

Fig. 1: Known experimental values for heavy particle emission of the even-Z T_z = +45/2 nuclei.

Last updated 5/13/2024

Table 1

Observed and predicted β -delayed particle emission from the even-Z, $T_z = +45/2$ nuclei.	Unless otherwise stated, all Q-values are taken from [2021Wa16] or
deduced from values therein, J^{π} values for ²⁰⁹ Pb, ²¹³ Po, and ²¹⁷ Rn are taken from ENSDF.	

Nuclide	Fv	Iπ	True	0	0	0	Experimental
	LA.	5	11/2	Qε	$\mathcal{Q}\varepsilon p$	Qεα	Experimental
²⁰⁹ Pb*		9/2+	3.232(5) h	-3.970(6))			[2013Su13]
²¹³ Po		$9/2^{+}$	3.6984(6) µs	-1.422(5)			[2023A]22]
²¹⁷ Rn		9/2+	0.59(4) ms**	-0.736(6)			[2018Sa45, 1961Ru06]
²²¹ Ra		$5/2^{+}$	26.20(39) s	-0.313(6)			[2024Ba08]
²²⁵ Th		$(3/2^+)$	8.72(4) m	0.673(7)	-3.805(5)	6.608(7)	[1987Mi10]
²²⁹ U		$(3/2^+)$	58(3) m	1.314(7)	-2.849(6)	7.148(8)	[1951Me10]
²³³ Pu			20.9(4) m	2.100(70)	-1.847(54)	7.730(54)	[1973Ja06]
²³⁷ Cm				2.68(10)#	-0.943(74)	8.874(90)#	
²⁴¹ Cf			141(11) s	3.35(24)#	0.31(17)#	10.33(18)#	[2010AsZX]
²⁴⁵ Fm		$(1/2^+)$	5.5(7) s	3.88(26)#	1.43(20)#	11.79(26)#	[2022Te01]
²⁴⁹ No		$(5/2^+)$	38.3(28) ms	4.61(32)#	2.60(28)#	13.05(33)#	[2022Te01, 2021Sv02]
²⁵³ Rf			9.9(12) ms	5.12(44)#	3.48(41)#	14.04(44)#	[2022Lo03]
253mRf	х		52.8(44) µs	5.12(44)#+x	3.48(41)#+x	14.04(44)#+x	[2022Lo03]

* 100% β^- emitter.

** Weighted average of 0.67(6) ms [2018Sa45] and 0.54(5) ms [1961Ru06].

Table 2

Particle separation, Q-values, and measured values for direct particle emission of the even-Z, $T_z = +45/2$ nuclei. Unless otherwise stated, all S and Q-values are taken from [2021Wa16] or deduced from values therein.

Nuclide	S_p	Qα	BRα	BR _{SF}	BR _{cluster}	type	Experimental
²⁰⁹ Pb	8.153(2)	2.248(4)					
²¹³ Po	5.825(3)	8.536(3)	100%				[1982Bo04, 1964Va20 , 2023A122, 2020Ko06, 2018A132,
							2018Sa45, 2013Su13, 2009In01, 2002Ko06, 2002Mo46,
							2000Gr35, 1998Ar03, 1998Wa25, 1997Ch53, 1997ChZS,
							1997Wa27, 1997VaZV, 1995WaZQ, 1989Ko26, 1986He06,
							1977Vy02, 1973BoXL, 1969LeZW, 1963Uh01, 1960Vo05,
							1958To25, 1955St04, 1951Me10, 1950Ha52, 1949Me54,
							1948Cr12, 1948Je05, 1947Ha02]
²¹⁷ Rn	5.887(5)	7.887(3)	100%				[1982Bo04 , 2018Sa45, 1973BoXL, 1961Ru06, 1960Ru02,
							1951Me10, 1949Me54]
²²¹ Ra	5.807(6)	6.880(2)	100%		$1.15(94) \times 10^{-10}\%^{**}$	^{14}C	[1997Li12, 1994Bo28, 2024Ba08, 1994Bo35, 1989Ac01,
							1988Hu08, 1961Ru02, 1961Ru06, 1958To25, 1951Me10,
							1949Me54]
²²⁵ Th	5.213(6)	6.921(2)	100%				[2015Ah04, 1988LiZN, 1961Ru06, 1989Ac01, 1987Mi10,
							1960Ru02, 1949Me54]
²²⁹ U	5.002(7)	6.468(3)*	pprox 20%				[1961Ru06, 1951Me10, 1961Ru02, 1949Me54]
²³³ Pu	4.60(11)#	6.410(20)*	0.12(5)%				[1973Ja10, 1957Th10]
²³⁷ Cm	4.08(14)#	6.770(51)	< 1%				[2006As03, 2002As08, 2002AsZX, 2000TsZX]
²⁴¹ Cf	3.63(23)#	7.502(4)*	15(1)%				[2020Kh10, 2010AsZX, 2022Te01, 1970Si19]
²⁴⁵ Fm	3.12(27)#	8.290(7)*	$88.5^{+6.8}_{-5.0}\%$	< 0.3%			[2022Te01, 2020Kh10, 2021Sv02, 1967Nu01]
²⁴⁹ No	2.45(34)#	9.278(22)*	100%	$<\!0.2\%$			[2022Te01, 2021Sv02, 2022Lo03, 2021Kh07, 2021Te08,
							2013Be18, 2003Ye02]
²⁵³ Rf	2.18(45)#	9.4460(20)*	17(6)%	83(6)%			[2022Lo03, 2022Te01, 2021Kh07, 1997He29]
253mRf	2.18(45)#-x	9.4460(20)*+x		100%			[2022Lo03, 2022Te01, 2021Kh07]

