

Last updated3/4/2-24

Table 1

Observed and predicted β -delayed part	ticle emission from the e	even- $Z, T_z = +$	⊦41/2 nuclei. J ^π	values for ¹⁸⁵ I	Hf, ¹⁸⁹ W,	¹⁹³ Os, ¹⁹⁷	⁷ Pt, ²⁰¹ Hg, an	d ²⁰⁵ Pb are take	en from
ENSDF. Unless otherwise stated, all Q-	-values are taken from [2021Wa16] or	r deduced from	values therein.					

Nuclide	J^{π}	$T_{1/2}$	Qε	$Q_{\varepsilon p}$	$Q_{\varepsilon \alpha}$	Experimental
185116*		25(6) m	4.26(21)#			[1002V-01]
189 17 *	$(3/2^{-})$	5.3(0) III 11.7(5) m	-4.30(31)#			[19951001] [1007Vp03]
¹⁹³ Os*	(3/2)	29 830(18) h	-3.160(40)			[1997 1405] [2012Kr05]
¹⁹⁷ Pt*	$1/2^{-}$	19.8915(19) h	-2.156(20)			[1992An13]
²⁰¹ Hg	3/2-	stable	-1.262(3)			
²⁰⁵ Pb	5/2-	1.51(4) y	0.051(1)	-6.369(1)	0.206(3)	[1978Pe08]
²⁰⁹ Po	$1/2^{-}$	128.7(3) y	1.893(2)	-1.906(1)	5.030(2)	[2007Co07, 2015Po03, 2014Co16]
²¹³ Rn	$(9/2^+)$	19.5(1) ms	0.884(6)	-2.616(3)	10.138(4)	[2000He17]
²¹⁷ Ra	$(9/2^+)$	1.7(1) µs**	1.575(9)	-1.653(9)	10.044(9)	[2019Ya04, 2019Mi08, 1990AnZU, 1970Va13]
²²¹ Th	$(7/2^+)$	1.73(3) ms***	2.410(60)	-0.621(11)	10.200(10)	[2001Ku07, 1993AnZS, 1970To07]
²²⁵ U		72(4) ms@	3.020(80)	0.087(14)	10.416(58)	[2019Mi08, 2001Ku07, 2000He17]
²²⁹ Pu		90(10) s	3.59(12)	0.886(62)	10.61(10)	[2002CaZU]
²³³ Cm		23^{+13}_{-6} s	4.01(14)#	1.643(83)#	11.07(13)#	[2010Kh06]
²³⁷ Cf		0.8(2) s	4.73(25)#	2.796(99)#	12.23(15)#	[2010Kh06]
²⁴¹ Fm		0.73(6) ms	5.33(38)#	3.94(30)#	13.50(38)#	[2008Kh10]

* 100% β^- emitter.

** Weighted average of 1.4(4) μs [2019Ya04], 2.5(2) μs [2019Mi08], 1.7(1) μs [1990AnZU] and 1.6(2) μs [1970Va13].
*** Weighted average of 1.73(3) ms [2001Ku07], 1.9(1) ms [1993AnZS] and 1.68(6) ms [1970To07].
@ Weighted average of 63(7) ms [2019Mi08], 84(4) ms [2001Ku07] and 59⁺⁵₋₂ ms [2000He17].

Table 2

Particle separation, Q-values, and measured values for direct particle emission of the even-Z, $T_z = +41/2$ nuclei. Unless otherwise stated, all S and Q-values are taken from [2021Wa16] or deduced from values therein.

