

Fig. 1: Known experimental values for heavy particle emission of the even-Z T_z = +47/2 nuclei.

Last update 7/17/2024

Observed and predicted β -delayed particle emission from the even-Z, $T_z = +47/2$ nuclei. Unless otherwise stated, all Q-values are taken from [2021Wa16] or deduced from values therein.

	-	- 77	-	2	0	0	
Nuclide	Ex.	J^{κ}	$T_{1/2}$	Q_{ε}	Q _β -	$Q_{\beta} - \alpha$	Experimental
²⁰⁷ Hg*		$(9/2^{+})$	2.9(2) m	-5.85(30)#	4.550(30)	4.411(30)	[1981.JoZW]
²¹¹ Pb(AcB)*		9/2+	36.164(13) m	-4.420(40)	1.366(5)	8.296(6)	[2016Ai01]
²¹⁵ Po(AcA)		9/2+	1.780(4) ms**	-2.171(6)	0.715(7)	9.072(5)	[2023Ta02, 1961Vo06]
219 Rn(An)		5/2+	3.96(1) s	-1.567(3)	0.212(7)	7.841(7)	[1966Hu20, 1999Li05]
²²³ Ra(AcX)		3/2+	11.4354(17) d	-1.149(1)	-0.592(7)	6.371(7)	[2015Co02]
²²⁷ Th(RdAc)		$(1/2^+)$	18.681(9) d	-0.045(1)	-1.026(7)	5.735(7)	[2019Ko06]
					$Q_{\varepsilon p}$	$Q_{\varepsilon \alpha}$	
²³¹ U		$(5/2^{-})$	4.2(1) d	0.382(2)	-4.346(2)	5.532(3)	[1949Os01]
²³⁵ Pu		$(5/2^+)$	25.8(1) m***	1.139(20)	-3.252(20)	6.333(21)	[1973Jo03, 1971Ke22]
^{235m} Pu	3.00(20)		3.0(5) ns	4.14(20)	-6.25(20)	0.33(20)	[1970Bu02, 1971Br39]
²³⁹ Cm		$(7/2^{-})$	2.7(8) h	1.76(15)	-2.301(15)	7.68(15)	[2008Qi03]
²⁴³ Cf		$(1/2^+)$	10.3(5) m	2.30(18)#	-1.10(18)#	9.17(18)#	[1967Si08]
²⁴⁷ Fm		$(7/2^+)$	31(1) s	3.09(18)#	0.29(18)#	10.56(18)#	[2006He27]
^{247m} Fm	0.047(5)	$(1/2^+)$	5.1(2) s	3.14(18)#	0.35(18)#	10.61(18)#	[2006He27]
²⁵¹ No		$(7/2^+)$	0.80(1) s	3.88(18)#	1.49(18)#	11.85(18)#	[2006He27]
^{251m} No	0.106(6)	$(1/2^+)$	1.02(3) s	3.99(18)#	1.60(18)#	11.96(18)#	[2006He27]
²⁵⁵ Rf		(9/2-)	1.66(7) s@	4.38(18)#	2.32(18)#	12.94(18)#	[2006He27, 2001He35]
²⁵⁹ Sg		$(1/2^+)$	402(56) ms	4.53(19)#	2.89(18)#	14.15(18)#	[2015An05]
^{259m} Sg	0.087(22)	$(11/2^{-})$	226(27) ms	4.64(19)#	2.98(18)#	14.24(18)#	[2015An05]
²⁶³ Hs			$0.74^{+0.48}_{-0.21}$ ms	5.18(36)#	4.02(20)#	15.26(21)#	[2009Dr02]
²⁶⁷ Ds			$4 \mu s^{-0.21}$	6.09(54)#	5.45(21)#	16.96(37)#	[1995Gh05]

* 100% β^- emitter. ** Weighted average of 1.781(5) ms [2023Ta02] and 1.778(5) ms [1961Vo06]. *** Weighted average of 25.6(1) m [1973Jo03] and 25.9(1) m [1971Ke22]. @ Weighted average of 25.6(1) m [1973Jo03] and 25.9(1) m [1971Ke22].

[@] Weighted average of 1.68(9) s [2006He27] and 1.64(11) s [2001He35].

Particle separation, Q-values, and measured values for direct particle emission of the even-Z, $T_z = +47/2$ nuclei. Unless otherwise stated, all S and Q-values are taken from [2021Wa16] or deduced from values therein.

Nuclide	\mathbf{S}_p	Qα	BR _α	BR _{SF}	BR _{cluster}	type	Experimental
20711~	0.50(20)#	0 60(20)#					
$211 \text{ Pb}(\Lambda c \mathbf{R})$	9.39(30)#	0.00(20)#					
215 Po(AcA)	6.555(12)	3.570(30) 7 526(1)	00 00077(2)%				[1008] ;53 1071C+17 1050Av61 2023T-02 2010M-02
I U(ACA)	0.030(11)	7.520(1)	99.99911(2) <i>1</i> 0				1006Wi27 1070Be58 1076B113 1071Er02 1071Gr17
							$1967D_{2}20$ 1965V ₂ 10 1962W ₂ 18 1961R _v 02 1961V ₀ 06
							1960Rv02, 1950Av61, 1962Wa16, 1961Ry02, 1961V000,
219 Rn(An)	6 560(12)	6 9462(3)	100%				[1999] i05 2019Ma02 2015Co07 2015Pi10 1989It01
i iii(i iii)	01000(12)	019 102(0)	10070				1979Be58 1974Bo11 1972NoZZ 1970Da09 1970Kr01
							1970Kr01, 1970Kr08, 1967Le05, 1962Wa18, 1961Ro14,
							1961Ry02, 1960Ry02, 1960Wa16]
²²³ Ra(AcX)	6.434(8)	5.9790(2)	100%		$8.9(4) \times 10^{-8}\%$	¹⁴ C	[1998Sh02, 1995Ho11, 1992Ar02, 1962Wa18, 1971Gr17.
							2021Si11, 2019Ma02, 2016Jo02, 2015Be13, 2015Co02,
							2015Co07, 2015Ko06, 2015Pi10, 1991Ho15, 1990Hu02,
							1990Hu07,1990We01, 1989Br34, 1987Mi10, 1985Al28,
							1985Ku24, 1985Pr01, 1984Al34, 1984Ga38, 1984Ro30,
							1976B113, 1974Ri05, 1971Gr17, 1970Da08, 1970Kr01,
							1969Be67, 1968Br37, 1968Be37, 1967JoZX, 1965Ki05,
							1962Gi04, 1961Ry02, 1960Ry02, 1959Ro51, 1957Pi31,
							1954Ha60]
²²⁷ Th(RdAc)	5.793(3)	6.1466(1)	100%				[19s64Ba33, 2019Ma02, 1998Jo08, 1972He18, 2019Ko06,
							2019Co04, 2015Co11, 1990Br23, 1990BrZZ, 1987Mi10,
							1977Ma32, 1972HeYM, 1968Wa07, 1967JoZX, 1965Br23,
							1954Ha60, 1949Pe08]
²³¹ U	5.657(4)	5.576(2)	$4(1) \times 10^{-3}\%$				[1997Mu08, 1994Li12 , 1949Os01]
²⁵⁵ Pu	5.061(22)	5.951(20)	$3.0(6) \times 10^{-5}\%$				[1957Th10 , 1952Or03]
^{235m} Pu	2.06(20)	7.95(20)	2	100%			[1970Bu02, 1971Br39 , 1972Ga42, 1969Me11]
239Cm	4.56(16)	6.54(15)	$< 1 \times 10^{-5}\%$				[2008Qi03]
²⁴³ Cf	4.05(23)#	7.42(10)#	obs				[1967Fi04, 1967Si08]
²⁴⁷ Fm	3.44(20)#	8.258(10)	64%				[2006He27, 2004He2Y, 2004He28]
247 <i>m</i> Fm	3.39(20)#	8.305(11)	88(2)%				[2006He27 , 2004HeZY, 2004He28]
²⁵¹ No	2.84(20)#	8.752(4)	$91^{+9}_{-22}\%$	$0.14^{+0.51}_{-10.12}\%$			[2006He27 , 2001He35 , 2022Te01, 2009Dr02, 2005KuZZ,
							2005SuZX, 2004He28, 2004HeZY, 1999He07, 1997He29,
251.000	2 74(20) //	0.050(7)	1000				
^{251m} No	2.74(20)#	8.858(7)	100%				[2006He27, 2022Te01, 2005KuZZ, 2005SuZX, 2004He28,
255 5.0	2 (1 (20) //	0.055(4)	1440	5.4.5. St.4			
²⁵⁵ Rf	2.61(20)#	9.055(4)	46(5)%	54(5)%*			[2006He27, 2015An05, 2001He35, 2020Mo11,
							2008Dr05, 199/He29, 1986He06, 1984De0/, 1984Og02,
259 0 -	2 278(20)#	0.7(5(9)	- 070	2(1)0/**			1984UgU3]
20/Sg	2.278(30)#	9.705(8)	~ 91%	5(1)%**			[2015An05, 2015An08, 2009Df02, 2009He20, 1985Mu11,
259m c ~	2 101(20)#	0.852(22)	$\sim 07\%$	2(1)0/**			1904DCU/] [2015 A :::05 2000H-201
26311-	2.191(20)#	9.032(22)	~ 91%	3(1)%*** <9.40/			[2013AH03, 2009FIC20] [2000D-02, 2000K-711, 10840-02
267 D-	1.00(22)#	10.733(78) 11.777(51)	$\sim 100\%$	<0.4%			[2007D102, 2009Na20, 1964Og02 [1005Ch05]
Ds	1.08(23)#	11.//(51)	$\approx 100\%$				[1993G1103]

* Weighted average of 58(9)% [2015An05] and 52(6)% [2001He35].

** Combination of ground state and isomer.

Table 3 direct α emission from ²¹⁵Po*, $J^{\pi} = 9/2^+$, $T_{1/2} = 1.780(4)$ ms**, $BR_{\alpha} = 99.99977(2)\%$ ***.