* Deduced from α energies. Values from [2021Wa16] are 6.476(3) MeV (²²⁹U); 6.416(54) MeV (²³³Pu); 7.66(15)# MeV (²⁴¹Cf); 8.44(10)# MeV (²⁴⁵Fm); 9.17(20)# MeV (²⁴⁹No) and 9.43(30)# MeV (²⁵³Rf).

** [1994Bo28].

Table 3

$10, J = 3/2, I_{1/2} = 3.0904(0) \mu s^2, D \Lambda_{\alpha} = 100 \pi$	direct α emission	from ²¹³ Po, J	$J^{\pi} = 9/2^+, T_{1/2}$	$_{2} = 3.6984(6)$	$\mu s^*, BR_{\alpha} = 10$)0%.
--	--------------------------	---------------------------	----------------------------	--------------------	-----------------------------	------

$E_{\alpha}(c.m.)$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(\text{rel})$	$I_{\alpha}(abs)$	$J_f^{\pi**}$	Edaughter (²⁰⁹ Pb)**	coincident γ-rays**	R ₀ (fm)	HF
7.760(10) 8.536(3)	7.614(10)*** 8.376(3) [@]	0.003(1)%*** 100%	0.003(1)% 99.997(1)%	11/2 ⁺ 9/2 ⁺	0.7789(1) 0.0	0.7789(1)	1.53069(10) 1.53069(10)	360^{+180}_{-90} 1.486(26)
* [2023 ** [201 *** Fro @ [1982	5Al22]. 5Ch30]. om [1964Va20], E. 2Bo04].	α adjusted by -0.5 l	keV in [1991Ry0	01].				

Table 4

direct α emission from ²¹⁷Rn, J^{π} = 9/2⁺, T_{1/2} = 0.59(4) ms^{*}, BR_{α} = 100%.

$E_{\alpha}(\text{c.m.})$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(abs)$	J_f^{π}	$E_{daughter}(^{213}\text{Po})$	coincident γ -rays	R ₀ (fm)	HF
7.886(2)	7.741(2)**	100%	9/2+	0.0		1.5632(13)	1.66(16)

* Weighted average of 0.67(6) ms [2018Sa45] and 0.54(5) ms [1961Ru06]. ** Reported as 7.739(2) MeV in [1982Bo04], modified to 7.741(2) MeV by [1991Ry01].

Tabl	e 5
------	-----

direct α emission from ²²¹Ra*, J^{π} = 5/2⁺, T_{1/2} = 26.20(39) s**, BR_{α} = 100%.

$E_{\alpha}(c.m.)$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(\text{rel})$	$I_{\alpha}(abs)$	${ m J}_f^\pi$	$E_{daughter}(^{217}\mathrm{Rn})$	coincident γ -rays	R ₀ (fm)	HF
6.260	6.147	0.13%	pprox 0.05%	(5/2, 7/2)	0.6189	0.0562, 0.0854, 0.0930, 0.1492, 0.1743, 0.4443, 0.4697, 0.5258	1.5516(38)	≈27
6.309	6.195	0.53%	0.2%	(5/2, 7/2)	0.5896	0.0562, 0.0854, 0.0930, 0.1492, 0.1743, 0.3952, 0.4206, 0.4765	1.5516(38)	9.0
6.403	6.287	0.13%	pprox 0.05%	(7/2, 11/2)	0.4745	0.4745	1.5516(38)	≈ 113
6.500	6.382	1.1%	0.4%	(7/2)	0.3822	0.0562, 0.0854, 0.0930, 0.1492, 0.1743, 0.2079, 0.2329, 0.2891, 0.3822	1.5516(38)	34
6.508	6.390	0.26%	pprox 0.1%	(3/2+)	0.3750	0.0562, 0.0860, 0.0930, 0.1400, 0.1492, 0.2257	1.5516(38)	≈150
6.582	6.463	0.13%	pprox 0.05%	$(3/2^+)$	0.2352	0.0562, 0.0860, 0.0930,	1.5516(38)	$pprox 1.1 imes 10^3$
6.646	6.526	0.79%	0.3%	$(7/2^+)$	0.1743	0.0854, 0.0930	1.5516(38)	320
6.700	6.579	14.7%	5.6%	5/2+	0.1492	0.0562, 0.0930, 0.1492	1.5516(38)	22
6.729	6.607	100%	38%	7/2+	0.0930	0.0930	1.5516(38)	5.2
6.785	6.662	60.5%	23%	$(11/2^+)$	0.0889	0.0889	1.5516(38)	9.0
6.878	6.754	84.2%	32%	9/2+	0.0		1.5516(38)	14

