Last updated 1/24/2024



Fig. 1: Known experimental values for heavy particle emission of the even-Z  $T_z$  = +39/2 nuclei.

# Table 1

| Observed and predicted $\beta$ -delayed part | rticle emission from the eve | en-Z, $T_z = +3$ | 39/2 nuclei. J $^{\pi}$ | values for 183 | <sup>3</sup> Hf, <sup>187</sup> W, | <sup>191</sup> Os, <sup>19</sup> | <sup>95</sup> Pt, <sup>199</sup> Hg | , and <sup>203</sup> P | b are taken from |
|----------------------------------------------|------------------------------|------------------|-------------------------|----------------|------------------------------------|----------------------------------|-------------------------------------|------------------------|------------------|
| ENSDF. Unless otherwise stated, all C        | D-values are taken from [20  | 21Wa16] or       | deduced from            | values therein | 1.                                 |                                  |                                     |                        |                  |

| Nuclide            | $J^{\pi}$   | $T_{1/2}$              | Qε         | $Q_{\varepsilon p}$ | $Q_{\varepsilon \alpha}$ | Experimental                   |
|--------------------|-------------|------------------------|------------|---------------------|--------------------------|--------------------------------|
|                    |             |                        |            |                     |                          |                                |
| <sup>183</sup> Hf* | $(3/2^{-})$ | 1.018(2) h             | -3.570(90) |                     |                          | [2006Vo12]                     |
| $^{187}W*$         | 3/2-        | 23.80(3) h             | -3.010(60) |                     |                          | [2019Kr02]                     |
| <sup>191</sup> Os* | 9/2-        | 15.4(1) d              | -2.045(10) |                     |                          | [1967Ag07]                     |
| <sup>195</sup> Pt  | $1/2^{-}$   | stable                 | -1.102(1)  |                     |                          |                                |
| <sup>199</sup> Hg  | $1/2^{-}$   | stable                 | -0.452(1)  |                     |                          |                                |
| <sup>203</sup> Pb  | 5/2-        | 51.95(1) h             | 0.975(6)   | -4.730(7)           | 1.882(7)                 | [2001Li17]                     |
| <sup>207</sup> Po  | 5/2-        | 350.3(41) m            | 2.909(7)   | -0.649(7)           | 6.191(7)                 | [1974Pa05]                     |
| <sup>211</sup> Rn  | $1/2^{-}$   | 14.6(2) h              | 2.892(7)   | -0.091(7)           | 8.874(7)                 | [1972As11]                     |
| <sup>215</sup> Ra  | $(9/2^+)$   | 1.67(1) ms             | 2.214(10)  | -0.437(12)          | 11.754(8)                | [2000He17]                     |
| <sup>219</sup> Th  | $(9/2^+)$   | 1.03(3) µs**           | 2.890(80)  | 0.528(57)           | 11.720(57)               | [2017Su18, 2015Kh09, 1973Ha32] |
| <sup>223</sup> U   | $(7/2^+)$   | $62^{+14}_{-10} \mu s$ | 3.71(10)   | 1.553(60)           | 12.051(78)               | [2020Su02]                     |
| <sup>227</sup> Pu  |             | 10                     | 4.19(13)#  | 2.15(10)#           | 12.01(13)#               |                                |
| <sup>231</sup> Cm  |             |                        | 4.86(42)#  | 3.05(30)#           | 12.27(31)#               |                                |

\* 100%  $\beta^-$  emitter.

\*\* Weighted average of 1.09(8) µs [2017Su18], 0.97(4) µs [2015Kh09] and 1.05(3) µs [1973Ha32].

Table 2

Particle separation, Q-values, and measured values for direct particle emission of the even-Z,  $T_z = +39/2$  nuclei. Unless otherwise stated, all S and Q-values are taken from [2021Wa16] or deduced from values therein.