$E_{\alpha}(c.m.)$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(\text{rel})$	$I_{\alpha}(abs)$	${\rm J}_f^\pi$	$E_{daughter}(^{211}\text{Pb})$	coincident γ -rays	R ₀ (fm)	HF
6 641(20)	6 517(20)	$\approx 3 \times 10^{-4}$ %	$\approx 3 \times 10^{-4}$ %	$(11/2^+)$	0 894	0 894	1 54039(15)	~ 370
6.712(8)	6.587(8)	$2.0(6) \times 10^{-3}\%$	$2.0(6) \times 10^{-3}\%$	$(9/2^+)$	0.815	0.815	1.54039(15)	110^{+50}_{-30}
6.760(15)	6.634(15)	$\approx 3 \times 10^{-4} \%$	$\approx 3 \times 10^{-4} \%$	$(3/2^+)$	0.762		1.54039(15)	$\approx 1.2 \times 10^3$
6.795(10)	6.669(10)	8(3)×10 ⁻⁴ %	8(3)×10 ⁻⁴ %	$(13/2^+)$	0.733	0.733	1.54039(15)	560^{+340}_{-160}
6.880(10)	6.752(10)	$8(3) \times 10^{-4}\%$	$8(3) \times 10^{-4}\%$	$(11/2^+)$	0.643	0.643	1.54039(15)	$1.2^{+0.7}_{-0.3} \times 10^3$
6.929(8)	6.800(8)	$1.6(5) \times 10^{-3}\%$	$1.6(5) \times 10^{-3}\%$	$(5/2^+)$	0.598	0.598	1.54039(15)	90_{-20}^{+40}
6.946(15)	6.817(15)	4(2)×10 ⁻⁴ %	4(2)×10 ⁻⁴ %		0.584	0.584	1.54039(15)	$4^{+4}_{-1} \times 10^3$
7.084(3)	6.952(3)	0.06(2)%	0.06(2)%	$(7/2^+)$	0.4389	0.4389	1.54039(15)	80_{-20}^{+40}
7.5261(8)	7.3861(8)	100%	99.93(2)%	5/2+	0.0		1.54039(15)	1.369(10)

* All values from [1998Li53], except where noted.

** Weighted average of 1.781(5) ms [2023Ta02] and 1.778(5) ms [1961Vo06]. *** [1950Av61] report a BR $_{\varepsilon} = 2.3(2) \times 10^{-4} \%$.

Table 4

direct α emission from ²¹⁹Rn*, $J^{\pi} = 5/2^+$, $T_{1/2} = 3.96(1)$ s**, $BR_{\alpha} = 100\%$.

$E_{\alpha}(c.m.)$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(\text{rel})$	$I_{\alpha}(abs)$	${ m J}_f^{\pi}$	$E_{daughter}(^{215}\text{Po})$	coincident γ-rays	R ₀ (fm)	HF
5.851(15)	5.744(15)	$< \times 10^{-4}\%$	$<1{\times}10^{-4}\%$		1.094	0.2240, 0.2936, 0.5175 0.5766	1.55805(42)	>250
5.871(8)	5.764(8)	$1 \times 10^{-3} \%$	$1 \times 10^{-3}\%$	(5/2 ⁺)	1.0737	0.2240, 0.2712, 0.2936, 0.4018, 0.5175, 0.5581, 0.6719, 0.8025, 1.0737	1.55805(42)	31
6.010(15)	5.900(15)***				0.930	0.3218, 0.6083		
6.055(6)	5.944(6)	$3 \times 10^{-3} \%$	$2 \times 10^{-3}\%$		0.8911	0.2240, 0.2712, 0.2936,	1.55805(42)	110
						0.2240, 0.2712, 0.2936,		
						0.3735, 0.4018, 0.4893,		
						0.5175, 0.6199, 0.8911		
6.069(15)	5.958(15)	1×10^{-4} %	$1 \times 10^{-4}\%$		0.8772	0.8772	1.55805(42)	2.5×10^{3}
6.112(6)	6.000(6)	$4 \times 10^{-3}\%$	$3 \times 10^{-3}\%$		0.8353	0.2712, 0.5461, 0.8353	1.55805(42)	130
6.213(8)	6.100(8)	$1 \times 10^{-3} \%$	$1 \times 10^{-3}\%$		0.7328	0.1306, 0.2712, 0.3308, 0.4018, 0.4618, 0.7328	1.55805(42)	1.1×10^{3}
6.238(8)	6.124(8)	$1 \times 10^{-3}\%$	$1 \times 10^{-3}\%$		0.7081	0.2712, 0.4369, 0.7081	1.55805(42)	1.4×10^{3}
6.273(4)	6.158(4)	0.023%	0.018%		0.6767	0.2712, 0.2936, 0.3831, 0.4055, 0.6767	1.55805(42)	78
6.339(6)	6.223(6)	$5 \times 10^{-3}\%$	$4 \times 10^{-3}\%$	$(11/2^+, 13/2^+)$	0.6083	0.6083	1.55805(42)	350
6.428(3)	6.311(3)	0.068%	0.054%	$(7/2^+, 9/2^+)$	0.51755	0.2240, 0.2936, 0.5175	1.55805(42)	170
6.545(1)	6.425(1)	9.5%	7.5%	5/2+	0.40181	0.1306, 0.2712, 0.4018	1.55805(42)	3.5
6.651(2)	6.530(2)	0.15%	0.12%	11/2+	0.29360	0.2936	1.55805(42)	590
6.675(1)	6.553(1)	16%	13%	7/2+	0.27123	0.2712	1.55805(42)	6.7
6.9460(3)	6.8191(3)	100%	79.3%	9/2+	0.0		1.55805(42)	11.4

* All values from [1999Li05], except where noted.

** [1966Hu20].

*** tentative.

			1/2					
$E_{\alpha}(\text{c.m.})$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(\text{rel})$	$I_{\alpha}(abs)$	$J_f^{\pi***}$	Edaughter(²¹⁹ Rn)	coincident γ-rays***	R ₀ (fm)	HF
5 1056	5 0140	$\approx 8.4 \times 10^{-4}\%$	$\approx 4.5 \times 10^{-4}\%$		0 8729		1 54569(94)	~121
5 1169	5 0251	$\approx 1.2 \times 10^{-3}\%$	$\approx 6.4 \times 10^{-4}\%$		0.8616		1.54569(94)	≈ 121 ≈ 100
5 1276	5.0251	$\approx 7.4 \times 10^{-4}\%$	$\approx 4.0 \times 10^{-4}\%$		0.8509		1.54569(94)	≈ 100 ≈ 190
5 1479	5.0556	$\approx 4.4 \times 10^{-4}\%$	$\approx 2.0 \times 10^{-4}\%$		0.8305		1.54569(94)	≈ 490
5 1787	5.0858	$\approx 5.6 \times 10^{-3}\%$	$\approx 3.0 \times 10^{-3}\%$		0.7997		1.54569(94)	~500
5 2054	5 1120	$\approx 1.1 \times 10^{-3}\%$	$\approx 6.0 \times 10^{-4}\%$		0.7731		1.54569(94)	≈360
5.2282	5.1344	$\approx 3.2 \times 10^{-3}\%$	$\approx 1.7 \times 10^{-3}\%$		0.7503		1.54569(94)	≈170
5.2455	5.1514	0.044%	0.021%		0.7329	0.0345, 0.0695, 0.1040, 0.1085,	1.54569(94)	18
						0.1108, 0.1443, 0.1543, 0.1587,		
						0.1773, 0.1796, 0.2551, 0.2695,		
						0.2860, 0.2881, 0.3284, 0.3383,		
						0.3428, 0.3555, 0.3900, 0.4324,		
						0.5741, 0.7184, 0.7284, 0.7328		
5.2669	5.1724	0.048%	0.026%		0.7116	0.3284, 0.3428, 0.3685, 0.6969, 0.7113	1.54569(94)	19
5.3064	5.2112	0.010%	$5.4 \times 10^{-3}\%$		0.6721	0.1224, 0.5458,	1.54569(94)	150
5.3315	5.2359	0.078%	0.042%		0.6469	0.0345, 0.0695, 0.1040, 0.1108,	1.54569(94)	27
						0.1224, 0.1317, 0.1383, 0.1443,	× /	
						0.1543, 0.1587, 0.1773, 0.1993,		
						0.2493, 0.2551, 0.2695, 0.3284,		
						0.3428, 0.3557, 0.3617, 0.3717,		
						0.3761, 0.3876, 0.4234, 0.4874,		
						0.5000, 0.5100, 0.6417, 0.6461		
5.3544	5.2584	0.080%	0.043%		0.6240	0.2462, 0.0345, 0.3284, 0.3428,	1.54569(94)	36
						0.6091, 0.6191, 0.66235		
5.3789	5.2824	0.18%	0.095%	(3/2,5/2,7/2)	0.5996	0.0345, 0.1443, 0.1543, 0.1587,	1.54569(94)	22
						0.1796, 0.2214, 0.2604, 0.3284,		
5 2925	5 29(0	0.240/	0.120/	(7/2)-	0.5050	0.5383, 0.3428, 0.5843, 0.5987	1.545(0(04)	17
5.3835	5.2809	0.24%	0.13%	(7/2)	0.5950	0.0095, 0.1032, 0.1040, 0.1085, 0.1147, 0.1224, 0.1443, 0.1472	1.54569(94)	17
						0.1147, 0.1224, 0.1443, 0.1472, 0.1543, 0.1587, 0.1773, 0.1796		
						0.2493 0.2512 0.2557 0.2881		
						0.3284, 0.3383, 0.3428, 0.3617		
						0.3717, 0.3761, 0.4324, 0.5796,		
						0.5940		
5.4358	5.3383	0.19%	0.10%	(7/2, 9/2)	0.5426	0.1224, 0.1659, 0.2493, 0.3617,	1.54569(94)	44
						0.3717, 0.3761, 0.5276, 0.5376,		
						0.5420		
5.4632	5.3652	0.20%	0.11	(7/2,9/2)	0.5152	0.1224, 0.1383, 0.1443, 0.1543,	1.54569(94)	56
						0.1587, 0.2493, 0.3557, 0.3617,		
						0.3717, 0.3761, 0.3876, 0.5000,		
	- 1000	1.000	0.000	~ 10	0.11/0	0.5100	1.515(0(0.1)	<u></u>
5.5324	5.4332	4.28%	0.023%	5/2-	0.4460	0.1022, 0.1067, 0.1108, 0.1443,	1.54569(94)	640
						0.1543, 0.1587, 0.1755, 0.1796,		
						0.2551, 0.2095, 0.3239, 0.3284, 0.3230, 0.3282, 0.3428, 0.4206		
						0.3339, 0.3383, 0.3428, 0.4300,		
5 5809	5 4808	~0.023%	≈0.082%	(11/2)	0 3975	0.2703	1 54569(94)	320
5.6017	5.5012	1.5%	0.80%	$9/2^+$	0.3768	0.1224 0.2493 0.3617 0.3717	1.54569(94)	42
010017	010012	110 /0	010070	<i>,,</i>	0.0700	0.3761	110 10 05 (5 1)	
5.6410(10)	5.5398(10)	16.95%	9.1%	5/2+	0.3375	0.1443, 0.1543, 0.1587, 0.1796,	1.54569(94)	6.0
						0.3383	× /	
5.7091(3)	5.6067(3)	48%	26%	3/2+	0.2693	0.1108, 0.1443, 0.1543, 0.1587,	1.54569(94)	4.7
						0.2551, 0.2695		
5.8206(3)	5.7162(3)	100%	53.7%	7/2+	0.1578	0.1443, 0.1543, 0.1587	1.54569(94)	8.2
5.8520(4)	5.7470(4)	17.0%	9.1%	11/2+	0.1265	0.1224	1.54569(94)	69
5.9641	5.8571	0.60%	0.32%	7/2+	0.0144	0.0144	1.54569(94)	6.8×10^{3}
5.9784	5.8712	1.6%	0.87%	5/2+	0.0		1.54569(94)	2.9×10^{3}

Table 5 direct α emission from ²²³Ra*, $J^{\pi} = 3/2^+$, $T_{1/2} = 11.4354(17) d^{**}$, $BR_{\alpha} = 100\%$.

