Ma, B. Dichter, T. L. Khoo, M. W. Drigert, ANL-87-13, p. 110 (1987).
- [84] 1987He28 R. G. Helmer, M. A. Lee, C. W. Reich, I. Ahmad, Nucl. Phys. A474, 77 (1987). https://doi.org/10.1016/0375-9474(87)90195-3
- [85] 1987Mu15 G. Munzenberg, P. Armbruster, G. Berthes, H. Folger, F. P. Hessberger, S. Hofmann, J. Keller, K. Poppensieker, A. B. Quint, W. Reisdorf, K. -H. Schmidt, H. -J. Schott, K. Summerer, I. Zychor, M. E. Leino, R. Hingmann, U. Gollerthan, E. Hanelt, Z. Phys. A328, 49 (1987).
- [86] 1989Go19 S. J. Goldstein, M. T. Murrell, R. W. Williams, Phys. Rev. C 40, 2793 (1989). https://doi.org/10.1103/PhysRevC.40.2793
- [87] 1991Pr01 C. R. Praharaj, J. A. Sheikh, J. Phys. (London) G17, L33 (1991). https://doi.org/10.1088/0954-3899/17/3/002
- [88] 1992E101 O. El Samad, C. Ardisson, M. Hussonnois, G. Ardisson, J. Radioanal. Nucl. Chem. 164, 171 (1992). https://doi.org/10.1007/BF02163769
- [89] 1994Ta25 R. J. Talbot, D. Newton, S. N. Dmitriev, Appl. Radiat. Isot. 45, 743 (1994). https://doi.org/10.1016/0969-8043(94)90123-6
- [90] 1995H003 S. Hofmann, V. Ninov, F. P. Hessberger, P. Armbruster, H. Folger, G. Munzenberg, H. J. Schott, A. G. Popeko, A. V. Yeremin, A. N. Andreyev, S. Saro, R. Janik, M. Leino, Z. Phys. A350, 277 (1995). https://doi.org/10.1007/BF01291181
- [91] 1995Vo07 O. V. Vorykhalov, V. V. Koltsov, Bull. Rus. Acad. Sci. Phys. 59, 20 (1995).
- [92] 1996Ma72 M. Magara, N. Shinohara, Y. Hatsukawa, K. Tsukada, H. Iimura, S. Usuda, S. -I. Ichikawa, T. Suzuki, Y. Nagame, Y. Kobayashi, M. Oshima, T. Horiguchi, Radiochim. Acta 72, 39 (1996).
- [93] 1997He29 F. P. Hessberger, S. Hofmann, V. Ninov, P. Armbruster, H. Folger, G. Munzenberg, H. J. Schott, A. G. Popeko, A. V. Yeremin, A. N. Andreyev, S. Saro, Z. Phys. A359, 415 (1997). https://doi.org/10.1007/s002180050422
- [94] 1997Li23 C. F. Liang, P. Paris, R. K. Sheline, Phys. Rev. C 56, 2324 (1997). https://doi.org/10.1103/PhysRevC.56.2324
- [95] 1998Ga48 J. Gasparro, G. Barci-Funel, G. Ardisson, Radiochim. Acta 83, 1 (1998). https://doi.org/10.1524/ract.1998.83.1.1
- [96] 1998Ya17 J. Yang, J. Ni, Nucl. Instrum. Methods Phys. Res. A413, 239 (1998). https://doi.org/10.1016/S0168-9002(98)00147-8
- [97] 1998Zh19 L. Zhang, J. H. Zhao, J. W. Zheng, J. C. Wang, Z. Qin, Y. F. Yang, C. Zhang, G. M. Jin, G. H. Guo, Y. F. Du, T. R.

Guo, T. Q. Wang, B. Guo, J. F. Tain, Eur. Phys. J. A 2, 5 (1998). https://doi.org/10.1007/s100500050082

- [98] **1999He07** F. P. Hessberger, Acta Phys. Slovaca **49**, 43 (1999).