* All values from [1997Li12], except where noted. No uncertainties for E_{α} or I_{α} were given. ** Weighted average of 26.37(17 st.)(50 sys.)s and 26.00(18 st.)(55 sys.) s [2024Ba08].

Table 6 direct α emission from ²²⁵Th*, J^{π} = (3/2⁺), T_{1/2} =8.72(4) m**, BR_{α} = 100%.

$E_{\alpha}(c.m.)$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(\text{rel})$	$I_{\alpha}(abs)$	$\mathbf{J}_{f}^{\pi***}$	Edaughter(²²¹ Ra)***	coincident γ-rays***	R ₀ (fm)	HF
6.421(5)	6.307(5)	5(2)%	2(1)%	5/2-	0.483	0.0503, 0.0531, 0.1265, 0.1468, 0.1641, 0.2120, 0.2178, 0.3058, 0.3213, 0.3589	1.5380(16)	9 ⁺⁹ ₋₃
6.455(5)	6.340(5)	5(2)%	2(1)%	3/2-	0.455	0.0503, 0.0531, 0.0688, 0.1219, 0.1291, 0.1513, 0.1773, 0.2178, 0.2461, 0.2993, 0.3213	1.5380(16)	11^{+11}_{-4}
6.552(3)	6.436(3)	35(3)%	15(1)%	7/2+	0.3588	0.0531, 0.1468, 0.2120, 0.3058, 0.3589	1.5380(16)	3.81(29)
6.590(3)	6.473(3)	100(7)%	43(2)%	$(3/2^+, 5/2^+)$	0.3213	0.0503, 0.0531, 0.2178, 0.3213	1.5380(16)	1.91(11)
6.614(3)	6.496(3)	33(3)%	14(1)%	(3/2 ⁺ , 5/2 ⁺)	0.2998	0.0531, 0.0688, 0.1219, 0.1773, 0.2461, 0.2993	1.5380(16)	7.2(6)
6.742(5)	6.622(5)	7(2)%	3(1)%		0.174		1.5380(16)	110_{-30}^{+60}
6.765(5)	6.645(5)	7(2)%	3(1)%	7/2-	0.1468	0.1468	1.5380(16)	140_{-40}^{+70}
6.816(5)	6.695(5)	5(2)%	2(1)%	5/2-	0.1034	0.0503, 0.0531	1.5380(16)	310^{+320}_{-110}
6.861(5)	6.739(5)	16(2)%	7(1)%	7/2+	0.0531	0.0531	1.5380(16)	141^{+25}_{-19}
6.916(5)	6.793(5)	21(3)%	9(1)%	5/2+	0.0	—	1.5380(16)	177_{-21}^{+25}

 \ast All values from [1961Ru06], except where noted. ** [1987Mi10].

*** [1988LiZN].

Table 7

direct α emission from ²²⁹ U*, J ^{π} = (3/2 ⁺), T	$\Gamma_{1/2} = 58(3) \text{ m}^{**}, BR_{\alpha} = \approx 20\%$
---	---

$E_{\alpha}(c.m.)$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(\text{rel})$	$I_{\alpha}(abs)$	$\mathbf{J}_f^{\boldsymbol{\pi}}$	$E_{daughter}(^{225}\mathrm{Th})$	coincident γ -rays	R ₀ (fm)	HF
6 290(4)	6 180(4)	1 6(8)%	$\approx 0.2\%$		0 178(4)		1 5278(27)	≈ 15
6.329(3)	6.218(3)	4.7(16)%	$\approx 0.2\%$ $\approx 0.6\%$		0.139(3)		1.5278(27)	≈ 15 ≈ 8
6.366(3)	6.255(3)	1.6(8)%	pprox 0.2%		0.102(3)		1.5278(27)	≈ 30
6.404(2)	6.292(2)	17.2(16)%	$\approx 2.2\%$		0.064(2)		1.5278(27)	≈ 4.5
6.439(2)	6.327(2)	31.3(31)%	pprox 4%		0.028(2)		1.5278(27)	≈ 3.6
6.468(3)	6.355(3)	100%	$\approx 13\%$	$(3/2^+)$	0.0		1.5278(27)	≈ 1.5

* All values from [1961Ru06], except where noted. ** [1951Me10].