* All values from [1962Wa18], except where noted. ** [2015Co02]. *** [1998Sh02].

Table 6 direct ¹⁴C emission from ²²³Ra*, $J^{\pi} = 3/2^+$, $T_{1/2} = 11.4354(17) d^{**}$, $Q_{14C} = 31.83 \text{ MeV}$, $BR_{14C} = 8.9(4) \times 10^{-8} \%^{***}$.

<i>E</i> _{14<i>C</i>} (c.m.)	$E_{14C}(\text{lab})$	$I_{14C}(\text{rel})$	$I_{14C}(abs)$	$J_f^{\pi@}$	$E_{daughter}(^{209}\text{Pb})^{@}$	coincident γ -rays [@]	R_0 (fm)	HF
30.43 31.07 31.50	28.52 29.12 29.52	5% ^{@@} 100% ^{@@} 19% ^{@@}	$\begin{array}{c} 3.6\!\times\!10^{-9}\%\\ 7.2\!\times\!10^{-8}\%\\ 1.3\!\times\!10^{-8}\%\end{array}$	15/2 ⁻ 11/2 ⁺ 9/2 ⁺	1.423 0.779 0.0	0.6435, 0.7789, 1.4227 0.7789	1.53069(10) 1.53069(10) 1.53069(10)	4.6 ^{@@} 3.9 ^{@@} 583 ^{@@}

* All values from [1992Ar02], except where noted. ** [2015Co02]. *** [1995Ho11].

⁽¹⁾ [2015Ch30].
 ^(a) [1992Ar02], intensity values reported as 4% (to 1.423 MeV), 81% to (to 0.779 MeV) and 15% (to ground state of ²⁰⁹Pb).

Table 7	
direct α emission from ²²⁷ Th* (1 of 3), $J^{\pi} = (1/2^+)$, $T_{1/2} = 18.681(9) d^{**}$, BR_{α}	$\alpha = 100\%$

$E_{\alpha}(c.m.)$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(\text{rel})$	$I_{\alpha}(abs)$	${ m J}_f^{\pi}$	$E_{daughter}(^2$	²³ Ra)	coincident γ-rays	HF***
5.1236(40) 5.1466(40)	5.0333(40) 5.0559(40)	1.3(1)×10 ⁻³ 1.0(2)×10 ⁻³	3.1(2)×10 ⁻⁴ % 2.3(5)×10 ⁻⁴ %		1.025 1.000		1.025 0.0065, 0.0205, 0.0299, 0.0316, 0.0339, 0.0419, 0.0438, 0.0442, 0.0444, 0.0465, 0.0483, 0.0498, 0.0501, 0.0542, 0.0564, 0.0614, 0.0625, 0.0687, 0.0736, 0.0797, 0.0939, 0.0950, 0.0960, 0.0996, 0.1003, 0.1052, 0.1076, 0.1131, 0.1414, 0.1501, 0.1735, 0.1847, 0.2005, 0.2016, 0.2041, 0.2050, 0.2061, 0.2106, 0.2189, 0.2348, 0.2360, 0.2461, 0.2502, 0.2503, 0.2525, 0.2546, 0.2562, 0.2629, 0.2729, 0.2798, 0.2814, 0.2842, 0.2861, 0.2924, 0.2965, 0.3000, 0.3045, 0.3127, 0.3149, 0.3260, 0.3299, 0.3344, 0.3426, 0.3465, 0.3763, 0.6238, 0.9200, 0.9380, 0.9700, 0.9998	$29.8(20) \\ 57^{+16}_{-10}$
5.1745(40)	5.0833(40)	6(1)×10 ⁻³ %	1.5(2)×10 ⁻⁴ %		0.971		0.0205, 0.0299, 0.0316, 0.0438, 0.0442, 0.0498, 0.0501, 0.0614, 0.0625, 0.0736, 0.0797, 0.0939, 0.0950, 0.1735, 0.1847, 0.2050, 0.2061, 0.2348, 0.2503, 0.2798, 0.3000, 0.3299, 0.6410, 0.910, 0.9416	132^{+21}_{-16}
5.2020(40) 5.2205(30)	5.1103(40) 5.1285(30)	$\frac{1.2(1)\times10^{-3}\%}{2.6(1)\times10^{-3}\%}$	$\begin{array}{c} 2.8(2) \times 10^{-4}\% \\ 6.2(2) \times 10^{-4}\% \end{array}$	(3/2, 5/2) (3/2, 5/2 ⁻)	0.943 0.926		0.0205, 0.0299, 0.0501, 0.893 0.0205, 0.0299, 0.0316, 0.0498, 0.0501, 0.0614, 0.0644, 0.0797, 0.1735, 0.1847, 0.2050, 0.2348, 0.2360, 0.2562, 0.2861, 0.3005, 0.3505, 0.5760, 0.6920, 0.8467, 0.8763, 0.0.8961, 0.927	105(8) 59.7(20)
5.2386(20)	5.1463(20)	0.0169(7)%	4.1(8)×10 ⁻³ %		0.908		0.0065, 0.0205, 0.0299, 0.0316, 0.0442, 0.0444, 0.0498, 0.0501, 0.0614, 0.0625, 0.06874, 0.0736, 0.0797, 0.0939, 0.1003, 0.1131, 0.2360, 0.2562, 0.2855, 0.2861, 0.3986, 0.4480, 0.6124, 0.8573, 0.8785, 0.8782, 0.9086	$11.6^{+2.8}_{-1.9}$
5.2635(30)	5.1708(30)	$7.0(7) \times 10^{-3}\%$	$1.70(17) \times 10^{-3}\%$		0.884		0.0299, 0.8543	39(4)
5.2733(40)	5.1804(40)	$5.0(10) \times 10^{-3}\%$	$1.20(24) \times 10^{-3}\%$		0.879		0.0299, 0.8378, 0.8673	59^{+15}_{-10}
5.2867(25)	5.1935(25)	0.0157(13)%	3.80(27)×10 ⁻³ %		0.859		0.0065, 0.0205, 0.0299, 0.0316, 0.0442, 0.0444, 0.0483, 0.0498, 0.0501, 0.0542, 0.0564, 0.0614, 0.0625, 0.0687, 0.0736, 0.0797, 0.0939, 0.0996, 0.1003, 0.1052, 0.1076, 0.1131,0.1501, 0.1735, 0.1847, 0.2005, 0.2041, 0.2050, 0.2106, 0.2189, 0.2348, 0.2360, 0.2502, 0.2546, 0.2562, 0.2629, 0.2729, 0.2814, 0.2842, 0.2861, 0.2924, 0.3045, 0.3127, 0.3344, 0.3426, 0.5166, 0.5245, 0.5790, 0.7354, 0.7973, 0.8086, 0.8285, 0.8589	24.3(18)
5.3035(20)	5.2100(20)	0.029(2)%	7(3)×10 ⁻³ %		0.842		0.0065, 0.0205, 0.0299, 0.0316, 0.0442, 0.0444, 0.0483, 0.0498, 0.0501, 0.0542, 0.0614, 0.0625, 0.0687, 0.0736, 0.0797, 0.0939, 0.0996, 0.1003, 0.1052, 0.1131, 0.1501, 0.1735, 0.1847, 0.2041, 0.2005, 0.2050, 0.2106, 0.2189, 0.2348, 0.2360, 0.2502, 0.2546, 0.2562, 0.2729, 0.2842, 0.2861, 0.3045, 0.3344, 0.5075, 0.5561, 0.6077, 0.7185, 0.7622, 0.7810, 0.8126, 0.8425	17^{+13}_{-5}
5.3228(20)	5.2290(20)	0.041(2)%	9.8(3)×10 ⁻³ %		0.823		0.0205, 0.0299, 0.0316, 0.0438, 0.0442, 0.0442, 0.0493, 0.0498, 0.0501, 0.0614, 0.0625, 0.7734, 0.0736, 0.0797, 0.0939, 0.0950, 0.1735, 0.1847, 0.2050, 0.2061, 0.2348, 0.2360, 0.2503, 0.2562, 0.2798,0.2861, 0.3000, 0.3299, 0.5369, 0.8234	15.3(5)
5.3422(20)	5.2481(20)	0.0132(8)%	$3.20(1) \times 10^{-3}\%$		0.803		0.0205, 0.0299, 0.0498, 0.0501, 0.7235, 0.7541,	61.3(6)
5.3585(20)	5.2641(20)	0.0107(9)%	2.6(2)×10 ⁻³ %		0.787		0.0797, 0.8039 0.0205, 0.0299, 0.0316, 0.0498, 0.0501, 0.0614, 0.0797, 0.1735, 0.1847, 0.2050, 0.2348, 0.5524, 0.7072, 0.7569, 0.7874	93(7)
5.4171(40)	5.3216(40)	1.0(4)%×10 ⁻³ %	2.4(10)×10 ⁻⁴ %		0.729			$2.2^{+1.6}_{-0.6} \times 10^3$
5.4314(50)	5.3357(50)	$8(4) \times 10^{-3}\%$	$2(1) \times 10^{-3}\%$		0.713		0.0205, 0.0299, 0.0498, 0.0797, 0.6323, 0.6628	320_{-11}^{+32}

* All values from [1964Ba33], unless otherwise noted. ** [2019Ko06]. *** $R_0 = 1.53569(39)$ fm.