- [99] 1999He11 F. P. Hessberger, J. Phys. (London) G25, 877 (1999). https://doi.org/10.1088/0954-3899/25/4/059
- [100] 2000Ga52 J. Gasparro, G. Ardisson, V. Barci, R. K. Sheline, Phys. Rev. C 62, 064305 (2000). https://doi.org/10.1103/PhysRevC.62.064305
- [101] 2000HoZZ S. Hofmann, F. P. Hessberger, D. Ackermann, P. Armbruster, H. G. Burkhard, B. Kindler, B. Lommel, R. Mann, G. Munzenberg, S. Reshitko, H. J. Schott, A. Yu. Lavrentiev, A. G. Popeko, A. V. Yeremin, S. Antalic, P. Cagarda, S. Saro, M. Leino, GSI 2000-1, p. 7 (2000).
- [102] 2000Li37 C. F. Liang, P. Paris, R. K. Sheline, Phys. Rev. C 62, 047303 (2000). https://doi.org/10.1103/PhysRevC.62.047303
- [103] 2001He35 F. P. Hessberger, S. Hofmann, D. Ackermann, V. Ninov, M. Leino, G. Munzenberg, S. Saro, A. Lavrentev, A. G. Popeko, A. V. Yeremin, Ch. Stodel, Eur. Phys. J. A12, 57 (2001). https://doi.org/10.1007/s100500170039
- [104] 2002HeZS A. Heinz, R. V. F. Janssens, D. Seweryniak, K. Abu Saleem, I. Ahmad, B. Back, M. P. Carpenter, C. N. Davids, J. P. Greene, D. J. Henderson, C. Jiang, T. L. Khoo, F. G. Kondev, T. Lauritsen, C. J. Lister, E. F. Moore, R. C. Pardo, T. Pennington, G. Savard, J. P. Schiffer, R. H. Scott, R. C. Vondrasek, A. Woehr, J. Shergur, P. Collon, M. B. Smith, ANL-02/15 (Physics Division Ann. Rept., 2001), p. 43 (2002).
- [105] 2002Ho11 S. Hofmann, F. P. Hessberger, D. Ackermann, G. Munzenberg, S. Antalic, P. Cagarda, B. Kindler, J. Kojouharova, M. Leino, B. Lommel, R. Mann, A. G. Popeko, S. Reshitko, S. Saro, J. Uusitalo, A. V. Yeremin, Eur. Phys. J. A 14, 147 (2002). https://doi.org/10.1140/epja/i2001-10119-x
- [106] 2003Ba78 V. Barci, G. Ardisson, G. Barci-Funel, B. Weiss, O. El Samad, R. K. Sheline, Phys. Rev. C 68, 034329 (2003). https://doi.org/10.1103/PhysRevC.68.034329
- [107] 2003Ku25 J. Kurpeta, A. Plochocki, A. N. Andreyev, J. Aysto, A. De Smet, H. De Witte, A. -H. Evensen, V. Fedoseyev, S. Franchoo, M. Gorska, M. Huhta, M. Huyse, Z. Janas, A. Jokinen, M. Karny, E. Kugler, W. Kurcewicz, U. Koster, J. Lettry, A. Nieminen, K. Partes, M. Ramdhane, H. L. Ravn, K. Rykaczewski, J. Szerypo, K. Van de Vel, P. Van Duppen, L. Weissman, G. Walter, A. Wohr, and the IS387 and ISOLDE Collaborations, Eur. Phys. J. A 18, 5 (2003). https://doi.org/10.1140/epja/i2003-10065-7
- [108] 2004He04 R. -D. Herzberg, J. Phys. (London) G30, R123 (2004). https://doi.org/10.1088/0954-3899/30/4/R01
- [109] 2004He23 F. P. Hessberger, Acta Phys. Hung. N. S. 19, 133 (2004). https://doi.org/10.1556/APH.19.2004.1-2.19
- [110] 2004He28 F. P. Hessberger, S. Hofmann, D. Ackermann, P. Cagarda, R. -D. Herzberg, I. Kojouharov, P. Kuusiniemi, M. Leino, R. Mann, Eur. Phys. J. A 22, 417 (2004). https://doi.org/10.1140/epja/i2003-10238-4