Nuclide	\mathbf{S}_p	S_{2p}	Qα	BRα	BR _{SF}	Experimental
195						
¹⁸⁵ Hf	9.31(21)#	17.90(41)#	0.34(31)#			
¹⁸⁹ W	9.19(28)#	17.39(28)#	0.09(21)#			
¹⁹³ Os	9.095(71)	16.796(42)	-0.01(20)#			
¹⁹⁷ Pt	8.273(38)	15.486(56)	0.550(2)			
²⁰¹ Hg	7.711(27)	14.852(2)	0.332(1)			
²⁰⁵ Pb	6.713	13.079(1)	1.467(1)			
²⁰⁹ Po	4.785(2)	8.492(1)	4.979(1)	99.55(1)%		[1996Sc24, 1989Ma05, 1966Ha29, 1969Go23, 1953AsZZ,
						1951Ka03, 1951Ka37]
²¹³ Rn	4.357(4)	7.841(3)	8.245(3)	$\approx 100\%$		[2001Ku07, 2000He17, 2021Hu19, 2019Mi08, 2005Li17,
						1970TaZS, 1970Va13, 1970VaZZ, 1966Ro12, 1961Gr43]
²¹⁷ Ra	4.370(8)	7.519(9)	9.161(6)	100%		[1970To07, 1970Va13, 2021Hu19, 2019Ya04, 2019Mi08,
			~ /			1970VaZZ,1969ToXX, 1961Gr43]
²²¹ Th	4.093(10)	7.032(10)	8.625(4)	100%		[2020Pa44, 2021Hu19, 2019Mi08, 2019Ya04, 2015Li17,
						2014Lo10, 2003Ni10, 2001Ku07, 2000He17, 1993AnZS,
						1990An19, 1990AnZO, 1990AnZU, 1970To07, 1970Va13,
						1970VaZZ, 1969MaZT]
²²⁵ U	3.779(12)	6.591(13)	8.007(6)	$\approx 100\%$		[2001Ku07, 2000He17, 2019Mi08, 2003Ni10, 1994AnZY,
	····· ()					1994Ye08, 1993AnZS, 1992To02, 1992ToZV, 1990YeZY,
						1989An13, 1989HeZK, 1989HeZZ, 1988AnZS1
²²⁹ Pu	3.72(12)#	6 228(61)	7 590(20)**	50(20)%	<7%*	$[2010Kh06, 2002C_{a}ZI] = 2002C_{a}ZZ, 1994An02, 1994AnZX$
Iu	5.72(12)	0.220(01)	7.590(20)	50(20)70	<110	$1994 \Delta n 7 Y$ 1994 Ye081
²³³ Cm	3 42(31)#	5 593(84)#	7 473(20)***	20(10)%		[2010Kb06 2002CaCU 2002Ca77]
237 Cf	2.72(31)#	4.65(14)#	8 220(54)	20(10)%	30(10)%	[2010Kh00, 2002CaCO, 2002CaLL]
241 Em	2.09(37)#	+.03(14)# 2 56(22)#	0.220(34)	<140/ *	> 790/	[2010] [2009][2010]
Fm	2.29(47)#	3.30(32)#	8.830(32)#	<14%*	>18%	[2008Kn10]

* Not observed.

** Deduced from α decay. 7.598(60) MeV in [2021Wa16].

*** Deduced from α decay. 7.473(54) MeV in [2021Wa16].

Table 3

direct α emission from ²⁰⁹ Po, J ^{π} = 1/2 ⁻ , T _{1/2} = 1	$28.7(3)$ y*, $BR_{\alpha} = 99.55(1)\%^{**}$.
--	---

$E_{\alpha}(c.m.)$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(\text{rel})$	$I_{\alpha}(abs)$	$J_f^{\pi@@}$	$E_{daughter}(^{205}\text{Pb})^{@@}$	coincident γ-rays ^{@@}	R ₀ (fm)	HF
4.190(15) 4.394(15)	4.110(15) 4.310(15)	$\begin{array}{l} 5.7(42)\times 10^{-4}\%^{***}\\ 1.5(4)\times 10^{-4}\%^{***} \end{array}$	$\begin{array}{l} 5.6(42)\times 10^{-4}\%\\ 1.5(4)\times 10^{-4}\%\end{array}$	3/2-	0.787(15) 0.576(4) ^{@@}	0.2605, 0.2628 , 0.3134, 0.5739, 0.5763	1.41923(39) 1.41923(39)	${}^{1.1^{+3.3}_{-0.6}}_{160^{+60}_{-40}}$
4.707(5) 4.977(2)	4.617(5) 4.882(2) [@]	0.56(1)% 100%	0.551(6)%** 98.56 (1)%**	3/2 ⁻ 5/2 ⁻ , 1/2 ⁻	0.263 ^{@@} 0.0, 0.0023 ^{@@}	0.2605, 0.2628	1.41923(39) 1.41923(39)	6.33(9) 1.536(21)

* [2007Co07].