Table 8			
direct α emission from ²²⁷ Tl	n^* (2 of 3), $J^{\pi} = (1/2^+)$), $T_{1/2} = 18.681(9)$	$d^{**}, BR_{\alpha} = 100\%$

$E_{\alpha}(c.m.)$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(\text{rel})$	$I_{\alpha}(abs)$	J_f^{π}	$E_{daughter}(^{223}\mathrm{Ra})$	coincident γ-rays	HF***
$5.4610(25) 5.5055(30) 5.5563(20) \overline{5.5785(22)} 5.6085(20)$	5.3648(25) 5.4085(30) 5.4584(20) 5.4802(22) 5.5097(20)	$\begin{array}{c} 2.7(2) \times 10^{-3}\% \\ 1.8(3) \times 10^{-3}\% \\ 0.0112(5)\% \\ \overline{5.0(5) \times 10^{-3}\%} \\ 0.0686(28)\% \end{array}$	$\begin{array}{c} 6.6(3) \times 10^{-4}\% \\ 4.4(7) \times 10^{-4}\% \\ 2.7(5) \times 10^{-3}\% \\ 1.2(1) \times 10^{-3}\% \\ 0.0166(3)\% \end{array}$		0.685 0.641 0.590 0.568 0.537	0.0065, 0.0205, 0.0299, 0.0316, 0.0442, 0.0444, 0.0498, 0.0501, 0.0614, 0.0625, 0.06874, 0.0729,	$\begin{array}{c} 1.39(7)\times 10^{3}\\ 3.7^{+0.7}_{-0.5}\times 10^{3}\\ 1.14^{+0.26}_{-0.18}\times 10^{3}\\ 3.37(28)\times 10^{3}\\ 357(7)\end{array}$
5.6307(18)	5.5315(18)	0.0868(89)%	0.021(2)%	(11/2 ⁻)	0.514	0.0736, 0.0797, 0.0939, 0.1003, 0.1131, 0.1172, 0.1236, 0.2900 0.0065, 0.0205, 0.0299, 0.0316, 0.0442, 0.0444,	380(40)
						0.0498, 0.0501, 0.0542, 0.0614, 0.0625, 0.0687 , 0.0736, 0.0797, 0.0939, 0.1003, 0.1131, 0.2671, 0.2855, 0.3398, 0.3986	
5.6859(16)	5.5857(16)	0.727(37)%	0.176(6)%	(9/2)-	0.460	0.0065, 0.0205, 0.0299, 0.0316, 0.0442, 0.0444, 0.0498, 0.0501, 0.0614, 0.0625, 0.06874, 0.0736, 0.0797, 0.0939, 0.1003, 0.1131, 0.2855, 0.3986	86.3(3)
5.7009(18)	5.6004(18)	0.703(75)%	0.170(17)%	9/2+	0.445	$\begin{array}{c} 0.0065, 0.0205, 0.0209, 0.0299, 0.0316, 0.0339,\\ 0.04020, 0.0419, 0.0438, 0.0442, 0.0444, 0.0465,\\ 0.0483, 0.0498, 0.0501, 0.0542, 0.0564, 0.0614\\ 0.0625, 0.0627, 0.06874, 0.0736, 0.0797, 0.0939,\\ 0.0950, 0.0960, 0.0996, 0.1003, 0.1107, 0.1052,\\ 0.1078, 0.1131, 0.1172, 0.1236, 0.1244, 0.1414,\\ 0.1501, 0.1683, 0.1700, 0.1735, 0.1847, 0.1976,\\ 0.4151, 0.2005, 0.2016, 0.2041, 0.2050, 0.2061,\\ 0.2106, 0.2127, 0.2106, 0.2189, 0.2300, 0.2348,\\ 0.2360, 0.2461, 0.2502, 0.2503, 0.2525, 0.2546,\\ 0.2562, 0.2629, 0.2706, 0.2729, 0.2798, 0.2807,\\ 0.2814, 0.2842, 0.2861, 0.2924, 0.2965, 0.3000,\\ 0.3045, 0.3127, 0.3149, 0.3249, 0.3260, 0.3299,\\ 0.3344, 0.3426, 0.3465, 0.3626, 0.3748, 0.3763,\\ 0.3835\end{array}$	107^{+12}_{-10}
5.7138(16)	5.6131(16)	0.893(47)%	0.216(8)%	(5.2 ⁻)	0.432	$\begin{array}{c} 0.0065, 0.0205, 0.0299, 0.0316, 0.0339, 0.0419,\\ 0.0438, 0.0442, 0.0444, 0.0465, 0.0483, 0.0498,\\ 0.0501, 0.0542, 0.0560, 0.0564, 0.0614, 0.0625,\\ 0.0687, 0.0736, 0.0797, 0.0896, 0.0939, 0.0950,\\ 0.0960, 0.0996, 0.1003, 0.1025, 0.1052, 0.1076,\\ 0.1131, 0.1414, 0.1501, 0.1735, 0.1847, 0.2005,\\ 0.2016, 0.2041, 0.2050, 0.2061, 0.2106, 0.2189,\\ 0.2348, 0.2360, 0.2461, 0.2502, 0.2503, 0.2525,\\ 0.2546, 0.2562, 0.2629, 0.2729, 0.2798, 0.2814,\\ 0.2842, 0.2861, 0.2924, 0.2965, 0.3000, 0.3045,\\ 0.3084, 0.3127, 0.3149, 0.3260, 0.3299, 0.3344,\\ 0.3426, 0.3465, 0.3526, 0.3709, 0.3763, 0.3822,\\ 0.4022, 0.4323\end{array}$	99(4)
5.7226(17) 5.7412(15)	5.6218(17) 5.6400(15)	0.028(2)% 0.0740(68)%	7.0(4)×10 ⁻³ % 0.0179(15)%	(11/2 ⁺) (7/2) ⁻	0.424 0.405	0.0299, 0.0316, 0.0614, 0.3626 0.0065, 0.0205, 0.0299, 0.0316, 0.0442, 0.0444, 0.0498, 0.0501, 0.0614, 0.0625, 0.0627, 0.0687, 0.0736, 0.0797, 0.0939, 0.1003, 0.1052, 0.1078, 0.1131, 0.1244, 0.1501, 0.1683, 0.1700, 0.1735, 0.1847, 0.2005, 0.2050, 0.2127, 0.2189, 0.2300, 0.2348, 0.2502, 0.2807, 0.2814, 0.3249, 0.3748	$\frac{3^{+5}_{-1} \times 10^3}{31.64(14) \times 10^3}$
5.7695(15)	5.6678(15)	8.51(59)%	2.06(12)%		0.376	0.0065, 0.0205, 0.0299, 0.0316, 0.0339, 0.0419, 0.0438, 0.0442, 0.0444, 0.0465, 0.0483, 0.0498, 0.0501, 0.0542, 0.0564, 0.0614, 0.0625, 0.0687, 0.0736, 0.0797, 0.0939, 0.0950, 0.0960, 0.0996, 0.1003, 0.1052, 0.1076, 0.1131, 0.1414, 0.1501, 0.1735, 0.1847, 0.2005, 0.2016, 0.2041, 0.2050, 0.2061, 0.2106, 0.2189, 0.2348, 0.2360, 0.2461, 0.2502, 0.2503, 0.2525, 0.2546, 0.2562, 0.2629, 0.2729, 0.2798, 0.2814, 0.2842, 0.2861, 0.2924, 0.2965, 0.3000, 0.3045, 0.3127, 0.3149, 0.3260, 0.3299, 0.3344, 0.3426, 0.3465, 0.3763	20.1(12)

* All values from [1964Ba33], unless otherwise noted. ** [2019Ko06]. *** $R_0 = 1.53569(39)$ fm.

Table 9				
direct α emission from	²²⁷ Th* (3 of 3), J ⁷	$\tau = (1/2^+), T_{1/2} =$	= 18.681(9) d**,	$BR_{\alpha} = 100\%$

$E_{\alpha}(c.m.)$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(\text{rel})$	$I_{\alpha}(abs)$	$\mathbf{J}_f^{\boldsymbol{\pi}}$	$E_{daughter}(^{223}\mathrm{Ra})$	coincident γ-rays	HF***
5.7759(16)	5.6741(16)	0.236(17)%	0.0572(35)%	(5/2)-	0.369	0.0205, 0.0299, 0.0316, 0.0498, 0.0501, 0.0614, 0.0797, 0.1346, 0.1735, 0.1847, 0.2050, 0.2348, 0.2002, 0.2102, 0.2021	790(50)
5.7949(16)	5.6928(16)	6.2(5)%	1.5(1)%	(1/2 ⁻)	0.351	0.2896, 0.3192, 0.3694 0.0205, 0.0299, 0.0501, 0.0644, 0.2360, 0.253, 0.2861, 0.3005, 0.3505	37.1(25)
5.8029(16)	5.7006(16)	15(1)%	3.63(20)%	3/2+	0.343	0.0205, 0.0299, 0.0316, 0.0498, 0.0501, 0.0564, 0.0614, 0.0797, 0.1076, 0.1735, 0.1847, 0.2050, 0.2348, 0.2360, 0.2562, 0.2629, 0.2814, 0.2861, 0.2924, 0.3127, 0.3426	16.8(10)
5.8110(16)	5.7086(16)	34.3(18)%	8.3(3)%	5/2+	0.334	0.0065, 0.0205, 0.0299, 0.0316, 0.0442, 0.0444, 0.0483, 0.0498, 0.0501, 0.0542, 0.0614, 0.0625, 0.0687, 0.0736, 0.0797, 0.0939, 0.0996, 0.1003, 0.1052, 0.1131, 0.1501, 0.1735, 0.1847, 0.2041, 0.2005, 0.2050, 0.2106, 0.2189, 0.2348, 0.2360, 0.2502, 0.2546, 0.2729, 0.2842, 0.2861, 0.3045, 0.3344	8.18(31)
5.8155(16)	5.7130(16)	20.2(11)%	4.89(20)%	3/2-	0.329	0.0205, 0.0299, 0.0316, 0.0438, 0.0442, 0.0498, 0.0501, 0.0614, 0.0625, 0.0736, 0.0797, 0.0939, 0.0950, 0.1735, 0.1847, 0.2050, 0.2061, 0.2348, 0.2503, 0.2798, 0.3000, 0.3299	14.7(6)
5.8306(16)	5.7279(16)	0.141(12)%	0.0342(25)%	(13/2-)	0.316	0.0065, 0.0205, 0.0299, 0.0316, 0.0442, 0.0498, 0.0501, 0.0614, 0.0625, 0.0687, 0.0736, 0.0797, 0.0939, 0.1003, 0.1414	$2.45(18) \times 10^3$
5.86013(15)	5.75687(15)	84.3(49)%	20.4(9)%	$1/2^{+}$	0.286	0.0205, 0.0299, 0.0501, 0.2360, 0.2562, 0.2861	5.81(26)
5.8655(15)	5.7621(15)	0.942(54)%	0.228(10)%	(7/2)+	0.280	0.0065, 0.0205, 0.0299, 0.0316, 0.0442, 0.0444, 0.0498, 0.0501, 0.0614, 0.0625, 0.0687, 0.0736, 0.0797, 0.0939, 0.1003, 0.1052, 0.1131, 0.1501, 0.2005, 0.2189, 0.2502	557(25)
5.8993(15)	5.7953(15)	1.29(5)%	0.311(5)%	11/2-	0.247	0.0065, 0.0205, 0.0299, 0.0316, 0.0442, 0.0444, 0.0498, 0.0501, 0.0614, 0.0625, 0.0687, 0.0729, 0.0736, 0.0797, 0.0939, 0.1003, 0.1131, 0.1172, 0.1236	596(11)
5.9115(15)	5.8073(15)	5.2(2)%	1.27(2)%	5/2+	0.235	0.0205, 0.0299, 0.0316, 0.0501, 0.0614, 0.1735, 0.1847, 0.2050, 0.2348	167(3)
5.9716(15)	5.8664(15)	10.0(6)%	2.42(10)%	11/2+	0.175	0.0065, 0.0205, 0.0299, 0.0316, 0.0442, 0.0444, 0.0498, 0.0501, 0.0614, 0.0625, 0.0687, 0.0736, 0.0797, 0.0939, 0.1003, 0.1131	173(7)
6.0157(15)	5.9097(15)	0.719(43)%	0.174(8)%	9/2+	0.130	0.0065, 0.0205, 0.0299, 0.0316, 0.0442, 0.0498, 0.0501, 0.0614, 0.0625, 0.0687, 0.0736, 0.0797, 0.0939, 0.1003	$3.97(19) \times 10^3$
6.0219(15)	5.9158(15)	3.20(17)%	0.775(30)%	7/2-	0.124	0.0205, 0.0299, 0.0316, 0.0442, 0.0498, 0.0501, 0.0614, 0.0625, 0.0736, 0.0797, 0.0939	950(40)
6.0664(15)	5.9595(15)	12.40(77)%	3.00(15)%	(5/2)-	0.080	0.0205, 0.0299, 0.0498, 0.0797	398(20)
6.08494(10)	5.97772(10)	97.1(52)%	23.5(9)%	$(7/2^+)$	0.061	0.0299, 0.0316, 0.0614	62.6(6)
6.0966(20)	5.9892(20)	$8.3(13) \times 10^{-3}\%$	$2.0(3) \times 10^{-3}\%$	3/2-	0.050	0.0205, 0.0299, 0.0501	$8.3^{+1.5}_{-1.1} imes 10^5$
6.1164(15) 6.14632(15)	6.0086(15) 6.03801(15)	11.98(76)% 100(5)%	2.90(15)% 24.2(9)%	5/2+ 3/2+	0.030 0.0	0.0299	710(40) 117(5)