- [111] 2004Li28 C. F. Liang, P. Paris, R. K. Sheline, P. Alexa, Czech. J. Phys. 54, 189 (2004). https://doi.org/10.1023/B:CJOP. 0000014401.38668.54
- [112] 2006Lo12 A. Lopez-Martens, K. Hauschild, A. V. Yeremin, A. V. Belozerov, Ch. Briancon, M. L. Chelnokov, V. I. Chepigin, D. Curien, O. Dorvaux, B. Gall, V. A. Gorshkov, M. Guttormsen, F. Hanappe, A. P. Kabachenko, F. Khalfallah, A. Korichi, A. C. Larsen, O. N. Malyshev, A. Minkova, Yu. Ts. Oganessian, A. G. Popeko, M. Rousseau, N. Rowley, R. N. Sagaidak, S. Sharo, A. V. Shutov, S. Siem, A. I. Svirikhin, N. U. H. Syed, Ch. Theisen, Phys. Rev. C 74, 044303 (2006). https://doi.org/10.1103/PhysRevC.74.044303
- [113] 2006Ni09 K. Nishio, H. Ikezoe, M. Asai, K. Tsukada, S. Mitsuoka, K. Tsuruta, K. Satou, C. J. Lin, T. Ohsawa, Phys. Atomic Nuclei 69, 1399 (2006). https://doi.org/10.1134/S1063778806080187
- [114] 2006Po10 A. G. Popeko, A. V. Belozerov, Ch. Briancon, V. I. Chepigin, O. Dorvaux, K. Hauschild, A. P. Kabachenko, A. Korichi, A. Lopez-Martens, O. N. Malyshev, Yu. Ts. Oganessian, S. Saro, A. V. Shutov, A. I. Svirikhin, A. V. Yeremin, Phys. Atomic Nuclei 69, 1183 (2006). https://doi.org/10.1134/S1063778806070143
- [115] 2007St12 B. Streicher, S. Antalic, S. Saro, M. Venhart, F. P. Hessberger, S. Hofmann, D. Ackermann, B. Kindler, I. Kojouharov, B. Lommel, R. Mann, B. Sulignano, P. Kuusiniemi, Acta Phys. Pol. B38, 1561 (2007).
- [116] 2008Br17 E. Browne, J. K. Tuli, Nucl. Data Sheets 109, 2657 (2008). https://doi.org/10.1016/j.nds.2008.10.001
- [117] 2008DoZZ O. Dorvaux, A. Lopez-Martens, K. Hauschild, A. V. Yeremin, A. Khouaja, A. V. Belozerov, Ch. Briancon, M. L. Chelnokov, V. I. Chepigin, D. Curien, P. Desesquelles, B. Gall, V. A. Gorshkov, M. Guttormsen, F. Hanappe, A. P. Kabachenko, F. Khalfallah, A. Korichi, A. C. Larsen, O. N. Malyshev, A. Minkova, Yu. Ts. Oganessian, A. G. Popeko, M. Rousseau, N. Rowley, R. N. Sagaidak, S. Sharo, A. V. Shutov, S. Siem, V. I. L. Stuttge, A. I. Svirikhin, N. U. H. Syed, Ch. Theisen, Proc. Frontiers in Nuclear Structure, and Reactions (FINUSTAR 2), Crete, Greece, 10-14 Sept. 2007, P. Demetriou, R. Julin, S. V. Harissopulos, Eds. p. 64 (2008); AIP Conf. Proc 1012 (2008). https://doi.org/10.1063/1.2939361

- [118] 2008Dr05 I. Dragojevic, K. E. Gregorich, Ch. E. Dullmann, M. A. Garcia, J. M. Gates, S. L. Nelson, L. Stavsetra, R. Sudowe, H. Nitsche, Phys. Rev. C 78, 024605 (2008). https://doi.org/10.1103/PhysRevC.78.024605
- [119] 2009He20 F. P. Hessberger, S. Hofmann, B. Streicher, B. Sulignano, S. Antalic, D. Ackermann, S. Heinz, B. Kindler, I. Kojouharov, P. Kuusiniemi, M. Leino, B. Lommel, R. Mann, A. G. Popeko, S. Saro, J. Uusitalo, A. V. Yeremin, Eur. Phys. J. A 41, 145 (2009). https://doi.org/10.1140/epja/i2009-10826-2