** [1996Sc24].

*** [1966Ha29].

[@] α energy is a weighted average of 4.877(5) MeV [1966Ha29] and 4.883(2) MeV [1989Ma05]. This peak is an unresolved transition that feeds both the 5/2⁻ ground state and a low-lying state 1/2⁻ at 2.3 keV [1996Sc24]. Due to the change in respective spins and the low HF (treating it as one transition), it appears that the majority of the α transitions fred the 2.3 keV state. [@] [2020Ko17].

Table 4

direct α emission from ²¹³Rn, $J^{\pi} = (9/2^+), T_{1/2} = 19.5(1)$ ms*, $BR_{\alpha} = \approx 100\%$.

$E_{\alpha}(\text{c.m.})$	$E_{\alpha}(\text{lab})^{**}$	$I_{\alpha}(\text{rel})^*$	$I_{\alpha}(abs)$	$J_f^{\pi***}$	$E_{daughter}(^{209}\text{Po})$	*** coincident γ-ray	s*** R ₀ (fm	n) HF		
7.393(4) 7.700(4) 8.245(3)	7.254(4) 7.555(4) 8.090(3)	1.1(1)% 0.68(7)% 100%	1.1(1)% 0.67(7)% 98.2(2)%	3/2 ⁻ 5/2 ⁻ 1/2 ⁻	0.854 0.545 0.0	0.854 0.545	1.4842 1.4842 1.4842	$\begin{array}{ccc} 2(25) & 22(2) \\ 2(25) & 350^{+50}_{-40} \\ 2(25) & 96(5) \end{array}$		
* [2000He17]. ** [2001Ku07]. *** [2015Ch30].										
Table 5 direct α emission from ²¹⁷ Ra, $J^{\pi} = (9/2^+)$, $T_{1/2} = 1.7(1) \ \mu s^*$, $BR_{\alpha} = 100\%$.										
$E_{\alpha}(\text{c.m.})$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(abs)$	${ m J}_f^\pi$	E_{daug}	_{ghter} (²¹³ Rn)	coincident γ-rays F	R_0 (fm)	HF		
9.161(6)	8.992(6)**	100%	(9/2+)	0.0		1	.5544(25)	1.86(16)		

* Weighted average of 1.4(4) µs [2019Ya04], 2.5(2) µs [2019Mi08], 1.7(1) µs [1990AnZU] and 1.6(2) µs [1970Va13].

** Weighted average of 8.990(8) MeV [1970To07] and 8.995(10) MeV [1970Va13].

Table 6

direct α emission	from 221 Th*, J $^{\pi} = 0$	$(7/2^+), T_{1/2} = 1.7$	73(3) ms**, BRa	$\alpha = 100\%$.

$E_{\alpha}(\text{c.m.})$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(\text{rel})$	$I_{\alpha}(abs)$	\mathbf{J}_{f}^{π}	$E_{daughter}(^{217}\mathrm{Ra})$	coincident γ-rays	R ₀ (fm)	HF
7 878(3)	7 735(3)	7 8(3)%	47(2)%	$(7/2^+)$	0.753	0 177 0 227 0 331 0 526 0 576 0 753	1 5811(30)	4 9(4)
8.098(8)	7.951(8)	0.23(5)%	0.14(3)%	$(13/2^+)$	0.540	0.540	1.5811(30)	740^{+230}_{-160}
8.298(3)	8.148(3)	100(1)%	60.3(7)%	$(11/2^+)$	0.331	0.177, 0.331	1.5811(30)	7.1(5)
8.399(3)	8.247(3)	2.5(2)%	1.5(1)%	$(7/2,9/2)^{-}$	0.227	0.227	1.5811(30)	560(60)
8.564(16)***	8.409(16)***	12%***		0.063			1.5811(30)	370
8.627(3)	8.471(3)	55.4(9)%	33.4(4)%	(9/2+)	0.0		1.5811(30)	106(7)

* All values from [2020Pa44], except where noted.