* All values from [1964Ba33], unless otherwise noted. ** [2019Ko06]. *** $R_0 = 1.53569(39)$ fm.

Table 10
direct α emission from ²³¹ U*, $J^{\pi} = (5/2^{-})$, $T_{1/2} = 4.2(1) d^{**}$, $BR_{\alpha} = 4(1) \times 10^{-3} \%$.

$E_{\alpha}(c.m.)$	$E_{\alpha}(lab)$	$I_{\alpha}(\text{rel})$	$I_{\alpha}(abs)$	J_f^π	$E_{daughter}(^{227}\mathrm{Th})$	coincident γ -rays	R_0 (fm)	HF
5.177	5.087				0.40011	0.00243, 0.0386, 0.0379, 0.0399, 0.0532, 0.0606, 0.0613, 0.0683, 0.0749, 0.0899, 0.0991, 0.1111 0.1507, 0.1899, 0.2042, 0.2114, 0.2196, 0.2647,		
5.258	5.167	0.52%	8.8×10 ⁻⁴ %	(3/2,5/2,7/2)+	0.31889	0.2798, 0.2890 0.00243, 0.0386, 0.0379, 0.0399, 0.0532, 0.0683		
5.288	5.196	1.8%	3.1×10 ⁻³ %	(1/2,3/2,5/2)+	0.28901	0.2426, 0.2943, 0.3097 0.00243, 0.0386, 0.0379, 0.0399, 0.0532, 0.0606, 0.0613, 0.0683, 0.0749, 0.0899, 0.0991, 0.1507, 0.1899, 0.2042, 0.2114, 0.2196, 0.2647, 0.2798, 0.2890		
5.345 5.348	5.252 5.255	0.47% $\approx 0.14\%$	$8.0 \times 10^{-4}\%$ $\approx 2.4 \times 10^{-4}\%$	(-) (3/2,5/2) ⁻	0.23143 0.22864	0.0644, 0.1578 0.00243, 0.0386, 0.0379, 0.0399, 0.0532, 0.0683, 0.1507, 0.2042, 0.2196		
5.356	5.263	0.71%	$1.2 \times 10^{-3}\%$	(-)	0.19999	0.1307, 0.2042, 0.2190 0.0243, 0.0728, 0.1029, 0.1180, 0.1902		
5.392	5.299	0.92%	$1.6 \times 10^{-3}\%$	(1/2,3/2,5/2)-	0.18367	0.0564, 0.1029, 0.1180 0.1594		
5.449	5.355	1.6%	$2.7 \times 10^{-3}\%$	$(3/2.5/2)^+$	0.12726	0.0243, 0.1029, 0.1180		
5.478	5.383	13%	$2.2 \times 10^{-2}\%$	(1/2,3/2,5/2)+	0.09916	0.0243, 0.0386, 0.0379, 0.0613, 0.0749, 0.0899, 0.0991		
5.499	5.404	50%	$8.4 \times 10^{-2}\%$	*3/2,5/2)+	0.07758	0.00243, 0.0386, 0.0379, 0.0399, 0.0532, 0.0683		
5.500	5.405				0.07620	0.00243, 0.0519, 0.0669		
5.503	5.408	< 0.71%	$< 1.2 \times 10^{-3}\%$	$(3/2, 5/2, 7/2)^{-}$	0.07364	0.0644		
5.539	5.443	$\approx 1.4\%$	$\approx 2.4 \times 10^{-3}\%$	3/2-	0.03788	0.0386, 0.0379		
5.552	5.456	100%	$1.7 \times 10^{-1}\%$	3/2+	0.02434	0.0243		
5.567	5.471	66%	$1.1 \times 10^{-1}\%$	5/2+	0.0926			
5.577	5.480	≈1.7%	$\approx 2.8 \times 10^{-3}\%$	$(1/2^+)$	0.0			
* All va ** [194 *** [19	alues from [199 49Os01]. 994Li12].	97Mu08], unle	ess otherwise noted.					
Table 11 directα emis	ssion from ²³⁵ 1	$Pu^*, J^{\pi} = (5/2)$	$(t^+), T_{1/2} = 25.8(1) \text{ m}$	**, $BR_{\alpha} = 3.0(6) \times 1$	0 ⁻³ %.			
$E_{\alpha}(\text{c.m.})$	$E_{\alpha}(\text{lab})$	$I_{\alpha}($	abs)	$\mathbf{J}_f^{\pi} = E_{daughter}$	(²³¹ U) coincid	ent γ -rays R ₀ (fm)	HF	
5.951(20)	5.850(2	0) 3.0	(6)×10 ⁻³ %	x		1.514(14)	$1.1^{+0.6}_{-0.4}$	
* All va ** Wei	alues from [19: ghted average	57Th10], unle of 25.6(1) m [ss otherwise noted. 1973Jo03] and 25.9(1) m [1971Ke22].				
Table 12direct α emission	ssion from ²⁴³	Cf*, $J^{\pi} = (1/2)$	⁺), $T_{1/2} = 10.3(5)$ m	**, $BR_{\alpha} = \text{obs.}$				
$E_{\alpha}(c.m.)$	$E_{\alpha}(\text{lab})$	$I_{\alpha}($	(rel) $I_{\alpha}(abs)$	J_f^π	$E_{daughter}(^{235}$ Pu)	coincident γ -rays	R ₀ (fm)	HF

 \ast All values from [1967Fi04], unless otherwise noted.

 $\approx \! 40\%$

100%

7.060(10) 7.170(10)

7.178(10) 7.290(10) 0.112 0.0

(7/2⁻)

$E_{\alpha}(c.m.)$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(abs)$	J_f^π	$E_{daughter}(^{243}\mathbf{C})$	Cf) coincident γ -	rays	R ₀ (fm)	HF
7.953(10)	7.824(10)	64%	(7/2 ⁺)	0.315	0.082, 0.1218	8, 0.1418, 0.1666	1.5003(93)	0.84
* All va	lues from [2006He	27], unless othe	rwise noted.					
Fable 14 lirectα emis	sion from ^{247m} Fm ²	*, Ex. = 47(5) ke	eV, $J^{\pi} = (1/2^+)$,	$T_{1/2} = 5.1(2) s$	$, BR_{\alpha} = 88(2)\%.$			
$E_{\alpha}(c.m.)$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(abs)$	$J_f^{\boldsymbol{\pi}}$	$E_{daughter}$	²⁴³ Cf) coincide	ent γ -rays R ₀ (fr	n) HF	
3.307(5)	8.172(5)	88(2)%	$(1/2^+)$	0.0		1.500	3(93) 1.5	$^{+0.4}_{-0.3}$
* All va	lues from [2006He	27], unless othe	rwise noted.					
Fable 15 directα emis	sion from ²⁵¹ No*,	$J^{\pi} = (7/2^+), T_1$	$_{/2} = 0.80(1)$ s, E	$3R_{\alpha} = 91^{+9}_{-22}\%^*$	*.			
$E_{\alpha}(c.m.)$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(\text{rel})$	$I_{\alpha}(abs)$	J_f^{π}	$E_{daughter}(^{247}\text{Fm})$	coincident γ-rays	R ₀ (fm)	HF
3.662(8)	8.524(8)***	$\approx 0.05\%$	≈0.046%		~		1.485(12)	≈ 80
3.690(8)	8.552(8)***	$\approx 1.02\%$	$\approx 0.91\%$				1.485(12)	≈ 51
3.701(7)	8.562(7)	≈0.31%	≈0.27%		0.051		1.485(12)	≈ 180
3.710(7)	8.571(7)***	≈0.51%	≈0.46%	(7/0+)	0.0		1.485(12)	≈ 120
* All va ** [200 *** Ten	lues from [2006He 1He35]. tative [2006He27]	27], unless othe	rwise noted.					
Fable 16 lirectα emis	sion from ^{251m} No ²	[*] , ex. = 106(6) k	$eV, J^{\pi} = (1/2^+)$	$T_{1/2} = 1.02(3)$	s, $BR_{\alpha} = 100\%$.			
$E_{\alpha}(c.m.)$	$E_{\alpha}(lab)$	$I_{\alpha}(\text{rel})$	$I_{\alpha}(abs)$	J ^π .	$E_{daughtar}(^{247}\text{Fm})$	coincident <i>y</i> -rays	Ro (fm)	HF
				J	uuugner			
3.765(10) 3.808(4)	8.625(10) 8.668(4)	$\approx 2\%$ 100.00%	$pprox 2\% \ pprox 98\%$	(7/2 ⁺)	0.043 0.0		1.485(12) 1.485(12)	≈ 37 $1.02^{+0.33}_{-0.25}$
* All va	lues from [2006He	27].						
Table 17	tion from 255 Df*	$I^{\pi} = (0/2^{-})$ T	- 1 66(7) ***	PP = 16(5)0	***			
infecta enfis	sion from ¹⁴ Ki [*] ,	$J^{-} = (9/2^{-}), I_{1/2}$	$r_2 = 1.00(7) \mathrm{s}^{-1}$	$BK_{\alpha} = 40(3)\%$	•			
$E_{\alpha}(c.m.)$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(\text{rel})$	$I_{\alpha}(abs)$	J_f^{π}	$E_{daughter}(^{251}\mathrm{No})$	coincident γ -rays	R ₀ (fm)	HF
	8.575(5) [@]	1.1(5)%	0.46(24)%				1.472(38)	40^{+70}_{-20}
3.712(5)							.=()	~ - 30
3.712(5) 3.784(5)	8.646(5) [@]	1.6(6)%	0.69(24)%				1.472(38)	70^{+110}_{-50}
8.712(5) 8.784(5) 8.816(8)	8.646(5) [@] 8.678(8) [@]	1.6(6)% 3.3(11)%	0.69(24)% 1.38(48)%				1.472(38) 1.472(38)	70^{+110}_{-50} 30^{+50}_{-20}
8.712(5) 8.784(5) 8.816(8) 8.855(4)	8.646(5) [@] 8.678(8) [@] 8.716(4)	1.6(6)% 3.3(11)% 100(8)%	0.69(24)% 1.38(48)% 42.3(51)%	(9/2-)	0.204	0.1433, 0.2036	1.472(38) 1.472(38) 1.472(38)	$70^{+110}_{-50} \\ 30^{+50}_{-20} \\ 1.3^{+2.0}_{-0.8}$