Table 8

direct α emission from ²³³Pu*, T_{1/2} = 20.9(4) m**, *BR*_{α} = 0.12(5)%.

$E_{\alpha}(\text{c.m.})$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(abs)$	$\mathbf{J}_f^{m{\pi}}$	$E_{daughter}(^{229}\mathrm{U})$	coincident γ-rays	R ₀ (fm)	HF	
6.410(20)	6.300(20)	0.12(5)%	(3/2+)	0.0		1.503(39)	3^{+4}_{-2}	
* All val ** [1973] Table 9 direct (7 emis	ues from [1957Th] ja06].	10], except where $RR = - \frac{16}{2}$	noted.					
		$BR_{\alpha} = \langle 1 / 0 \rangle$.						
$E_{\alpha}(c.m.)$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(abs)$	J_f^π	$E_{daughter}(^{233}\mathrm{Pu})$	coincident γ -rays	R ₀ (fm)	HF	
6.772(7)	6.658(7)	< 1%*		0.0?				

* [2006As03].

** Weighted average of 6.656(10) MeV [2006As03] and 6.660(10) MeV [2002As08].

Table 10

direct α emission from ²⁴¹Cf, $T_{1/2} = 141(11)$ s, $BR_{\alpha} = 15(1)\%^{**}$.

-		/						
$E_{\alpha}(\text{c.m.})$	$E_{\alpha}(lab)$	$I_{\alpha}(abs)$	J_f^π	<i>E</i> _{daughter} (²³⁷ Cm)	coincident γ-rays	R ₀ (fm)	HF	
7.452(4)	7.328(4)	15(1)%**		0.050(1)	0.050(1)	1.5007(75)	$1.23^{+0.28}_{-0.24}$	
* All val ** [2020	ues from [2010A)Kh10].	sZX], except who	ere noted.					
Table 11 direct α emis	ssion from ²⁴⁵ Fm,	$T_{1/2} = 5.5(7) s^*$	*, $BR_{\alpha} = 88.5$	$5^{+6.8}_{-5.0}\%^{**}$.				
$E_{\alpha}(\text{c.m.})$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(abs)$	${ m J}_f^{m \pi}$	$E_{daughter}(^{241}\mathrm{Cf})$	coincident γ-rays	R ₀ (fm)	HF	
8.290(7)	8.155(7)	100%		0.0		1.506(33)	$1.5^{+1.8}_{-0.9}$	
* All val ** [2022 Table 12	ues from [2020K] 2Te01].	h10], except whe	ere noted.	000				
direct α emis	sion from ²⁴⁷ No,	$T_{1/2} = 38.3(28)$	ms, $BR_{\alpha} = 10$					
$E_{\alpha}(c.m.)$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(abs)$	\mathbf{J}_f^{π}	$E_{daughter}(^{245}\mathrm{Fm})$	coincident γ -rays	R_0 (fm)	HF	
9.278(22)	9.129(22)	100%		0.0		1.504(24)	$1.8\substack{+1.4 \\ -0.8}$	
* All val	ues from [2022Te	e01, 2021Sv02].						
Table 13 direct α emis	sion from ²⁵³ Rf,	$T_{1/2} = 9.9(12) \text{ m}$	is, $BR_{\alpha} = 17($	6)%.				
$E_{\alpha}(c.m.)$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(\text{rel})$	$I_{\alpha}(abs)$	$\mathbf{J}_f^{\pi} = E_{daugh}$	_{ter} (²⁴⁹ No) coincide	ent γ-rays	R ₀ (fm)	HF
9.358(20) 9.460(20)	9.210(20) 9.310(20)	≈67%** 100%**	$\approx 7\%$ $\approx 10\%$	0.102 0.0			1.479(46) 1.479(46)	≈ 1.5 ≈ 2