| Nuclide           | $\mathbf{S}_p$ | $S_{2p}$   | Qα         | $BR_{\alpha}$ | Experimental                                       |
|-------------------|----------------|------------|------------|---------------|----------------------------------------------------|
| 192               |                |            |            |               |                                                    |
| <sup>185</sup> Hf | 8.80(20)       | 16.77(30)  | 0.93(20)#  |               |                                                    |
| <sup>187</sup> W  | 8.585(60)      | 16.162(64) | 0.955(30)  |               |                                                    |
| <sup>191</sup> Os | 8.101(5)       | 15.16(20)  | 1.084(1)   |               |                                                    |
| <sup>195</sup> Pt | 7.551(1)       | 13.977(2)  | 1.176(1)   |               |                                                    |
| <sup>199</sup> Hg | 7.254(1)       | 13.704(1)  | 0.823(1)   |               |                                                    |
| <sup>203</sup> Pb | 6.095(7)       | 11.702(7)  | 2.335(7)   |               |                                                    |
| <sup>207</sup> Po | 4.406(10)      | 7.953(7)   | 5.216(3)   | 0.0210(18)%   | [1974Pa05, 1970AfZZ, 1971Go35, 1967Ti04, 1955Mo68, |
|                   |                |            |            |               | 1951Ka37, 1947Ho06, 1947Te01]                      |
| <sup>211</sup> Rn | 4.072(10)      | 6.967(7)   | 5.965(1)   | 26(1)%        | [1971Go35, 1970AfZZ, 1955Mo68, 1955Mo69, 1952Mo23] |
| <sup>215</sup> Ra | 3.799(11)      | 6.350(8)   | 8.862(2)   | 100%          | [1970To18, 1968Va18, 2020Su02, 2015Kh09, 2005Li17, |
|                   |                |            |            |               | 2000He17, 1970TaZS, 1969MaZT, 1961Gr43]            |
| <sup>219</sup> Th | 3.677(81)      | 6.005(57)  | 9.507(11)* | 100%          | [2020Ma27, 2017Su18, 1973Ha32, 2020Su02, 2020Wa16, |
|                   |                |            |            |               | 2015Kh09, 1973HaVO, 1973HaWU]                      |
| <sup>223</sup> U  | 3.308(105)     | 5.473(60)  | 9.158(17)  | 100%          | [2020Su02, 1994AnZY, 1993AnZS, 1991An10, 1991An13] |
| <sup>227</sup> Pu | 3.34(14)#      | 5.18(10)#  | 8.30(12)#  |               |                                                    |
| <sup>231</sup> Cm | 2.89(33)#      | 4.70(31)#  | 8.08(31)#  |               |                                                    |

\* Deduced from  $\alpha$  energy, 9.506(56) in [2021Wa16].

## Table 3

| direct $\alpha$ emissi | on from <sup>207</sup> Po | $J^{\pi} = 5/2^{-}, T$ | $T_{1/2} = 350.3(41)$ | ) m*, $BR_{\alpha}$ = | = 0.0210(18)%* |
|------------------------|---------------------------|------------------------|-----------------------|-----------------------|----------------|
|------------------------|---------------------------|------------------------|-----------------------|-----------------------|----------------|

| $E_{\alpha}(\text{c.m.})$ | $E_{\alpha}(\text{lab})$ | $I_{\alpha}(abs)$ | $\mathbf{J}_f^{\pi}$ | $E_{daughter}(^{203}\text{Pb})$ | coincident γ-rays | R <sub>0</sub> (fm) | HF       |
|---------------------------|--------------------------|-------------------|----------------------|---------------------------------|-------------------|---------------------|----------|
| 5.2158(25)                | 5.1150(25)**             | 0.0210(18)%*      | 5/2-                 | 0.0                             |                   | 1.44219(87)         | 1.41(13) |

\* [1974Pa05].

\*\* [1970AfZZ].

| Table 4                                                               |                                                          |
|-----------------------------------------------------------------------|----------------------------------------------------------|
| direct $\alpha$ emission from <sup>211</sup> Rn, $J^{\pi} = 1/2^{-1}$ | $^{-}, T_{1/2} = 14.6(2) h^{**}, BR_{\alpha} = 26(1)\%.$ |