* All values from [2006He27], except where noted ** Weighted average of 1.68(9) s [2006He27] and 1.64(11) s [2001He35]. *** Weighted average of 58(9)% [2015An05] and 52(6)% [2001He35]. @ Tentative [2006He27].

		1						
$E_{\alpha}(c.m.)$	$E_{\alpha}(lab)$	$I_{\alpha}(\text{rel})$	$I_{\alpha}(abs)$	J_f^π	$E_{daughter}(^{255}\mathrm{Rf})$	coincident γ-rays	R_0 (fm)	HF
0 182(10)	9.040(10)	12(2)%	~10.7%		0 583		1 461(30)	$20^{+2.3}$
9.765(8)	9.614(8)	12(2)% 100(2)%	$\approx 10.7 \%$ $\approx 86.3\%$		0.0		1.461(30)	11^{+12}
* All val	ues from [2015An(05].						
Table 19 lirect α emiss $E_{\alpha}(c.m.)$	ion from 259m Sg*, $E_{\alpha}(lab)$	Ex. = $87(22)$ keV I_{α} (rel)	$V, J^{\pi} = (11/2^{-}), T$ $I_{\alpha}(abs)$	$\Gamma_{1/2} = 2260$ J_{ℓ}^{π}	(27) ms, $BR_{\alpha} = \approx 97\%$. $E_{daughter}(^{255} \text{Rf})$	coincident <i>y</i> -rays	R ₀ (fm)	HF
		,	,	J	uuugnier		0 ()	
9.344(25)	9.200(25)**	80(10)%	$\approx 42\%$		0.508		1.461(30)	$0.8^{+0.9}_{-0.5}$
0 700(0)								0.5

* All values from [2015An05].

9.700(20)

** Tentative assignment.

Table 20

9.852(20)

Table 20			
direct α emission	from ²⁶³ Hs, T _{1/2}	$_2 = 0.74^{+0.48}_{-0.21}$	ms, $BR_{\alpha} = 100\%$.

5.6(19)%

direct α emission from ²⁵⁹Sg*, $J^{\pi} = (1/2^+)$, $T_{1/2} = 402(56)$ ms, $BR_{\alpha} = \approx 97\%$.

$E_{\alpha}(c.m.)$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(abs)$	J_f^{π}	$E_{daughter}(^{259}Sg)$	coincident γ -rays	R ₀ (fm)	HF
10.733(60) 10.886(60) 11.058(60)	10.570(60) 10.720(60) 10.890(60)	$\approx 20\%^{**}$ $\approx 40\%^{**}$ $\approx 40\%^{**}$	(1/2 ⁺)?	0.0?			

0.0

 300^{+400}_{-200}

1.461(30)

* All values from [2009Dr02].

** Based on a total of 6 decay chains, with one of the chains containing an escape α from ²⁶³Hs.

 $\approx 2.9\%$

Table 21

direct α emission from ²⁶⁷ Ds, T _{1/2} = 4 μ s, $BR_{\alpha} = \approx 100\%$.										
$E_{\alpha}(\text{c.m.})$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(abs)$	J_f^{π}	$E_{daughter}(^{263}\mathrm{Hs})$	coincident γ -rays	R ₀ (fm)	HF			
11.8	11.6									

* All values from [1995Gh05] based on observation of one event.

References used in the Tables

- [1] 1942Wa04 A. G. Ward, Proc. Roy. Soc. (London). 181A, 183 (1942). https://doi.org/10.1098/rspa.1942.0070
- [2] 1949Os01 D. W. Osborne, R. C. Thompson, Q. Van Winkle, The Transuranium Elements: Research Papers, Book 2, Vol. 14B, paper 19. 11, G. T. Seaborg ed., p. 1397 (1949).
- [3] 1949Pe08 S. Peterson, A. Ghiorso, The Transuranium Elements: Research Papers, Book 2, Vol. 14B, paper 19. 12, G. T. Seaborg ed., p. 1424 (1949).
- [4] 1950Av61 P. Avignon, J. Phys. Radium 11, 521 (1950). https://doi.org/10.1051/jphysrad:01950001108-9052100
- [5] 1952Or03 D. A. Orth, Thesis, Univ. California (1952).; UCRL-1059 (1952).
- [6] 1954Ha60 G. R. Hagee, M. L. Curtis, G. R. Grove, Phys. Rev. 96, 817A (1954). https://doi.org/10.1103/PhysRev.96.817A
- [7] 1957Pi31 R. C. Pilger, Jr., Thesis, Univ. California (1957); UCRL-3877 (1957).
- [8] 1957Th10 T. D. Thomas, R. Vandenbosch, R. A. Glass, G. T. Seaborg, Phys. Rev. 106, 1228 (1957). https://doi.org/10.1103/PhysRev.106.1228
- [9] 1959Ro51 J. Robert, Ann. Phys. (Paris). 4, 89 (1959).
- [10] 1960Wa16 G. Walter, A. Coche, J. Phys. Radium 21, 477 (1960). https://doi.org/10.1051/jphysrad:01960002105047701

- [11] 1961Ro14 H. Rodenbusch, G. Herrmann, Z. Naturforsch 16a, 577 (1961).
- [12] 1961Ry02 A. Rytz, Helv. Phys. Acta 34, 240 (1961).
- [13] 1961Vo06 Yu. M. Volkov, A. P. Komar, G. A. Korolev, G. E. Kocharov, Izvest. Akad. Nauk SSSR, Ser. Fiz. 25, 1188 (1961).; Columbia Tech. Transl. 25, 1193 (1962).
- [14] 1962Gi04 M. Giannini, D. Prosperi, S. Sciuti, Nuovo Cimento 25, 1314 (1962). https://doi.org/10.1007/BF02733270
- [15] 1962Wa18 R. J. Walen, V. Nedovesov, G. Bastin-Scoffier, Nuclear Phys. 35, 232 (1962). https://doi.org/10.1016/0029-5582(62)90109-8
- [16] 1964Ba33 G. Bastin-Scoffier, C. F. Leang, R. J. Walen, Compt. Rend. 258, 6397 (1964).
- [17] 1965Br23 C. Briancon, Compt. Rend. 260, 5764 (1965).
- [18] 1965Ki05 H. W. Kirby, K. C. Jordan, J. Z. Braun, M. L. Curtis, M. L. Salutsky, J. Inorg. Nucl. Chem. 27, 1881 (1965). https://doi.org/10.1016/0022-1902(65).80039-2
- [19] 1965Va10 K. Valli, J. Aaltonen, G. Graeffe, M. Nurmia, Ann. Acad. Sci. Fenn., Ser. A VI, No. 184 (1965).
- [20] 1966Hu20 J. B. Hursh, J. Inorg. Nucl. Chem. 28, 2771 (1966).https://doi.org/10.1016/0022-1902(66).80001-5
- [21] 1967Da20 J. Dalmasso, H. Maria, Compt. Rend. 265B, 822 (1967).
- [22] 1967Fi04 P. R. Fields, R. F. Barnes, R. K. Sjoblom, J. Milsted, Phys. Lett. 24B, 340 (1967). https://doi.org/10.1016/0370-2693(67)90240-7
- [23] 1967Gh01 A. Ghiorso, T. Sikkeland, M. J. Nurmia, Phys. Rev. Letters 18, 401 (1967). https://doi.org/10.1103/PhysRevLett.18.401
- [24] 1967JoZXK. C. Jordan, B. C. Blanke, Proc. Symp. Standardization of Radionuclides, Vienna, Austria (1966)., Intern. At. Energy Agency, Vienna, p. 567 (1967).; CONF-661012-4 (1967).
- [25] 1967Le05 J. Letessier, D. Bertault, S. Cluzeau, G. Y. Petit, Nucl. Phys. A96, 689(1967). https://doi.org/10.1016/0375-9474(67).90614-8
- [26] 1967Si08T. Sikkeland, A. Ghiorso, J. Maly, M. J. Nurmia, Phys. Lett. 24B, 333 (1967). https://doi.org/10.1016/0370-2693(67).90236-5
- [27] 1968Be37I. Bergqvist, B. Lundberg, L. Nilsson, N. Starfelt, Nucl. Phys. A120, 161 (1968). https://doi.org/10.1016/0375-9474(68).90066-3
- [28] 1968Br37C. Briancon, C. F. Leang, J. Phys. (Paris)., Suppl. No. 1, Colloq. C1-184 (1968).
- [29] 1968Wa07E. K. Warburton, A. R. Poletti, J. W. Olness, Phys. Rev. 168, 1232 (1968). https://doi.org/10.1103/PhysRev. 168. 1232
- [30] 1969Be67 D. Bertault, M. Vidal, G. Y. Petit, J. Phys. (Paris). 30, 909 (1969). https://doi.org/10.1051/jphys:019690030011-12090900
- [31] 1969Me11 V. Metag, R. Repnow, P. Von Brentano, J. D. Fox, Z. Physik 226, 1 (1969). https://doi.org/10.1007/BF01392778
- [32] 1970Bu02 S. C. Burnett, H. C. Britt, B. H. Erkkila, W. E. Stein, Phys. Lett. 31B, 523 (1970). https://doi.org/10.1016/0370-2693(70).90080-8
- [33] 1970Da09 W. F. Davidson, R. D. Connor, Nucl. Phys. A149, 385 (1970). https://doi.org/10.1016/0375-9474(70).90702-5
- [34] 1970Kr01 K. Krien, C. Gunther, J. D. Bowman, B. Klemme, Nucl. Phys. A141, 75 (1970). https://doi.org/10.1016/0375-9474(70).90296-4
- [35] 1970Kr08K. Krien, M. J. Canty, P. Herzog, Nucl. Phys. A157, 456 (1970). https://doi.org/10.1016/0375-9474(70).90226-5
- [36] 1971Br39 H. C. Britt, S. C. Burnett, B. H. Erkkila, J. E. Lynn, W. E. Stein, Phys. Rev. C4, 1444 (1971). https://doi.org/10.1103/PhysRevC.4.1444
- [37] 1971Er02 A. Erlik, J. Felsteiner, H. Lindeman, M. Tatcher, Nucl. Instrum. Methods 92, 45 (1971). https://doi.org/10.1016/0029-554X(71)90221-7
- [38] 1971Gr17 B. Grennberg, A. Rytz, Metrologia 7, 65 (1971). https://doi.org/10.1088/0026-1394/7/2/005
- [39] **1971Ke22** K. A. Keller, H. Munzel, Radiochim. Acta **16**, 138 (1971).
- [40] 1972Ga42Y. P. Gangrskii, Nguen Kong Khan, D. D. Pulatov, At. Energ. 33, 829 (1972).; Sov. At. Energy 33, 948 (1973).
- [41] 1972He18 W. H. A. Hesselink, A. H. Wapstra, J. G. Kromme, E. J. Haighton, M. Van Kampen, W. Hutjes, K. E. M. Dijkman, Nucl. Phys. A191, 283 (1972). https://doi.org/10.1016/0375-9474(72).90516-7