** Weighted average of 1.73(3) ms [2001Ku07], 1.9(1) ms [1993AnZS] and 1.68(6) ms [1970To07].

*** Tentatively assigned by [2021Hu19], with the comment "the small peak at 8409 keV may stem from the internal conversion effect." In addition, [1990An19] reports peaks at 8.265(10) MeV ($I_{\alpha} = 4$) and 8.375(10) MeV ($I_{\alpha} = 11$), with no spectra are shown in this work. No levels at 63, 98, or 210 keV have been observed in ²⁰⁸Pb($^{13}C,4n\gamma$) [1983Lo16] or ²⁰⁸Pb($^{12}C,3n\gamma$) [1991Dr08, 1984Ro20, 1984Su10] reactions (as detailed in [2018Ko01]).

Table 7

direct α emis	sion from ²²⁵ U, 7	$\Gamma_{1/2} = 72(4) \text{ ms}^*$	$BR_{\alpha} = \approx 100$	%.						
$E_{\alpha}(\text{c.m.})$	$E_{\alpha}(\text{lab})^{**}$	$I_{\alpha}(\text{rel})^{***}$	$I_{\alpha}(abs)$	J_f^{π}	$E_{daughter}($	²²¹ Th)	coinciden	t γ-rays	R ₀ (fm)	HF
7.762(12)	7.624(12)	9(4)%	5(2)%	(11/2 ⁺) [@]	0.2509(3)	@	0.2509 [@]		1.5454(32)	8^{+6}_{-3}
7.970(12) 8.010(6)	7.828(12) 7.867(6)	64(5)% 100(7)%	37(5)% 58(4)%	(7/2 ⁺)	0.040(21) 0.0				1.5454(32) 1.5454(32)	$4.9^{+1.4}_{-1.2} \\ 4.2(5)$
* Weigh ** Weigh *** [200 [@] [2007.	ted average of 63 hted average of v 00He17]. Ja05].	(7) ms [2019Mi0 alues from [2001	8], 84(4) ms [2 Ku07] and [20	2001Ku07] and 00He17].	d 59 ⁺⁵ ₋₂ ms [20	000He17].				
Table 8 direct α emis	sion from ²²⁹ Pu*	$T_{1/2} = 90(10) s$	**, $BR_{\alpha} = 50($	20)%.						
$E_{\alpha}(\text{c.m.})$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(abs)$	${\sf J}_f^{\pi}$	E _{daughter} ((²²⁵ U)	coinciden	tγ-rays	R ₀ (fm)	HF	
7.590(20)	7.457(20)	50(20)%		0.0				1.509(24) 22^{+25}_{-13}	
* All val ** [2002	ues from [2010K CaZU].	h06], except whe	re noted.							
Table 9 direct α emis	sion from ²³³ Cm	*, $T_{1/2} = 23^{+13}_{-6}$ s	$BR_{\alpha} = 20(10)$)%.						
$E_{\alpha}(\text{c.m.})$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(\text{rel})$	$I_{\alpha}(abs)$	${\sf J}_f^\pi$	$E_{daughter}(^2$	²⁹ Pu)	coinciden	t γ-rays	R ₀ (fm)	HF
7.381(20) 7.473(20)	7.254(20) 7.345(20)	${}^{43}_{-34}^{+47}\% \\ 100(43)\%$	$6^{+7}_{-5}\%$ 14(9)%		0.092(28) 0.0				1.502(33) 1.502(33)	$\substack{1^{+9}_{-1}\\1^{+5}_{-1}}$
* All val	ues from [2010K	h06].								
Table 10 direct α emis	sion from ²³⁷ Cf*	$T_{1/2} = 0.8(2) s,$	$BR_{\alpha} = 70(10)$	%.						
$E_{\alpha}(\text{c.m.})$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(abs)$	${ m J}_f^{\pi}$	$E_{daughter}(^{23}$	³³ Cm)	coincident	γ-rays	R ₀ (fm)	HF	
8.220(20)	8.081(20)	70(10)%		0.0				1.471(55)	$0.3^{+0.8}_{-0.3}$	
* All val	ues from [2010K	h06].								