| $E_{\alpha}(c.m.)$ | $E_{\alpha}(\text{lab})$ | $I_{\alpha}(\text{rel})$  | $I_{\alpha}(abs)$           | $J_f^{\pi***}$ | Edaughter( <sup>207</sup> Po)*** | coincident γ-rays***    | R <sub>0</sub> (fm) | HF         |
|--------------------|--------------------------|---------------------------|-----------------------------|----------------|----------------------------------|-------------------------|---------------------|------------|
| 5 152(4)           | 5 055(4)                 | $1.0(2) \times 10^{-3}$   | $1.6(5) \times 10^{-4}\%$   | 0/2-           | 0.8144                           | 0.8144                  | 1 4456(24)          | $22^{+12}$ |
| 5.155(4)           | 5.055(4)                 | $1.0(3) \times 10^{-70}$  | $1.0(3) \times 10^{-70}$    | 912            | 0.8144                           | 0.0144                  | 1.4430(24)          | 22-6       |
| 5.279(3)           | 5.179(3)                 | $4.1(3) \times 10^{-3}\%$ | $6.7(6) \times 10^{-4}\%$   | 5/2-           | 0.6858                           | 0.0686, 0.0973, 0.1679, | 1.4456(24)          | 27.6(28)   |
|                    |                          |                           |                             |                |                                  | 0.2365, 0.2928, 0.3244, |                     |            |
|                    |                          |                           |                             |                |                                  | 0.3929, 0.4491, 0.6172  |                     |            |
| 5.378(3)           | 5.276(3)                 | 0.024(2)%                 | $0.39(3) \times 10^{-3}\%$  | 7/2-           | 0.5883                           | 0.5883                  | 1.4456(24)          | 16.7(16)   |
| 5.572(3)           | 5.466(3)                 | 0.022(2)%                 | 0.36(3)× 10 <sup>-3</sup> % | 3/2-           | 0.3930                           | 0.0686, 0.1565, 0.1679, | 1.4456(24)          | 196(19)    |
|                    |                          |                           |                             |                |                                  | 0.2365, 0.3244, 0.3929  |                     |            |
| 5.725(3)           | 5.616(3)                 | 4.3(3)%                   | 0.70(6)%                    | 3/2-           | 0.2365                           | 0.0686, 0.1679, 0.2365  | 1.4456(24)          | 6.3(6)     |
| 5.895(2)           | 5.783(2)                 | 100(2)%                   | 16.4(7)%                    | $1/2^{-}$      | 0.0686                           | 0.0686                  | 1.4456(24)          | 1.78(12)   |
| 5.963(2)           | 5.850(2)                 | 54(2)2%                   | 8.8(4)%                     | 5/2-           | 0.0                              |                         | 1.4456(24)          | 6.9(5)     |

\* All values from [1971Go35], except where noted.

\*\* [1972As11].

\*\*\* [2011Ko ].

### Table 5

direct  $\alpha$  emission from <sup>215</sup>Ra,  $J^{\pi} = (9/2^+)$ ,  $T_{1/2} = 1.67(1)$  ms\*,  $BR_{\alpha} = 100\%$ .

| $E_{\alpha}(c.m.)$               | $E_{\alpha}(\text{lab})^{**}$    | $I_{\alpha}(\text{rel})^{***}$ | $I_{\alpha}(abs)^{***}$         | $J_f^{\pi @}$                                               | $E_{daughter}(^{211}\mathrm{Rn})^{@}$ | coincident γ-rays <sup>@</sup> | R <sub>0</sub> (fm)                    | HF                                           |
|----------------------------------|----------------------------------|--------------------------------|---------------------------------|-------------------------------------------------------------|---------------------------------------|--------------------------------|----------------------------------------|----------------------------------------------|
| 8.031(6)<br>8.326(6)<br>8.864(4) | 7.882(6)<br>8.171(6)<br>8.699(4) | 3.1(5)%<br>1.4(5)%<br>100(1)%  | 3.0(5)%<br>1.3(5)%<br>95.7(10)% | (3/2 <sup>-</sup> )<br>5/2 <sup>-</sup><br>1/2 <sup>-</sup> | 0.8335(2)<br>0.5399(2)<br>0.0         | 0.8335(2)<br>0.5399(2)         | 1.4995(24)<br>1.4995(24)<br>1.4995(24) | $17^{+4}_{-3} \\ 280^{+180}_{-80} \\ 105(6)$ |

\* [2000He17].

\*\* Weighted average of values from [1970To18] and [1968Va18], adjusted as recommended by [1991Ry01].

\*\*\* [1968Va18].

<sup>@</sup> [2013Si17].

#### Table 6

direct  $\alpha$  emission from <sup>219</sup>Th,  $J^{\pi} = (9/2^+)$ ,  $T_{1/2} = 1.03(3) \ \mu s^*$ ,  $BR_{\alpha} = 100\%$ .

| $E_{\alpha}(c.m.)$ | $E_{\alpha}(\text{lab})^{**}$ | $I_{\alpha}(abs)^{***}$ | $\mathbf{J}_f^{\pi}$ | $E_{daughter}(^{215}\mathrm{Ra})$ | coincident γ-rays | R <sub>0</sub> (fm) | HF     |
|--------------------|-------------------------------|-------------------------|----------------------|-----------------------------------|-------------------|---------------------|--------|
| 9.507(11)          | 9.333(11)                     | 100%                    | (9/2+)               | 0.0                               |                   | 1.5769(37)          | 2.7(3) |

\* Weighted average of 1.09(8) µs [2017Su18], 0.97(4) µs [2015Kh09] and 1.05(3) µs [1973Ha32].