- [42] 1972HeYMW. H. A. Hesselink, NP-19781 (1972).
- [43] 1972NgZZ Ngo Tich Phuoc, thesis University of Paris (1972).
- [44] 1973J003K. P. Joshi, Y. R. Waghmare, Phys. Rev. C7, 874 (1973). https://doi.org/10.1103/PhysRevC.7.874
- [45] 1974Bo11 J. D. Bowman, L. Ley, B. Richter, Nucl. Phys. A220, 367 (1974). https://doi.org/10.1016/0375-9474(74).90725-8
- [46] 1976Bl13K. Blaton-Albicka, B. Kotlinska-Filipek, M. Matul, K. Stryczniewicz, M. Nowicki, E. Ruchowska-Lukasiak, Nukleonika 21, 935 (1976).
- [47] 1977Ma32 C. Maples, Nucl. Data Sheets 22, 275 (1977). https://doi.org/10.1016/S0090-3752(77).80008-2
- [48] 1979Be58 H. J. Becker, T. Lund, R. Brandt, Radiochim. Acta 26, 15 (1979).
- [49] 1981JoZW B. Jonson, O. B. Nielsen, L. Westgaard, J. Zylicz, Proc. Int. Conf. Nuclei Far from Stability, Helsingor, Denmark, Vol. 2, p. 640 (1981).; CERN-81-09 (1981).
- [50] 1984Al34D. V. Aleksandrov, A. F. Belyatsky, Yu. A. Glukhov, E. Yu. Nikolsky, B. G. Novatsky, A. A. Ogloblin, D. N. Stepanov, Pisma Zh. Eksp. Teor. Fiz. 40, 152 (1984).; JETP Lett. (USSR). 40, 909 (1984).
- [51] 1984De07A. G. Demin, S. P. Tretyakova, V. K. Utyonkov, I. V. Shirokovsky, Z. Phys. A315, 197 (1984). https://doi.org/10.1007/BF01419379
- [52] 1984Ga38S. Gales, E. Hourani, M. Hussonnois, J. P. Schapira, L. Stab, M. Vergnes, Phys. Rev. Lett. 53, 759 (1984). https://doi.org/10.1103/PhysRevLett.53.759
- [53] 1984Og02 Yu. Ts. Oganessian, A. G. Demin, M. Hussonnois, S. P. Tretyakova, Yu. P. Kharitonov, V. K. Utyonkov, I. V. Shirokovsky, O. Constantinescu, H. Bruchertseifer, Yu. S. Korotkin, Z. Phys. A319, 215 (1984). https://doi.org/10.1007/BF01415635
- [54] 1984Og03 Yu. Ts. Oganessian, M. Hussonnois, A. G. Demin, Yu. P. Kharitonov, H. Bruchertseifer, O. Constantinescu, Yu. S. Korotkin, S. P. Tretyakova, V. K. Utyonkov, I. V. Shirokovsky, J. Estevez, Radiochim. Acta 37, 113 (1984).
- [55] 1984Ro30H. J. Rose, G. A. Jones, Nature(London). 307, 245 (1984). https://doi.org/10.1038/307245a0
- [56] 1985Al28D. V. Aleksandrov, Yu. A. Glukhov, E. Yu. Nikolsky, B. G. Novatsky, A. A. Ogloblin, D. N. Stepanov, Izv. Akad. Nauk SSSR, Ser. Fiz. 49, 2111 (1985).; Bull. Acad. Sci. USSR, Phys. Ser. 49, No. 11, 26 (1985).
- [57] 1985Ku24W. Kutschera, I. Ahmad, S. G. Armato III, A. M. Friedman, J. E. Gindler, W. Henning, T. Ishii, M. Paul, K. E. Rehm, Phys. Rev. C32, 2036 (1985). https://doi.org/10.1103/PhysRevC. 32. 2036
- [58] 1985Mu11 G. Munzenberg, S. Hofmann, H. Folger, F. P. Hessberger, J. Keller, K. Poppensieker, B. Quint, W. Reisdorf, K. -H. Schmidt, H. J. Schott, P. Armbruster, M. E. Leino, R. Hingmann, Z. Phys. A322, 227 (1985).
- [59] 1985Pr01 P. B. Price, J. D. Stevenson, S. W. Barwick, H. L. Ravn, Phys. Rev. Lett. 54, 297 (1985). https://doi.org/10. 1103/PhysRevLett.54.297
- [60] 1986He06 R. G. Helmer, C. W. Reich, M. A. Lee, I. Ahmad, Int. J. Appl. Radiat. Isotop. 37, 139 (1986). https://doi.org/10.1016/0883-2889(86)90062-6
- [61] 1987Mi10 G. J. Miller, J. C. McGeorge, I. Anthony, R. O. Owens, Phys. Rev. C36, 420 (1987). https://doi.org/10.1103/PhysRevC.36.420
- [62] 1989Br34L. Brillard, A. G. Elayi, E. Hourani, M. Hussonnois, J. -F. Le Du, L. -H. Rosier, L. Stab, Compt. Rend. Acad. Sci., Ser. II 309, 1105 (1989).
- [63] 1989It01J. T. Iturbe, Nucl. Instrum. Methods Phys. Res. A274, 405 (1989). https://doi.org/10.1016/0168-9002(89).90408-7
- [64] 1990Br23Ch. Briancon, S. Cwiok, S. A. Eid, V. Green, W. D. Hamilton, C. F. Liang, R. J. Walen, J. Phys. (London). G16, 1735 (1990). https://doi.org/10.1088/0954-3899/16/11/021
- [65] 1990BrZZCh. Briancon, S. Cwiok, S. A. Eid, V. Green, W. D. Hamilton, C. F. Liang, R. J. Walen, unpublished. (1990).
- [66] 1990Hu02 M. Hussonnois, J. F. Le Du, L. Brillard, G. Ardisson, J. Phys. (London). G16, L77 (1990). https://doi.org/10.1088/0954-3899/16/4/002
- [67] 1990Hu07M. Hussonnois, J. F. Le Du, L. Brillard, G. Ardisson, Phys. Rev. C42, R495 (1990).; Erratum Phys. Rev. C43 916 (1991). https://doi.org/10.1103/PhysRevC.42.R495
- [68] 1990We01 D. Weselka, P. Hille, A. Chalupka, Phys. Rev. C41, 778 (1990). https://doi.org/10.1103/PhysRevC.41.778
- [69] 1991Ho15E. Hourani, L. Rosier, G. Berrier-Ronsin, A. Elayi, A. C. Mueller, G. Rappenecker, G. Rotbard, G. Renou, A. Liebe, L. Stab, H. L. Ravn, Phys. Rev. C44, 1424 (1991). https://doi.org/10.1103/PhysRevC.44.1424