References used in the Tables

- [1] **1951Ka03** D. G. Karraker, D. H. Templeton, Phys. Rev. **81**, 510 (1951). https://doi.org/10.1103/PhysRev.81.510
- [2] 1951Ka37 D. G. Karraker, A. Ghiorso, D. H. Templeton, Phys. Rev. 83, 390 (1951). https://doi.org/10.1103/PhysRev.83.390
- [3] 1953AsZZ F. Asaro, Thesis, Univ. California (1953); UCRL-2180 (1953).
- [4] 1961Gr43 R. D. Griffioen, R. D. Macfarlane, Lawrence Radiation Laboratory, Chemistry Division Annual Report (1961), UCRL-10023, p. 50 (1961).
- [5] 1966Ha29 G. R. Hagee, R. C. Lange, J. T. McCarthy, Nucl. Phys. 84, 62 (1966). https://doi.org/10.1016/0029-5582(66)90433-0
- [6] 1966H016 K. J. Hofstetter, P. J. Daly, Phys. Rev. 152, 1050 (1966). https://doi.org/10.1103/PhysRev.152.1050
- [7] 1966Ro12 H. Rotter, A. G. Demin, L. P. Pashchenko, H. F. Brinckmann, Yad. Fiz. 4, 246 (1966); Soviet J. Nucl. Phys. 4, 178 (1967).
- [8] 1969Go23 N. A. Golovkov, S. Guetkh, B. S. Dzhelepov, Y. V. Norseev, V. A. Khalkin, V. G. Chumin, Izv. Akad. Nauk SSSR, Ser. Fiz. 33, 1622 (1969); Bull. Acad. Sci. USSR, Phys. Ser. 33, 1489 (1970).
- [9] 1969MaZT R. D. Macfarlane, ORO-3820-1 (1969).
- [10] 1969ToXX D. F. Torgerson, Ph. D. Thesis, McMaster University, Canada, 1969 (unpublished).