\*\* Weighted average of 9.338(24) MeV [2020Ma27], 9.327(15) MeV [2017Su189] and 9.340(20) MeV [1973Ha32].

#### Table 7

direct  $\alpha$  emission from <sup>223</sup>U\*,  $J^{\pi} = (7/2^+)$ ,  $T_{1/2} = 62^{+14}_{-10} \mu$ s,  $BR_{\alpha} = 100\%$ .

| $E_{\alpha}(c.m.)$ | $E_{\alpha}(\text{lab})$ | $I_{\alpha}(\text{rel})$ | $I_{\alpha}(abs)$ | ${ m J}_f^{\pi}$ | $E_{daughter}(^{219}\mathrm{Th})$ | coincident $\gamma$ -rays | R <sub>0</sub> (fm) | HF                  |  |
|--------------------|--------------------------|--------------------------|-------------------|------------------|-----------------------------------|---------------------------|---------------------|---------------------|--|
| 8.913(16)          | 8.753(16)                | 100(31)%                 | 65(20)%           | (7/2+)           | 0.244(23)                         |                           | 1.5402(90)          | $1.0^{+0.9}_{-0.5}$ |  |
| 9.157(17)          | 8.993(17)                | 54(26)%                  | 35(13)%           | $(9/2^+)$        | 0.0                               |                           | 1.5402(90)          | $8^{+8}_{-4}$       |  |

\* All values from [2020Su02].

#### **References used in the Tables**

- [1] 1947Ho06 J. J. Howland, D. H. Templeton, I. Perlman, Phys. Rev. 71, 552 (1947). https://doi.org/10.1103/PhysRev.71.552
- [2] 1947Te01 D. H. Templeton, J. J. Howland, I. Perlman, Phys. Rev. 72, 758 (1947). https://doi.org/10.1103/PhysRev.72.758
- [3] **1951Ka37** D. G. Karraker, A. Ghiorso, D. H. Templeton, Phys. Rev. **83**, 390 (1951). https://doi.org/10.1103/PhysRev.83.390
- [4] 952Mo23 F. F. Momyer, E. K. Hyde, A. Ghiorso, W. E. Glenn, Phys. Rev. 86, 805 (1952). https://doi.org/10.1103/PhysRev.86.805
- [5] 1955Mo68 F. F. Momyer, Jr., E. K. Hyde, J. Inorg. Nucl. Chem. 1, 274 (1955). https://doi.org/10.1016/0022-1902(55)80033-4