- [120] 2009He23 R. -D. Herzberg, S. Moon, S. Eeckhaudt, P. T. Greenlees, P. A. Butler, T. Page, A. V. Afanasjev, N. Amzal, J. E. Bastin, F. Becker, M. Bender, B. Bruyneel, J. F. C. Cocks, I. G. Darby, O. Dorvaux, K. Eskola, J. Gerl, T. Grahn, C. Gray-Jones, N. J. Hammond, K. Hauschild, P. -H. Heenen, K. Helariutta, A. Herzberg, F. Hessberger, M. Houry, A. Hurstel, R. D. Humphreys, G. D. Jones, P. M. Jones, R. Julin, S. Juutinen, H. Kankaanpaa, H. Kettunen, T. L. Khoo, W. Korten, P. Kuusiniemi, Y. LeCoz, M. Leino, A. -P. Leppanen, C. J. Lister, R. Lucas, M. Muikku, P. Nieminen, M. Nyman, R. D. Page, T. Page, J. Pakarinen, A. Pritchard, P. Rahkila, P. Reiter, M. Sandzelius, J. Saren, Ch. Schlegel, C. Scholey, Ch. Theisen, W. H. Trzaska, J. Uusitalo, A. Wiens, H. J. Wollersheim, Eur. Phys. J. A 42, 333 (2009). https://doi.org/10.1140/epja/i2009-10855-9
- [121] 2009Po15 S. Pomme, T. Altzitzoglou, R. Van Ammel, G. Sibbens, R. Eykens, S. Richter, J. Camps, K. Kossert, H. Janssen, E. Garcia-Torano, T. Duran, F. Jaubert, Metrologia 46, 439 (2009). https://doi.org/10.1088/0026-1394/46/5/007
- [122] 2010Be16 J. S. Berryman, R. M. Clark, K. E. Gregorich, J. M. Allmond, D. L. Bleuel, M. Cromaz, I. Dragojevic, J. Dvorak, P. A. Ellison, P. Fallon, M. A. Garcia, S. Gros, I. Y. Lee, A. O. Macchiavelli, S. Paschalis, M. Petri, J. Qian, M. A. Stoyer, M. Wiedeking, Phys. Rev. C 81, 064325 (2010); Publishers Note Phys. Rev. C 82, 029906 (2010). https://doi.org/10.1103/PhysRevC.81.064325
- [123] 2010St14 B. Streicher, F. P. Hessberger, S. Antalic, S. Hofmann, D. Ackermann, S. Heinz, B. Kindler, J. Khuyagbaatar, I. Kojouharov, P. Kuusiniemi, M. Leino, B. Lommel, R. Mann, S. Saro, B. Sulignano, J. Uusitalo, M. Venhart, Eur. Phys. J. A 45, 275 (2010). https://doi.org/10.1140/epja/i2010-11005-2
- [124] 2011An13 S. Antalic, F. P. Hessberger, D. Ackermann, S. Heinz, S. Hofmann, Z. Kalaninova, B. Kindler, J. Khuyagbaatar, I. Kojouharov, P. Kuusiniemi, M. Leino, B. Lommel, R. Mann, K. Nishio, S. Saro, B. Streicher, B. Sulignano, M. Venhart, Eur. Phys. J. A 47, 62 (2011). https://doi.org/10.1140/epja/i2011-11062-y
- [125] 2011Lo06 A. Lopez-Martens, T. Wiborg-Hagen, K. Hauschild, M. L. Chelnokov, V. I. Chepigin, D. Curien, O. Dorvaux, G. Drafta, B. Gall, A. Gorgen, M. Guttormsen, A. V. Isaev, I. N. Izosimov, A. P. Kabachenko, D. E. Katrasev, T. Kutsarova, A. N. Kuznetsov, A. C. Larsen, O. N. Malyshev, A. Minkova, S. Mullins, H. T. Nyhus, D. Pantelica, J. Piot, A. G. Popeko, S. Saro, N. Scintee, S. Siem, N. U. H. Syed, E. A. Sokol, A. I. Svirikhin, A. V. Yeremin, Nucl. Phys. A852, 15 (2011). https://doi.org/10.1016/j.nuclphysa.2011.01.012