* All values from [2022Lo03],

** estimated by evaluator from Fig. 2 in [2022Lo03] as \approx 40/60 % for 9.210(20)/9.310(20) MeV.

References used in the Tables

- [1] 1947Ha02 F. Hagemann, L. I. Katzin, M. H. Studier, A. Ghiorso, G. T. Seaborg, Phys. Rev. 72, 252 (1947). https://doi.org/10.1103/PhysRev.72.252
- [2] 1948Cr12 T. E. Cranshaw, J. A. Harvey, Can. J. Research 26A, 243 (1948). https://doi.org/10.1139/cjr48a-022
- [3] 1948Je05 J. V. Jelley, Can. J. Res. 26A, 255 (1948). https://doi.org/10.1139/cjr48a-023
- [4] 1949Me54 W. W. Meinke, A. Ghiorso, G. T. Seaborg, Phys. Rev. 75, 314 (1949). https://doi.org/10.1103/PhysRev.75.314
- [5] 1950Ha52 F. Hagemann, L. I. Katzin, M. H. Studier, G. T. Seaborg, A. Ghiorso, Phys. Rev. 79, 435 (1950). https://doi.org/10.1103/PhysRev.79.435
- [6] 1951Me10 W. W. Meinke, A. Ghiorso, G. T. Seaborg, Phys. Rev. 81, 782 (1951). https://doi.org/10.1103/PhysRev.81.782
- [7] 1955St04 F. S. Stephens, Jr., Thesis, Univ. California (1955); UCRL-2970 (1955).
- [8] 1957Th10 T. D. Thomas, R. Vandenbosch, R. A. Glass, G. T. Seaborg, Phys. Rev. 106, 1228 (1957). https://doi.org/10.1103/PhysRev.106.1228
- [9] 1958To25 P. A. Tove, Arkiv Fysik 13, 549 (1958).
- [10] 1960Ru02 C. P. Ruiz, F. Asaro, I. Perlman, UCRL-9093, 47 (1960).
- [11] 1960Vo05 A. A. Vorobev, A. P. Komar, V. A. Korolev, Zhur. Eksptl. i Teoret. Fiz. 39, 70 (1960); Soviet Phys. JETP 12, 50 (1961).

- [12] 1961Ru02 L. I. Rusinov, Y. N. Andreev, S. V. Golenetskii, M. I. Kislov, Y. I. Filimonov, Zhur. Eksptl. i Teoret. Fiz. 40, 1007 (1961).; Soviet Phys. JETP 13, 707 (1961).
- [13] 1961Ru06 C. P. Ruiz, Thesis, Univ. California (1961); UCRL-9511 (1961).
- [14] 1963Uh01 J. Uhler, W. Forsling, B. Astrom, Arkiv Fysik 24, 421 (1963).
- [15] 1964Va20 K. Valli, Ann. Acad. Sci. Fennicae, Ser. A VI, No. 165 (1964)
- [16] 1967Nu01 M. Nurmia, T. Sikkeland, R. Silva, A. Ghiorso, Phys. Letters 26B, 78 (1967). https://doi.org/10.1016/0370-2693(67)90552-7
- [17] 1969LeZW C. -F. Leang, Thesis, Univ. Paris (1969).
- [18] 1970Si19 R. J. Silva, R. L. Hahn, K. S. Toth, M. L. Mallory, C. E. Bemis, Jr., P. F. Dittner, O. L. Keller, Phys. Rev. C2, 1948 (1970). https://doi.org/10.1103/PhysRevC. 2.1948
- [19] 1973BoXL J. D. Bowman, E. K. Hyde, R. E. Eppley, LBL-1666, p. 4 (1973).
- [20] 1973Ja06 U. Jager, H. Munzel, G. Pfennig, Z. Phys. 258, 337 (1973).
- [21] 1977Vy02 T. Vylov, N. A. Golovkov, B. S. Dzhelepov, R. B. Ivanov, M. A. Mikhailova, Y. V. Norseev, V. G. Chumin, Izv. Akad. Nauk SSSR, Ser. Fiz. 41, 1635 (1977); Bull. Acad. Sci. USSR, Phys. Ser. 41, No. 8, 85 (1977).
- [22] **1982Bo04** J D Bowman, R E Eppley, E K Hyde, Phys Rev C**25**, 941 (1982). https://doi.org/10.1103/PhysRevC.25.941
- [23] 1986He06 R. G. Helmer, C. W. Reich, M. A. Lee, I. Ahmad, Int. J. Appl. Radiat. Isotop. 37, 139 (1986). https://doi.org/10.1016/0883-2889(86)90062-6