- [6] 1955Mo69 F. F. Momyer, Jr. , F. Asaro, E. K. Hyde, J. Inorg. Nucl. Chem. 1, 267 (1955). https://doi.org/10.1016/0022-1902(55)80032-2
- [7] 1961Gr43 R. D. Griffioen, R. D. Macfarlane, UCRL-10023, p. 50 (1961).
- [8] 1967Ag07 G. P. Agin, G. E. Clark, C. E. Mandeville, V. R. Potnis, Nuovo Cimento 52B, 220 (1967). https://doi.org/10.1007/BF02710663
- [9] 1967Ti04 E. Tielsch-Cassel, Nucl. Phys. A100, 425 (1967). https://doi.org/10.1016/0375-9474(67)90419-8
- [10] 1968Va18 K. Valli, E. K. Hyde, Phys. Rev. 176, 1377 (1968). https://doi.org/10.1103/PhysRev.176.1377
- [11] 1969MaZT R. D. Macfarlane, ORO-3820-1 (1969).
- [12] 1970AfZZ V. P. Afanasiev, M. Bochvarova, N. A. Golovkov, I. I. Gromova, R. B. Ivanov, V. I. Kuzin, Y. V. Norseev, V. G. Chumin, JINR-P6-4972 (1970).
- [13] 1970TaZS N. I. Tarantin, A. P. Kabachenko, A. V. Demyanov, N. S. Ivanov, Proc. Int. Conf. Mass Spectrosc., Kyoto (1969), K. Ogata, T. Hayakawa, Eds., University Park Press, Baltimore, p. 548 (1970).
- [14] 1970To18 D. F. Torgerson, R. D. Macfarlane, Phys. Rev. C2, 2309 (1970). https://doi.org/10.1103/PhysRevC.2.2309
- [15] 1971Go35 N. A. Golovkov, R. B. Ivanov, A. Kolaczkowski, Y. V. Norseev, V. G. Chumin, Izv. Akad. Nauk SSSR, Ser. Fiz. 35, 2272 (1971); Bull. Acad. Sci. USSR, Phys. Ser. 35, 2063 (1972).
- [16] 1972As11 G. Astner, Phys. Scr. 5, 31 (1972). https://doi.org/10.1088/0031-8949/5/1-2/006
- [17] 1973Ha32 O. Hausser, W. Witthuhn, T. K. Alexander, A. B. McDonald, J. C. D.Milton, A. Olin, Phys. Rev. Lett. 31, 323 (1973). https://doi.org/10.1103/PhysRevLett.31.323
- [18] 1973HaVQ O. Hausser, Proceedings of the international conference on nuclear physics, Munich, Germany, August 27– September 1, 1973, Vol1 P688.
- [19] 1973HaWU O. Hausser, W. Witthuhn, T. K. Alexander, A. B. McDonald, J. C. D. Milton, A. Olin, AECL-4505, p. 16 (1973).
- [20] 1974Pa05 B. Parsa, S. S. Markowitz, J. Inorg. Nucl. Chem. 36, 1429 (1974). https://doi.org/10.1016/0022-1902(74)80600-7
- [21] 1991An10 A. N. Andreev, D. D. Bogdanov, V. I. Chepigin, A. P. Kabachenko, O. N. Malyshev, G. M. Ter-Akopian, A. V. Yeremin, Z. Phys. A338, 363 (1991).
- [22] 1991An13 A. N. Andreev, D. D. Bogdanov, A. V. Eremin, A. P. Kabachenko, O. N. Malyshev, G. M. Ter-Akopyan, V. I. Chepigin, Yad. Fiz. 53, 895 (1991); Sov. J. Nucl. Phys. 53, 554 (1991).
- [23] 1993AnZS A. N. Andreyev, D. D. Bogdanov, V. I. Chepigin, M. Florek, A. P. Kabachenko, O. N. Malyshev, S. Sharo, G. M. Ter-Akopian, M. Veselsky, A. V. Yeremin, Proc. 6th Intern. Conf. on Nuclei Far from Stability + 9th Intern. Conf. on Atomic Masses and Fundamental Constants, Bernkastel-Kues, Germany, 19-24 July, 1992, R. Neugart, A. Wohr, Eds., p. 759 (1993).
- [24] 1994AnZY A. N. Andreev, D. D. Bogdanov, A. V. Eremin, A. P. Kabachenko, O. N. Malyshev, A. G. Popeko, R. N. Sagaidak, G. M. Ter-Akopyan, V. I. Chepigin, Program and Thesis, Proc. 44th Ann. Conf. Nucl. Spectrosc. Struct. At. Nuclei, Kharkov, p. 85 (1994).
- [25] 2000He17 F. P. Hessberger, S. Hofmann, D. Ackermann, V. Ninov, M. Leino, S. Saro, A. Andreyev, A. Lavrentev, A. G. Popeko, A. V. Yeremin, Eur. Phys. J. A 8, 521 (2000); Erratum Eur. Phys. J. A 9, 433 (2000). https://doi.org/10.1007/s100500070075
- [26] 2001Li17 K. Lindenberg, F. Neumann, D. Galaviz, T. Hartmann, P. Mohr, K. Vogt, S. Volz, A. Zilges, Phys. Rev. C63, 047307 (2001). https://doi.org/10.1103/PhysRevC.63.047307
- [27] 2005Li17 Z. Liu, J. Kurcewicz, P. J. Woods, C. Mazzocchi, F. Attallah, E. Badura, C. N. Davids, T. Davinson, J. Doring, H. Geissel, M. Gorska, R. Grzywacz, M. Hellstrom, Z. Janas, M. Karny, A. Korgul, I. Mukha, M. Pfutzner, C. Plettner, A. Robinson, E. Roeckl, K. Rykaczewski, K. Schmidt, D. Seweryniak, H. Weick, Nucl. Instrum. Methods Phys. Res. A543, 591 (2005). https://doi.org/10.1016/j.nima.2004.12.023
- [28] 2006Vo12 C. Vockenhuber, M. Bichler, W. Kutschera, A. Wallner, I. Dillmann, F. Kappeler, Phys. Rev. C 74, 057303 (2006). https://doi.org/10.1103/PhysRevC.74.057303
- [29] 2015Kh09 J. Khuyagbaatar, A. Yakushev, Ch. E. Dullmann, D. Ackermann, L. L-. Andersson, M. Block, H. Brand, D. M. Cox, J. Even, U. Forsberg, P. Golubev, W. Hartmann, R. -D. Herzberg, F. P. Hessberger, J. Hoffmann, A. Hubner, E. Jager, J. Jeppsson, b. Kindler, J. V. Kratz, J. Krier, N. Kurz, B. Lommel, M. Maiti, S. Minami, A. K. Mistry, C. M. Mrosek, I. Pysmenetska, D. Rudolph, L. G. Sarmiento, H. Schaffner, M. Schadel, B. Schausten, J. Steiner, T. Torres De Heidenreich, J. Uusitalo, M. Wegrzecki, N. Wiehl, V. Yakusheva, Phys. Rev. Lett. 115, 242502 (2015). https://doi.org/10.1103/PhysRevLett.115.242502
- [30] 2017Su18 M. D. Sun, Z. Liu, T. H. Huang, W. Q. Zhang, J. G. Wang, X. Y. Liu, B. Ding, Z. G. Gan, L. Ma, H. B. Yang, Z. Y.