- [11] 1970TaZS N. I. Tarantin, A. P. Kabachenko, A. V. Demyanov, N. S. Ivanov, Proc. Int. Conf. Mass Spectrosc., Kyoto (1969), K. Ogata, T. Hayakawa, Eds., University Park Press, Baltimore, p. 548 (1970).
- [12] 1970To07 D. F. Torgerson, R. D. Macfarlane, Nucl. Phys. A149, 641 (1970). https://doi.org/10.1016/0375-9474(70)91053-5
- [13] 1970Va13 K. Valli, E. K. Hyde, J. Borggreen, Phys. Rev. C1, 2115 (1970). https://doi.org/10.1103/PhysRevC.1.2115
- [14] 1970VaZZ K. Valli, E. K. Hyde, J. Borggreen, CONF Leysin Vol1 P545, CERN 70-30
- [15] 1978Pe08 J. G. Pengra, H. Genz, R. W. Fink, Nucl. Phys. A302, 1 (1978). https://doi.org/10.1016/0375-9474(78)90283-X
- [16] 1988AnZS A. N. Andreev, D. D. Bogdanov, A. V. Eremin, A. P. Kabachenko, O. A. Orlova, G. M. Ter-Akopyan, V. I. Chepigin, JINR-P7-88-830 (1988).
- [17] 1989An13 A. N. Andreev, D. D. Bogdanov, A. V. Eremin, A. P. Kabachenko, O. A. Orlova, G. M. Ter-Akopyan, V. I. Chepigin, Yad. Fiz. 50, 619 (1989); Sov. J. Nucl. Phys. 50, 381 (1989).
- [18] 1989HeZK F. P. Hessberger, P. Armbruster, W. Bruchle, H. Folger, S. Hofmann, G. Munzenberg, V. Ninov, M. Schadel, K. Summerer, H. Gaggeler, D. Jost, J. V. Kratz, U. Scherer, M. E. Leino, A. Turler, D. Ackermann, Univ. Mainz, 1988 Ann. Rept., p. 18 (1989).
- [19] 1989HeZZ F. P. Hessberger, P. Armbruster, W. Bruchle, H. Folger, S. Hofmann, G. Munzenberg, V. Ninov, M. Schadel, K. Summerer, H. Gaggeler, D. Jost, J. V. Kratz, U. Scherer, M. E. Leino, A. Turler, D. Ackermann, GSI-89-1, p. 17 (1989).
- [20] 1989Ma05 A. M. Mandal, S. K. Saha, S. M. Sahakundu, A. P. Patro, J. Phys. (London) G15, 173 (1989). https://doi.org/10.1088/0954-3899/15/2/008
- [21] 1990An19 A. N. Andreev, D. D. Bogdanov, V. I. Chepigin, A. P. Kabachenko, S. Sharo, G. M. Ter-Akopian, A. V. Eremin, Z. Phys. A337, 229 (1990).
- [22] 1990AnZQ A. N. Andreev, D. D. Bogdanov, A. V. Eremin, A. P. Kabachenko, G. M. Ter-Akopyan, V. I. Chepigin, Sh. Sharo, Program and Thesis, Proc. 40th Ann. Conf. Nucl. Spectrosc. Struct. At. Nuclei, Leningrad, p. 131 (1990).
- [23] 1990AnZU A. N. Andreev, D. D. Bogdanov, A. V. Eremin, A. P. Kabachenko, O. N. Malyshev, G. M. Ter-Akopyan, V. I. Chepigin, JINR-P7-90-232 (1990).
- [24] 1990YeZY A. V. Yeremin, A. N. Andreev, D. D. Bogdanov, A. P. Kabachenko, O. N. Malyshev, O. A. Orlova, G. M. Ter-Akopyan, V. I. Chepigin, JINR-E15-90-347 (1990).
- [25] 1992An13 M. S. Antony, D. Oster, A. Hachem, J. Radioanal. Nucl. Chem. 164, 303 (1992). https://doi.org/10.1007/BF02164953
- [26] 1992To02 K. S. Toth, H. J. Kim, J. W. McConnell, C. R. Bingham, D. C. Sousa, Phys. Rev. C45, 856 (1992). https://doi.org/10.1103/PhysRevC.45.856
- [27] 1992ToZV K. S. Toth, H. J. Kim, J. W. McConnell, C. R. Bingham, D. C. Sousa, Contrib. 6th Intern. Conf. on Nuclei Far from Stability + 9th Intern. Conf. on Atomic Masses and Fundamental Constants, Bernkastel-Kues, Germany, PE37 (1992).
- [28] 1993AnZS A. N. Andreyev, D. D. Bogdanov, V. I. Chepigin, M. Florek, A. P. Kabachenko, O. N. Malyshev, S. Sharo, G. M. Ter-Akopian, M. Veselsky, A. V. Yeremin, Proc. 6th Intern. Conf. on Nuclei Far from Stability + 9th Intern. Conf. on Atomic Masses and Fundamental Constants, Bernkastel-Kues, Germany, 19-24 July, 1992, R. Neugart, A. Wohr, Eds., p. 759 (1993).
- [29] 1993Yu01 S. Yuan, T. Zhang, Q. Pan, X. Zhang, S. Xu, Z. Phys. A344, 355 (1993).
- [30] 1994An02 A. N. Andreyev, D. D. Bogdanov, V. I. Chepigin, A. P. Kabachenko, O. N. Malyshev, A. G. Popeko, R. N. Sagaidak, G. M. Ter-Akopian, M. Veselsky, A. V. Yeremin, Z. Phys. A347, 225 (1994).
- [31] 1994AnZX A. N. Andreev, D. D. Bogdanov, A. V. Eremin, A. P. Kabachenko, O. N. Malyshev, A. G. Popeko, R. N. Sagaidak, G. M. Ter-Akopyan, V. I. Chepigin, Program and Thesis, Proc. 44th Ann. Conf. Nucl. Spectrosc. Struct. At. Nuclei, Kharkov, p. 89 (1994).
- [32] 1994AnZY A. N. Andreev, D. D. Bogdanov, A. V. Eremin, A. P. Kabachenko, O. N. Malyshev, A. G. Popeko, R. N. Sagaidak, G. M. Ter-Akopyan, V. I. Chepigin, Program and Thesis, Proc. 44th Ann. Conf. Nucl. Spectrosc. Struct. At. Nuclei, Kharkov, p. 85 (1994).
- [33] 1994Ye08 A. V. Yeremin, A. N. Andreyev, D. D. Bogdanov, G. M. Ter-Akopian, V. I. Chepigin, V. A. Gorshkov, A. P. Kabachenko, O. N. Malyshev, A. G. Popeko, R. N. Sagaidak, S. Sharo, E. N. Voronkov, A. V. Taranenko, A. Yu. Lavrentjev, Nucl. Instrum. Methods Phys. Res. A350, 608 (1994). https://doi.org/10.1016/0168-9002(94)91265-3
- [34] 1996Sc24 F. J. Schima, R. Colle, Nucl. Instrum. Methods Phys. Res. A369, 498 (1996). https://doi.org/10.1016/S0168-9002(96)80038-6
- [35] 1997Ya03 W. F. Yang, Z. Z. Zhao, Z. W. Li, W. T. Mou, Z. Phys. A357, 353 (1997). https://doi.org/10.1007/s002180050254