- [70] 1992Ar02 G. J. Ardisson, Appl. Radiat. Isot. 43, 1 (1992). https://doi.org/10.1016/0883-2889(92).90071-L
- [71] 1994Li12 C. F. Liang, R. K. Sheline, P. Paris, M. Hussonois, J. F. Ledu, D. B. Isabelle, Phys. Rev. C49, 2230 (1994). https://doi.org/10.1103/PhysRevC.49.2230
- [72] 1995Gh05A. Ghiorso, D. Lee, L. P. Somerville, W. Loveland, J. M. Nitschke, W. Ghiorso, G. T. Seaborg, P. Wilmarth, R. Leres, A. Wydler, M. Nurmia, K. Gregorich, K. Czerwinski, R. Gaylord, T. Hamilton, N. J. Hannink, D. C. Hoffman, C. Jarzynski, C. Kacher, B. Kadkhodayan, S. Kreek, M. Lane, A. Lyon, M. A. McMahan, M. Neu, T. Sikkeland, W. J. Swiatecki, A. Turler, J. T. Walton, S. Yashita, Phys. Rev. C51, R2293 (1995). https://doi.org/10.1103/PhysRevC.51.R2293
- [73] 1995Ho11 E. Hourany, G. Berrier-Ronsin, A. Elayi, P. Hoffmann-Rothe, A. C. Mueller, L. Rosier, G. Rotbard, G. Renou, A. Liebe, D. N. Poenaru, H. L. Ravn, Phys. Rev. C52, 267 (1995). https://doi.org/10.1103/PhysRevC.52.267
- [74] 1996Wi27 B. Wierczinski, K. Eberhardt, G. Herrmann, J. V. Kratz, M. Mendel, A. Nahler, F. Rocker, U. Tharun, N. Trautmann, K. Weiner, N. Wiehl, J. Alstad, G. Skarnemark, Nucl. Instrum. Methods Phys. Res. A370, 532 (1996). https://doi.org/10.1016/0168-9002(95).00830-6
- [75] 1997He29 F. P. Hessberger, S. Hofmann, V. Ninov, P. Armbruster, H. Folger, G. Munzenberg, H. J. Schott, A. G. Popeko, A. V. Yeremin, A. N. Andreyev, S. Saro, Z. Phys. A359, 415 (1997). https://doi.org/10.1007/s002180050422
- [76] 1997Mu08U. Muller, P. Sevenich, K. Freitag, C. Gunther, P. Herzog, G. D. Jones, C. Kliem, J. Manns, T. Weber, B. Will, and the ISOLDE Collaboration, Phys. Rev. C55, 2267 (1997). https://doi.org/10.1103/PhysRevC.55.2267
- [77] 1998Jo08 G. D. Jones, P. A. Butler, T. H. Hoare, P. M. Jones, Eur. Phys. J. A 2, 129 (1998). https://doi.org/10.1007/s100500050101
- [78] 1998Li53 C. F. Liang, P. Paris, R. K. Sheline, Phys. Rev. C58, 3223 (1998). https://doi.org/10.1103/PhysRevC.58.3223
- [79] 1998Sh02R. K. Sheline, C. F. Liang, P. Paris, Phys. Rev. C57, 104 (1998). https://doi.org/10.1103/PhysRevC.57.104
- [80] 1999He07 F. P. Hessberger, Acta Phys. Slovaca 49, 43 (1999).
- [81] 1999Li05C. F. Liang, P. Paris, R. K. Sheline, Phys. Rev. C59, 648 (1999). https://doi.org/10.1103/PhysRevC.59.648
- [82] 2001He35 F. P. Hessberger, S. Hofmann, D. Ackermann, V. Ninov, M. Leino, G. Munzenberg, S. Saro, A. Lavrentev, A. G. Popeko, A. V. Yeremin, Ch. Stodel, Eur. Phys. J. A12, 57 (2001). https://doi.org/10.1007/s100500170039
- [83] 2004He28 F. P. Hessberger, S. Hofmann, D. Ackermann, P. Cagarda, R. -D. Herzberg, I. Kojouharov, P. Kuusiniemi, M. Leino, R. Mann, Eur. Phys. J. A 22, 417 (2004). https://doi.org/10.1140/epja/i2003-10238-4
- [84] 2004HeZYF. P. Hessberger, S. Hofmann, D. Ackermann, P. Cagarda, R. -D. Herzberg, I. Kojouharov, P. Kuusiniemi, M. Leino, R. Mann, GSI 2004-1, p. 4 (2004).
- [85] 2005KuZZ P. Kuusiniemi, Proc. Nuclei at the Limits, Argonne, Illinois, D. Seweryniak and T. L. Khoo, eds., p. 231 (2005); AIP Conf. Proc 764 (2005). https://doi.org/10.1063/1.1905316
- [86] 2005SuZXB. Sulignano, F. P. Hessberger, S. Hofmann, D. Ackermann, S. Antalic, I. Kojouharov, P. Kuusiniemi, R. Mann, K. Nishio, S. Saro, B. Streicher, M. Venhart, GSI 2005-1, p. 74 (2005).
- [87] 2006He27F. P. Hessberger, S. Hofmann, D. Ackermann, S. Antalic, B. Kindler, I. Kojouharov, P. Kuusiniemi, M. Leino, B. Lommel, R. Mann, K. Nishio, A. G. Popeko, B. Sulignano, S. Saro, B. Streicher, M. Venhart, A. V. Yeremin, Eur. Phys. J. A 30, 561 (2006). https://doi.org/10.1140/epja/i2006-10137-2
- [88] 2008Dr05 I. Dragojevic, K. E. Gregorich, Ch. E. Dullmann, M. A. Garcia, J. M. Gates, S. L. Nelson, L. Stavsetra, R. Sudowe, H. Nitsche, Phys. Rev. C 78, 024605 (2008). https://doi.org/10.1103/PhysRevC.78.024605
- [89] 2008Qi03Z. Qin, W. Bruchle, D. Ackermann, K. Eberhardt, F. P. Hessberger, E. Jager, J. V. Kratz, P. Kuusiniemi, D. Liebe, G. Munzenberg, D. Nayak, Yu. N. Novikov, M. Schadel, B. Schausten, E. Schimpf, A. Semchenkov, B. Sulignano, P. Thorle, X. L. Wu, Radiochim. Acta 96, 455 (2008). https://doi.org/10.1524/ract.2008.1517
- [90] 2009Dr02I. Dragojevic, K. E. Gregorich, Ch. E. Dullmann, J. Dvorak, P. A. Ellison, J. M. Gates, S. L. Nelson, L. Stavsetra, H. Nitsche, Phys. Rev. C 79, 011602 (2009). https://doi.org/10.1103/PhysRevC.79.011602
- [91] 2009He20 F. P. Hessberger, S. Hofmann, B. Streicher, B. Sulignano, S. Antalic, D. Ackermann, S. Heinz, B. Kindler, I. Kojouharov, P. Kuusiniemi, M. Leino, B. Lommel, R. Mann, A. G. Popeko, S. Saro, J. Uusitalo, A. V. Yeremin, Eur. Phys. J. A 41, 145 (2009). https://doi.org/10.1140/epja/i2009-10826-2
- [92] 2009KaZUD. Kaji, K. Morimoto, N. Sato, H. Haba, T. Ichikawa, E. Ideguchi, H. Koura, Y. Kudou, A. Ozawa, K. Ozeki, T. Sumita, T. Yamaguchi, A. Yoneda, A. Yoshida, K. Morita, RIKEN Accelerator Progress Report 2008, p. xiii (2009).
- [93] 2013An08 S. Antalic, F. P. Hessberger, D. Ackermann, M. Block, S. Heinz, S. Hofmann, Z. Kalaninova, B. Kindler, M. Leino, B. Lommel, R. Mann, K. Nishio, S. Saro, B. Sulignano, Acta Phys. Pol. B44, 387 (2013).

https://doi.org/10.5506/APhysPolB.44.387

- [94] 2015An05 S. Antalic, F. P. Hessberger, D. Ackermann, S. Heinz, S. Hofmann, B. Kindler, J. Khuyagbaatar, B. Lommel, R. Mann, Eur. Phys. J. A 51, 41 (2015). https://doi.org/10.1140/epja/i2015-15041-0
- [95] 2015Be13 D. E. Bergeron, R. Fitzgerald, Appl. Radiat. Isot. 102, 74 (2015). https://doi.org/10.1016/j.apradiso.2015.05.003
- [96] 2015Ch30 J. Chen, F. G. Kondev, Nucl. Data Sheets 126, 373 (2015). https://doi.org/10.1016/j.nds.2015.05.003
- [97] 2015Co02 S. M. Collins, A. K. Pearce, K. M. Ferreira, A. J. Fenwick, P. H. Regan, J. D. Keightley, Appl. Radiat. Isot. 99, 46 (2015). https://doi.org/10.1016/j.apradiso.2015.02.003
- [98] 2015Co07S. M. Collins, A. K. Pearce, P. H. Regan, J. D. Keightley, Appl. Radiat. Isot. 102, 15 (2015). https://doi.org/10.1016/j. apradiso. 2015. 04. 008
- [99] 2015Co11 S. M. Collins, S. Pomme, S. M. Jerome, K. M. Ferreira, P. H. Regan, A. K. Pearce, Appl. Radiat. Isot. 104, 203 (2015). https://doi.org/10.1016/j.apradiso.2015.07.001
- [100] **2015Ko06**K. Kossert, K. Bokeloh, R. Dersch, O. Nahle, Appl. Radiat. Isot. **95**, 143 (2015). https://doi.org/10.1016/j.apradiso.2014.10.005
- [101] 2015Pi10 L. Pibida, B. Zimmerman, R. Fitzgerald, L. King, J. T. Cessna, D. E. Bergeron, Appl. Radiat. Isot. 101, 15 (2015). https://doi.org/10.1016/j.apradiso.2015.03.011
- [102] 2016Ai01 P. M. Aitken-Smith, S. M. Collins, Appl. Radiat. Isot. 110, 59 (2016). https://doi.org/10.1016/j.apradiso.2016.01.004
- [103] 2016J002 G. D. Jones, J. Phys. (London). G43, 045114 (2016). https://doi.org/10.1088/0954-3899/43/4/045114
- [104] 2019Co04 S. M. Collins, J. D. Keightley, P. Ivanov, A. Arinc, S. M. Jerome, A. J. Fenwick, A. K. Pearce. Appl. Radiat. Isot. 145, 240 (2019). https://doi.org/10.1016/j.apradiso.2018.12.012
- [105] 2019Ko06 K. Kossert, O. Nahle, Appl. Radiat. Isot. 145, 12 (2019). https://doi.org/10.1016/j.apradiso.2018.12.010
- [106] 2019Ma02 M. Marouli, G. Lutter, S. Pomme, R. Van Ammel, M. Hult, S. Pierre, P. Dryak, P. Carconi, A. Fazio, F. Bruchertseifer, A. Morgenstern, Appl. Radiat. Isot. 144, 34 (2019). https://doi.org/10.1016/j.apradiso.2018.08.023
- [107] 2020Mo11 P. Mosat, F. P. Hessberger, S. Antalic, D. Ackermann, B. Andel, M. Block, S. Hofmann, Z. Kalaninova, B. Kindler, M. Laatiaoui, B. Lommel, A. K. Mistry, J. Piot, M. Vostinar, Phys. Rev. C 101, 034310 (2020). https://doi.org/10.1103/PhysRevC.101.034310
- [108] 2021Si11 R. F. P. Simoes, C. J. da Silva, R. L. da Silva, L. V. de Sa, R. Poledna, A. E. de Oliveira, A. Iwahara, P. A. L. da Cruz, J. U. Delgado, Appl. Radiat. Isot. 170, 109559 (2021). https://doi.org/10.1016/j.apradiso.2020.109559
- [109] 2021Wa16 M. Wang, W. J. Huang, F. G. Kondev, G. Audi, S. Naimi, Chin. Phys. C 45, 030003 (2021). https://doi.org/10.1088/1674-1137/abddaf
- [110] 2022Te01 M. S. Tezekbayeva, A. V. Yeremin, A. I. Svirikhin, A. Lopez-Martens, M. L. Chelnokov, V. I. Chepigin, A. V. Isaev, I. N. Izosimov, A. V. Karpov, A. A. Kuznetsova, O. N. Malyshev, R. S. Mukhin, A. G. Popeko, Yu. A. Popov, V. A. Rachkov, B. S. Sailaubekov, E. A. Sokol, K. Hauschild, H. Jacob, R. Chakma, O. Dorvaux, M. Forge, B. Gall, K. Kessaci, B. Andel, S. Antalic, A. Bronis, P. Mosat, Eur. Phys. J. A 58, 52 (2022). https://doi.org/10.1140/epja/s10050-022-00707-9
- [111] 2023Ta02 M. P. Takacs, Appl. Radiat. Isot. 193, 110674 (2023). https://doi.org/10.1016/j.apradiso.2023.110674