Zhang, L. Yu, J. Jiang, K. L. Wang, Y. S. Wang, M. L. Liu, Z. H. Li, J. Li, X. Wang, H. Y. Lu, C. J. Lin, L. J. Sun, N. R. Ma, C. X. Yuan, W. Zuo, H. S. Xu, X. H. Zhou, G. Q. Xiao, C. Qi, F. S. Zhang, Phys. Lett. B **771**, 303 (2017). https://doi.org/10.1016/j. physletb.2017.03.074

- [31] 2019Kr02 K. S. Krane, Appl. Radiat. Isot. 146, 115 (2019). https://doi.org/10.1016/j.apradiso.2019.02.002
- [32] 2020Ma27 L. Ma, Z. Y. Zhang, Z. G. Gan, X. H. Zhou, H. B. Yang, M. H. Huang, C. L. Yang, M. M. Zhang, Y. L. Tian, Y. S. Wang, H. B. Zhou, X. T. He, Y. C. Mao, W. Hua, L. M. Duan, W. X. Huang, Z. Liu, X. X. Xu, Z. Z. Ren, S. G. Zhou, H. S. Xu, Phys. Rev. Lett. 125, 032502 (2020). https://doi.org/10.1103/PhysRevLett.125.032502
- [33] 2020Su02 M. D. Sun, Z. Liu, T. H. Huang, W. Q. Zhang, A. N. Andreyev, B. Ding, J. G. Wang, X. Y. Liu, H. Y. Lu, D. S. Hou, Z. G. Gan, L. Ma, H. B. Yang, Z. Y. Zhang, L. Yu, J. Jiang, K. L. Wang, Y. S. Wang, M. L. Liu, Z. H. Li, J. Li, X. Wang, A. H. Feng, C. J. Lin, L. J. Sun, N. R. Ma, W. Zuo, H. S. Xu, X. H. Zhou, G. Q. Xiao, C. Qi, F. S. Zhang, Phys. Lett. B 800, 135096 (2020). https://doi.org/10.1016/j.physletb.2019.135096
- [34] 2020Wa16 X. Wang, Z. H. Li, Z. Liu, J. Li, H. Hua, H. Y. Lu, W. Q. Zhang, T. H. Huang, M. D. Sun, J. G. Wang, X. Y. Liu, B. Ding, Z. G. Gan, L. Ma, H. B. Yang, Z. Y. Zhang, L. Yu, J. Jiang, K. L. Wang, Y. S. Wang, M. L. Liu, C. J. Lin, L. J. Sun, N. R. Ma, H. S. Xu, X. H. Zhou, G. Q. Xiao, H. Y. Wu, C. Xu, S. Q. Zhang, X. Q. Li, R. Han, Z. Q. Chen, C. G. Wu, D. W. Luo, Y. Jin, J. Lin, D. X. Jiang, Y. L. Ye, F. S. Zhang, Nucl. Instrum. Methods Phys. Res. A971, 164068 (2020). https://doi.org/10.1016/j.nima.2020.164068
- [35] 2021Wa16 M. Wang, W. J. Huang, F. G. Kondev, G. Audi, S. Naimi, Chin. Phys. C 45, 030003 (2021). https://doi.org/10.1088/1674-1137/abddaf