- [24] 1987Mi10 G. J. Miller, J. C. McGeorge, I. Anthony, R. O. Owens, Phys. Rev. C36, 420 (1987). https://doi.org/10.1103/PhysRevC.36.420
- [25] 1988Hu08 M. Huyse, P. Dendooven, K. Deneffe, Nucl. Instrum. Methods Phys. Res. B31, 483 (1988). https://doi.org/10.1016/0168-583X(88)90350-3
- [26] 1988LiZN C. F. Liang, P. Paris, Ch. Briancon, Proc. 5th Int. Conf. Nuclei Far from Stability, Rosseau Lake, Canada 1987, Ed. , I. S. Towner, p. 521 (1988), AIP Conf. Proc. 164 (1987). https://doi.org/10.1063/1.36973
- [27] 1989Ac01 B. Ackermann, T. Bihn, P. A. Butler, V. Grafen, C. Gunther, J. R. Hughes, G. D. Jones, Ch. Lauterbach, H. J. Maier, M. Marten-Tolle, R. Tolle, R. Wadsworth, D. L. Watson, C. A. White, Z. Phys. A332, 375 (1989).
- [28] 1989Ko26 M. C. Kouassi, A. Hachem, C. Ardisson, G. Ardisson, Nucl. Instrum. Methods Phys. Res. A280, 424 (1989). https://doi.org/10.1016/0168-9002(89)90946-7
- [29] 1991Ry01 A Rytz, At Data NuclData Tables 47, 205 (1991). https://doi.org/10.1016/0092-640X(91)90002-L
- [30] 1994Bo28 R. Bonetti, C. Chiesa, A. Guglielmetti, C. Migliorino, P. Monti, A. L. Pasinetti, H. L. Ravn, Nucl. Phys. A576, 21 (1994). https://doi.org/10.1016/0375-9474(94)90736-6
- [31] 1994Bo35 R. Bonetti, C. Chiesa, A. Guglielmetti, C. Migliorino, P. Monti, Z. Phys. A349, 309 (1994). https://doi.org/10.1007/BF01288982
- [32] 1995WaZQ J. Wawryszczuk, M. B. Yuldashev, K. Ya. Gromov, T. M. Muminov, Program and Thesis, Proc. 45th Ann. Conf. Nucl. Spectrosc. Struct. At. Nuclei, St. Petersburg, p. 107 (1995).
- [33] 1997Ch53 V. G. Chumin, J. K. Jabber, K. V. Kalyapkin, S. A. Kudrya, V. V. Tsupko-Sitnikov, K. Ya. Gromov, V. I. Fominykh, T. A. Furyaev, Bull. Rus. Acad. Sci. Phys. 61, 1606 (1997).
- [34] 1997ChZS V. G. Chumin, V. I. Fominykh, T. A. Furyaev, K. Ya. Gromov, J. K. Jabber, K. V. Kalyapkin, S. A. Kudrya, V. V. Tsupko-Sitnikov, JINR-E6-97-189 (1997).
- [35] 1997He29 F. P. Hessberger, S. Hofmann, V. Ninov, P. Armbruster, H. Folger, G. Munzenberg, H. J. Schott, A. G. Popeko, A. V. Yeremin, A. N. Andreyev, S. Saro, Z. Phys. A359, 415 (1997). https://doi.org/10.1007/s002180050422
- [36] 1997Li12 C. F. Liang, P. Paris, R. K. Sheline, Phys. Rev. C55, 2768 (1997). https://doi.org/10.1103/PhysRevC.55.2768
- [37] 1997VaZV Ya. Vavryshchuk, K. Ya. Gromov, V. B. Zlokazov, V. G. Kalinnikov, V. A. Morozov, N. V. Morozova, V. I. Fominykh, V. V. Tsupko-Sitnikov, I. N. Churin, JINR-P6-97-180 (1997).
- [38] 1997Wa27 J. Wawryszczuk, K. V. Kalyapkin, M. B. Yuldashev, K. Ya. Gromov, V. I. Fominykh, Bull. Rus. Acad. Sci. Phys. 61, 25 (1997).
- [39] 1998Ar03 G. Ardisson, V. Barci, O. El Samad, Phys. Rev. C57, 612 (1998). https://doi.org/10.1103/PhysRevC.57.612
- [40] 1998Wa25 J. Wawryszczuk, K. Ya. Gromov, V. B. Zlokazov, V. G. Kalinnikov, V. A. Morozov, N. V. Morozova, V. I. Fo-