- [126] 2011Sa41 N. Sato, H. Haba, T. Ichikawa, D. Kaji, Y. Kudou, K. Morimoto, K. Morita, K. Ozeki, T. Sumita, A. Yoneda, E. Ideguchi, H. Koura, A. Ozawa, T. Shinozuka, T. Yamaguchi, A. Yoshida, J. Phys. Soc. Jpn. 80, 094201 (2011). https://doi.org/10.1143/JPSJ.80.094201
- [127] 2012He09 F. P. Hessberger, S. Antalic, D. Ackermann, Z. Kalaninova, S. Heinz, S. Hofmann, B. Streicher, B. Kindler, I. Kojouharov, P. Kuusiniemi, M. Leino, B. Lommel, R. Mann, K. Nishio, S. Saro, B. Sulignano, M. Venhart, Eur. Phys. J. A 48, 75 (2012). https://doi.org/10.1140/epja/i2012-12075-8
- [128] 2014Va04 Z. Varga, A. Nicholl, K. Mayer, Phys. Rev. C 89, 064310 (2014). https://doi.org/10.1103/PhysRevC.89.064310
- [129] 2015KaZX D. Kaji, K. Morimoto, Y. Wakabayashi, M. Takeyama, M. Asai, Proc. of the Conf. on Advances in Radioactive Isotope Science (ARIS2014), Tokyo, Japan, June 1-6, 2014, p. 030106 (2015); JPS Conf. Proc. 6, (2015). https://doi.org/10.7566/JPSCP.6.030106
- [130] 2016He08 F. P. Hessberger, S. Antalic, A. K. Mistry, D. Ackermann, B. Andel, M. Block, Z. Kalaninova, B. Kindler, I. Kojouharov, M. Laatiaoui, M. Laatiaoui, B. Lommel, J. Piot, M. Vostinar, Eur. Phys. J. A 52, 192 (2016). https://doi.org/10.1140/epja/i2016-16192-0
- [131] 2018Es07 R. M. Essex, J. L. Mann, R. Colle, L. Laureano-Perez, M. E. Bennett, H. Dion, R. Fitzgerald, A. M. Gaffney, A. Gourgiotis, A. Hubert, K. G. W. Inn, W. S. Kinman, S. P. Lamont, R. Steiner, R. W. Williams, J. Radioanal. Nucl. Chem. 318, 515 (2018). https://doi.org/10.1007/s10967-018-6032-9
- [132] 2020Si22 T. Sikorsky, J. Geist, D. Hengstler, S. Kempf, L. Gastaldo, C. Enss, C. Mokry, J. Runke, C. E. Dullmann, P. Wobrauschek, K. Beeks, V. Rosecker, J. H. Sterba, G. Kazakov, T. Schumm, A. Fleischmann, Phys. Rev. Lett. 125, 142503 (2020). https://doi.org/10.1103/PhysRevLett.125.142503
- [133] 2020Si28 B. Singh, J. K. Tuli, E. Browne, Nucl. Data Sheets 170, 499 (2020). https://doi.org/10.1016/j.nds.2020.11.002
- [134] 2021Wa16 M. Wang, W. J. Huang, F. G. Kondev, G. Audi, S. Naimi, Chin. Phys. C 45, 030003 (2021). https://doi.org/10.1088/1674-1137/abddaf

- [135] 2022Ha04 K. Hauschild, A. Lopez-Martens, R. Chakma, M. L. Chelnokov, V. I. Chepigin, A. V. Isaev, I. N. Izosimov, D. E. Katrasev, A. A. Kuznetsova, O. N. Malyshev, A. G. Popeko, E. A. Sokol, A. I. Svirikhin, M. S. Tezekbayeva, A. V. Yeremin, Z. Asfari, O. Dorvaux, B. J. P. Gall, K. Kessaci, D. Ackermann, J. Piot, P. Mosat, B. Andel, Eur. Phys. J. A 58, 6 (2022). https://doi.org/10.1140/epja/s10050-021-00657-8
- [136] 2024Gr01 T. J. Gray, J. M. Allmond, L. G. Evans, B. D. Roach, T. T. King, B. C. Rasco, Nucl. Data Sheets 193, 88 (2024). https://doi.org/10.1016/j.nds.2024. 01.003