- [36] 2000He17 F. P. Hessberger, S. Hofmann, D. Ackermann, V. Ninov, M. Leino, S. Saro, A. Andreyev, A. Lavrentev, A. G. Popeko, A. V. Yeremin, Eur. Phys. J. A 8, 521 (2000); Erratum Eur. Phys. J. A 9, 433 (2000). https://doi.org/10.1007/s100500070075
- [37] 2001Ku07 P. Kuusiniemi, J. F. C. Cocks, K. Eskola, P. T. Greenlees, K. Helariutta, P. Jones, R. Julin, S. Juutinen, H. Kankaanpaa, A. Keenan, H. Kettunen, M. Leino, M. Muikku, P. Nieminen, P. Rahkila, J. Uusitalo, Acta Phys. Pol. B32, 1009 (2001).
- [38] 2002CaZU P. Cagarda, S. Antalic, S. Saro, S. Hofmann, F. P. Hessberger, D. Ackermann, B. Kindler, B. Lommel, J. Kojouharova, R. Mann, H. J. Schott, A. V. Yeremin, A. G. Popeko, J. Uusitalo, Proc. 5th International Conference on Dynamical Aspects of Nuclear Fission, Casta-Papiernicka, Slovak Republic, 23-27 Oct. 2001, p. 398 (2002).
- [39] 2002CaZZ P. Cagarda, S. Antalic, D. Ackermann, F. P. Hessberger, S. Hofmann, B. Kindler, J. Kojouharova, B. Lommel, R. Mann, A. G. Popeko, S. Saro, J. Uusitalo, A. V. Yeremin, GSI 2002-1, p. 15 (2002).
- [40] 2003Ni10 K. Nishio, H. Ikezoe, S. Mitsuoka, K. Satou, C. J. Lin, Phys. Rev. C68, 064305 (2003). https://doi.org/10.1103/PhysRevC.68.064305
- [41] 2005Li17 Z. Liu, J. Kurcewicz, P. J. Woods, C. Mazzocchi, F. Attallah, E. Badura, C. N. Davids, T. Davinson, J. Doring, H. Geissel, M. Gorska, R. Grzywacz, M. Hellstrom, Z. Janas, M. Karny, A. Korgul, I. Mukha, M. Pfutzner, C. Plettner, A. Robinson, E. Roeckl, K. Rykaczewski, K. Schmidt, D. Seweryniak, H. Weick, Nucl. Instrum. Methods Phys. Res. A543, 591 (2005). https://doi.org/10.1016/j.nima.2004.12.023
- [42] 2007Co07 R. Colle, L. Laureano-Perez, I. Outola, Appl. Radiat. Isot. 65, 728 (2007). https://doi.org/10.1016/j.apradiso.2006.10.007
- [43] 2008Kh10 J. Khuyagbaatar, S. Hofmann, F. P. Hessberger, D. Ackermann, H. G. Burkhard, S. Heinz, B. Kindler, I. Kojouharov, B. Lommel, R. Mann, J. Maurer, K. Nishio, Yu. Novikov, Eur. Phys. J. A 37, 177 (2008). https://doi.org/10.1140/epja/i2008-10608-4
- [44] 2010Kh06 J. Khuyagbaatar, F. P. Hessberger, S. Hofmann, D. Ackermann, V. S. Comas, S. Heinz, J. A. Heredia, B. Kindler, I. Kojouharov, B. Lommel, R. Mann, K. Nishio, A. Yakushev, Eur. Phys. J. A 46, 59 (2010). https://doi.org/10.1140/epja/i2010-11026-9
- [45] 2012Kr05 K. S. Krane, Phys. Rev. C 85, 044319 (2012). https://doi.org/10.1103/PhysRevC.85.044319
- [46] 2014Co16 R. Colle, R. P. Fitzgerald, L. Laureano-Perez, J. Phys. (London) G41, 105103 (2014). https://doi.org/10.1088/0954-3899/41/10/105103