minikh, V. V. Tsupko-Sitnikov, I. N. Churin, Yad. Fiz. 61, No 8, 1424 (1998); Phys. Atomic Nuclei 61, 1322 (1998).

- [41] 2000Gr35 K. Ya. Gromov, S. A. Kudrya, Sh. R. Malikov, T. M. Muminov, Zh. K. Samatov, Zh. Sereeter, V. I. Fominykh, V. G. Chumin, Bull. Rus. Acad. Sci. Phys. 64, 1770 (2000).
- [42] 2000TsZX K. Tsukada, M. Sakama, M. Asai, S. Ichikawa, H. Haba, I. Nishinaka, Y. Nagame, S. Goto, Y. Kojima, Y. Oura, H. Nakahara, M. Shibata, K. Kawade, Japan Atomic Energy Res. Inst. Tandem VDG Ann. Rept., 1999, p. 13 (2000); JAERI-Review 2000-018 (2000).
- [43] 2002As08 M. Asai, M. Sakama, K. Tsukada, S. Ichikawa, H. Haba, I. Nishinaka, Y. Nagame, S. Goto, K. Akiyama, A. Toyoshima, Y. Kojima, Y. Oura, H. Nakahara, M. Shibata, K. Kawade, J. Nucl. Radiochem. Sci. 3, No 1, 187 (2002).
- [44] 2002AsZX M. Asai, M. Sakama, K. Tsukada, S. -I. Ichikawa, H. Haba, I. Nishinaka, Y. Nagame, S. -I. Goto, Y. Kojima, Y. Oura, H. Nakahara, M. Shibata, K. Kawade, Proc. Intern. Conf. Nuclear Data for Science and Technology (ND2001), Tsukuba, Japan, 7-12 October, 2001, K. Shibata, Ed., Atomic Energy Society of Japan, Vol. 1, p. 474 (2002).
- [45] 2002Ko06 Y. V. Kovchegov, Nucl. Phys. A698, 619c (2002). https://doi.org/10.1016/S0375-9474(01)01442-7
- [46] 2002Mo46 V. A. Morozov, N. V. Morozova, Yu. V. Norseev, Zh. Sereeter, V. B. Zlokazov, Nucl. Instrum. Methods Phys. Res. A484, 225 (2002). https://doi.org/10.1016/S0168-9002(01)01992-1
- [47] 2003Ye02 A. V. Yeremin, A. V. Belozerov, M. L. Chelnokov, V. I. Chepigin, V. A. Gorshkov, A. P. Kabachenko, O. N. Malyshev, Yu. Ts. Oganessian, A. G. Popeko, R. N. Sagaidak, A. I. Svirikhin, S. Hofmann, G. Berek, I. Brida, S. Saro, Yad. Fiz. 66, 1078 (2003); Phys. Atomic Nuclei 66, 1042 (2003). https://doi.org/10.1134/1.1586416
- [48] 2006As03 M. Asai, K. Tsukada, S. Ichikawa, M. Sakama, H. Haba, I. Nishinaka, Y. Nagame, S. Goto, Y. Kojima, Y. Oura, M. Shibata, Phys. Rev. C 73, 067301 (2006). https://doi.org/10.1103/PhysRevC.73.067301
- [49] **2009In01** T. T. Inamura, H. Haba, Phys. Rev. C **79**, 034313 (2009). https://doi.org/10.1103/PhysRevC.79.034313
- [50] 2010AsZX M. Asai, K. Tsukada, N. Sato, T. K. Sato, A. Toyoshima, T. Ishii, Y. Nagame, JAEA-Review 2010-056, p. 21 (2010).
- [51] 2013Be18 L. Benhabib, for the CMS Collaboration, Nucl. Phys. A904-905, 585c (2013). https://doi.org/10.1016/j.nuclphysa.2013.02.082
- [52] 2013Su13 G. Suliman, S. Pomme, M. Marouli, R. Van Ammel, H. Stroh, V. Jobbagy, J. Paepen, A. Dirican, F. Bruchertseifer, C. Apostolidis, A. Morgenstern, Appl. Radiat. Isot. 77, 32 (2013). https://doi.org/10.1016/j.apradiso.2013.02.008
- [53] 2015Ah04 I. Ahmad, R. R. Chasman, J. P. Greene, F. G. Kondev, S. Zhu, Phys. Rev. C 92, 024313 (2015). https://doi.org/10.1103/PhysRevC.92.024313
- [54] 2015Ch30 J. Chen, F. G. Kondev, Nucl. Data Sheets 126, 373 (2015). https://doi.org/10.1016/j.nds.2015.05.003
- [55] 2015Ah04 E. N. Alexeev, Yu. M. Gavrilyuk, A. M. Gangapshev, A. M. Gezhaev, V. V. Kazalov, V. V. Kuzminov, S. I. Panasenko, S. S. Ratkevich, Physics of Part. and Nuclei 49, 557 (2018). https://doi.org/10.1134/S1063779618040044
- [56] 2018Sa45 A. Saamark-Roth, L. G. Sarmiento, D. Rudolph, J. Ljungberg, B. G. Carlsson, C. Fahlander, U. Forsberg, P. Golubev, I. Ragnarsson, D. Ackermann, L. -L. Andersson, M. Block, H. Brand, D. M. Cox, A. Di Nitto, Ch. E. Dullmann, K. Eberhardt, J. Even, J. M. Gates, J. Gerl, K. E. Gregorich, C. J. Gross, R. -D. Herzberg, F. P. Hessberger, E. Jager, J. Khuyagbaatar, B. Kindler, I. Kojouharov, J. V. Kratz, J. Krier, N. Kurz, B. Lommel, A. Mistry, C. Mokry, J. P. Omtvedt, P. Papadakis, J. Runke, K. Rykaczewski, M. Schadel, H. Schaffner, B. Schausten, P. Thorle-Pospiech, N. Trautmann, T. Torres, A. Turler, A. Ward, N. Wiehl, A. Yakushev, Phys. Rev. C 98, 044307 (2018). https://doi.org/10.1103/PhysRevC.98.044307
- [57] 2020Kh10 J. Khuyagbaatar, F. P. Hessberger, S. Hofmann, D. Ackermann, H. G. Burkhard, S. Heinz, B. Kindler, I. Kojouharov, B. Lommel, R. Mann, J. Maurer, K. Nishio, Phys. Rev. C 102, 044312 (2020). https://doi.org/10.1103/PhysRevC.102.044312
- [58] 2020Ko06 K. Kossert, M. P. Takacs, O. Nahle, Appl. Radiat. Isot. 156, 109020 (2020). https://doi.org/10.1016/j.apradiso.2019.109020
- [59] 2021Kh07 J. Khuyagbaatar, H. Brand, R. A. Cantemir, Ch. E. Dullmann, F. P. Hessberger, E. Jager, B. Kindler, J. Krier, N. Kurz, B. Lommel, B. Schausten, A. Yakushev, Phys. Rev. C 104, L031303 (2021). https://doi.org/10.1103/PhysRevC.104.L031303
- [60] 2021Sv02 A. I. Svirikhin, A. V. Yeremin, N. I. Zamyatin, I. N. Izosimov, A. V. Isaev, A. A. Kuznetsova, O. N. Malyshev, R. S. Mukhin, A. G. Popeko, Y. A. Popov, E. A. Sokol, B. Sailaubekov, M. S. Tezekbayeva, M. L. Chelnokov, V. I. Chepigin, B. Andel, S. Antalic, A. Bronis, P. Mosat, B. Gall, O. Dorvaux, A. Lopez-Martens, K. Hauschild, Phys. Part. and Nucl. Lett. 18, 445 (2021). https://doi.org/10.1134/s1547477121040154
- [61] 2021Te08 M. S. Tezekbayeva, A. V. Yeremin, O. N. Malyshev, A. V. Isaev, R. S. Mukhin, A. A. Kuznetsova, A. G. Popeko,

Yu. A. Popov, A. I. Svirikhin, E. A. Sokol, M. L. Chelnokov, V. I. Chepigin, A. Lopez-Martens, K. Hauschild, O. Dorvaux, B. Gall, B. S. Sailaubekov, Bull. Rus. Acad. Sci. Phys. **85**, 1167 (2021). https://doi.org/10.3103/S1062873821100257

- [62] 2021Wa16 M. Wang, W. J. Huang, F. G. Kondev, G. Audi, S. Naimi, Chin. Phys. C 45, 030003 (2021). https://doi.org/10.1088/1674-1137/abddaf
- [63] 2022L003 A. Lopez-Martens, K. Hauschild, A. I. Svirikhin, Z. Asfari, M. L. Chelnokov, V. I. Chepigin, O. Dorvaux, M. Forge, B. Gall, A. V. Isaev, I. N. Izosimov, K. Kessaci, A. A. Kuznetsova, O. N. Malyshev, R. S. Mukhin, A. G. Popeko, Yu. A. Popov, B. Sailaubekov, E. A. Sokol, M. S. Tezekbayeva, A. V. Yeremin, Phys. Rev. C 105, L021306 (2022). https://doi.org/10.1103/PhysRevC.105.L021306
- [64] 2022Te01 M. S. Tezekbayeva, A. V. Yeremin, A. I. Svirikhin, A. Lopez-Martens, M. L. Chelnokov, V. I. Chepigin, A. V. Isaev, I. N. Izosimov, A. V. Karpov, A. A. Kuznetsova, O. N. Malyshev, R. S. Mukhin, A. G. Popeko, Yu. A. Popov, V. A. Rachkov, B. S. Sailaubekov, E. A. Sokol, K. Hauschild, H. Jacob, R. Chakma, O. Dorvaux, M. Forge, B. Gall, K. Kessaci, B. Andel, S. Antalic, A. Bronis, P. Mosat, Eur. Phys. J. A 58, 52 (2022). https://doi.org/10.1140/epja/s10050-022-00707-9
- [65] **2022Tr01** M. B. Trzhaskovskaya, V. K. Nikulin, Phys. Atomic Nuclei **85**, 50 (2022). https://doi.org/10.1134/S1063778822010136
- [66] 2023Al22 E. N. Alexeev, Yu. M. Gavrilyuk, A. M. Gangapshev, A. M. Gezhaev, V. V. Kazalov, V. V. Kuzminov, Phys. Atomic Nuclei 86, 528 (2023). https://doi.org/10.1134/S1063778823040014
- [67] 2024Ba08 S. Bara, E. Jajcisinova, T. E. Cocolios, B. Andel, S. Antalic, A. Camaiani, C. Costache, K. Dockx, G. J. Farooq-Smith, A. Kellerbauer, R. Lica, K. M. Lynch, P. Marini, M. Piersa-Silkowska, S. T. Stegemann, M. Stryjczyk, D. Treasa, P. Van Duppen, Appl. Radiat. Isot. 208, 111289 (2024). https://doi.org/10.1016/j.apradiso.2024.111289