- [47] 2014Lo10 A. Lopez-Martens, K. Hauschild, K. Rezynkina, O. Dorvaux, B. Gall, F. Dechery, H. Faure, A. V. Yeremin, M. L. Chelnokov, V. I. Chepigin, A. V. Isaev, I. N. Izosimov, D. E. Katrasev, A. N. Kuznetsov, A. A. Kuznetsova, O. N. Malyshev, A. G. Popeko, E. A. Sokol, A. I. Svirikhin, J. Piot, J. Rubert, Eur. Phys. J. A 50, 132 (2014). https://doi.org/10.1140/epja/i2014-14132-8
- [48] 2015Ch30 J. Chen, F. G. Kondev, Nucl. Data Sheets 126, 373 (2015). https://doi.org/10.1016/j.nds.2015.05.003
- [49] 2015Li17 H. J. Li, Z. G. Xiao, S. J. Zhu, M. Patial, C. Qi, B. Cederwall, Z. Zhang, R. S. Wang, H. Yi, W. H. Yan, W. J. Cheng, Y. Huang, L. M. Lyu, Y. Zhang, X. G. Wu, C. Y. He, Y. Zheng, G. S. Li, C. B. Li, H. W. Li, J. J. Liu, P. W. Luo, S. P. Hu, J. L. Wang, Y. H. Wu, Phys. Rev. C 91, 054314 (2015). https://doi.org/10.1103/PhysRevC.91.054314
- [50] 2015Po03 S. Pomme, H. Stroh, L. Benedik, Appl. Radiat. Isot. 97, 84 (2015). https://doi.org/10.1016/j.apradiso.2014.12.025
- [51] 2019Mi08 A. K. Mistry, J. Khuyagbaatar, F. P. Hessberger, D. Ackermann, B. Andel, S. Antalic, M. Block, P. Chhetri, F. Dechery, C. Droese, Ch. E. Dullmann, F. Giacoppo, J. Hoffmann, O. Kaleja, N. Kurz, M. Laatiaoui, L. Lens, J. Maurer, P. Mosat, J. Piot, S. Raeder, M. Vostinar, A. Yakushev, Z. Zhang, Nucl. Phys. A987, 337 (2019). https://doi.org/10.1016/j.nuclphysa.2019.05.003
- [52] 2019Ya04 H. B. Yang, Z. G. Gan, Z. Y. Zhang, M. M. Zhang, M. H. Huang, L. Ma, C. L. Yang, Eur. Phys. J. A 55, 8 (2019). https://doi.org/10.1140/epja/i2019-12684-7
- [53] 2020Ko17 F. G. Kondev, Nucl. Data Sheets 166, 1 (2020). https://doi.org/10.1016/j.nds.2020.05.001
- [54] 2020Pa44 E. Parr, J. F. Smith, P. T. Greenlees, K. Auranen, R. Chapman, D. M. Cullen, T. Grahn, L. Grocutt, A. Herzan, R. -D. Herzberg, D. Hodge, U. Jakobsson, R. Julin, S. Juutinen, J. Konki, C. McPeake, D. Mengoni, A. K. Mistry, K. F. Mulholland, G. G. O'Neill, J. Pakarinen, P. Papadakis, J. Partanen, P. Peura, P. Rahkila, P. Ruotsalainen, M. Sandzelius, J. Saren, M. Scheck, C. Scholey, M. Siciliano, M. Smolen, J. Sorri, S. Stolze, M. J. Taylor, J. Uusitalo, Phys. Rev. C 102, 054335 (2020). https://doi.org/10.1103/PhysRevC.102.054335
- [55] 2021Hu19 W. Hua, Z. Zhang, L. Ma, Z. Gan, H. Yang, M. Huang, C. Yang, M. Zhang, Y. Tian, X. Zhou, C. Yuan, C. Shen, L. Zhu, Chin. Phys. C 45, 044003 (2021). https://doi.org/10.1088/1674-1137/abe0bd

[56] 2021Wa16 M. Wang, W. J. Huang, F. G. Kondev, G. Audi, S. Naimi, Chin. Phys. C 45, 030003 (2021). https://doi.org/10.1088/1674-1137/abddaf