

Last updated 12/22/2023

Table 1

Observed and predicted β -delayed particle emission	from the even- Z ,	$T_z = +37/2$ nuclei.	J^{π} values for 177 Ył	o, ¹⁸¹ Hf, ¹⁸	⁸⁵ W, ¹⁸⁹ Os,	193Pt, 197Hg,	and ²⁰¹ Pb are t	aken
from ENSDF. Unless otherwise stated, all Q-values	are taken from [2]	021Wa16] or deduc	ed from values the	rein.				

Nuclide	J^{π}	Ex.	$T_{1/2}$	Qε	$Q_{\varepsilon p}$	$Q_{\varepsilon lpha}$	Experimental
177 5 71 14		0.12+	1.011(2).1	2 42(20) #			51000 A1 103
1// Yb*		9/2+	1.911(3) h	-3.42(20)#			[1989Ab18]
¹⁸¹ Hf*		$1/2^{-}$	43.39(8) d**	-2.61(13)			[1966Br20, 1960Li14
$^{185}W*$		3/2-	75.1(3) d	-1.994(14)			[1972Em01
¹⁸⁹ Os		3/2-	\geq 3.5 \times 10 ¹⁵ y	-1.008(8)			[2020Be23
¹⁹³ Pt		$1/2^{-}$	50(9) y	0.0566(3)	-5.886(2)	1.075(8)	[1971Ra18
¹⁹⁷ Hg		$1/2^{-}$	64.14(5) h	0.600(3)	-5.185(3)	1.571(3)	[1966El09
²⁰¹ Pb		$5/2^{-}$	9.33(3) h	1.910(19)	-3.057(14)	3.444(14)	[1981An11
²⁰⁵ Po		$5/2^{-}$	5.79(2) h	3.544(11)	0.299(10)	7.234(17)	[1983He09]
²⁰⁹ Rn		5/2-	28.5(10) m	3.943(11)	1.239(10)	9.700(11)	[1971Go35]
²¹³ Ra		$1/2^{-}$	2.73(5) m	3.900(11)	1.716(10)	10.804(11)	[2017Lo13]
^{213m} Ra	1.770(5)	17/2-	2.20(5) ms	5.670(12)	3.486(11)	12.574(12)	[2006Ku26]
²¹⁷ Th		$(9/2^+)$	247(2) µs***	3.503(15)	1.625(13)	13.335(12)	[2005Ku31, 2002He29, 2009QiZZ]
²²¹ U			0.66(14) µs	4.150(0)	2.541(73)	13.393(73)	[2015Kh09]
²²⁵ Pu				4.68(31)#	3.27(30)#	13.50(31)#	

* 100 β^- emitter

** Weighted average of 42.29(10) d [1966Br20] and 42.45(8) d [1960Li14].

*** Weighted average of 257(2) µs [2005Ku31], 237(2) µs [2002He29] and 247(3) µs [2009QiZZ].

Table 2

Particle separation, Q-values, and measured values for direct particle emission of the even-Z, $T_z = +37/2$ nuclei. Unless otherwise stated, all S and Q-values are taken from [2021Wa16] or deduced from values therein.

Nuclide	\mathbf{S}_p	S_{2p}	Qα	BR_{α}	Experimental
177 vh	8.00/10)	16.01(40)#	0.24(20)#		
181110	8.90(10)	10.91(40)#	0.24(20)#		
101 HI	8.015(71)	15.34(20)#	1.159(1)		
¹⁸⁵ W	7.837(26)	14.682(30)	1.590(2)		
¹⁸⁹ Os	7.259	13.661(1)	1.976(1)		
¹⁹³ Pt	6.933	12.662(1)	2.082(1)		
¹⁹⁷ Hg	6.690(3)	12.324(3)	1.515(3)		
²⁰¹ Pb	5.513(15)	10.303(14)	2.844(14)		
²⁰⁵ Po	4.164(14)	7.313(12)	5.325(10)	0.074(16)%	[1970Jo26, 1967Ti01, 1951Ha83 , 1970DaZM,
					1951Ka37]
²⁰⁹ Rn	3.760(13)	6.373(12)	6.155(2)	17(2)%	[1971Go35, 2017Lo13, 1993Wa04, 1971Jo19,
					1955Mo68, 1955Mo69, 1952Mo23]
²¹³ Ra	3.427(13)	5.477(12)	6.862(2)	87(2)%	[2017Lo13, 2006Ku26, 2005KuZV, 1976Ra37,
					1970TaZS, 1968Lo15, 1967Va22, 1961Gr42,
					1955Mo68]
^{213m} Ra	1.657(14)	3.707(13)	8.632(5)	0.6(4)%	[2006Ku26 , 1976Ra37]
²¹⁷ Th	3.233(14)	4.904(13)	9.435(4)	100%	[2005Ku31, 2002He29, 2019Zh54, 2009QiZZ,
					2005Li17, 2005YeZZ, 2000He17, 2000Ni02,
					2000NiZY, 1973Ha32, 1973HaZO, 1969MaZT,
					1968Va10, 1968Va18]
²²¹ U	3.047(74)	4.521(92)	9.889(71)	100%	[2015Kh09
²²⁵ Pu	3.02(30)#	4.32(31)#	9.36(31)#		

Table 3

direct α emission from ²⁰⁵Po, $J_i^{\pi} = 5/2^-$, $T_{1/2} = 5.79(2)$ h*, $BR_{\alpha} = 0.074(16)\%^{**}$.

$E_{\alpha}(\text{c.m.})$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(abs)$	\mathbf{J}_f^{π}	$E_{daughter}(^{201}\text{Pb})$	coincident γ-rays	R ₀ (fm)	HF
5.326(7)	5.222(7)***	0.074(16)%**	5/2-	0.0		1.4586(16)	$2.1\substack{+0.6\\-0.4}$

* [1983He09]. ** [1951Ha83].

*** Weighted average of 5.224(10) MeV [1970Jo26] and 5.220(10) MeV [1967Ti04].

Table 4	
direct α emission from ²⁰⁹ Rn*, J ^{π} = 5/2 ⁻ , T _{1/}	$_{/2} = 28.5(10) \text{ m}, BR_{\alpha} = 17(2)\%$

$E_{\alpha}(c.m.)$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(\text{rel})$	$I_{\alpha}(abs)$	\mathbf{J}_f^{π}	$E_{daughter}(^{205}\text{Po})^{**}$	coincident γ-rays**	R ₀ (fm)	HF
5.770(3)	5.660(3)	0.024(2)%	0.0041(6)%		0.384	0.154, 0.230, 0.384	1.4662(37)	87^{+20}_{-15}
6.002(3)	5.887(3)	0.22(2)%	0.037(6)%		0.154	0.154	1.4662(37)	117^{+27}_{-21}
6.013(3)	5.898(3)	0.14(2)%	0.024(4)%		0.143	0.143	1.4662(37)	210_{-40}^{+60}
6.157(3)	6.039(3)	100	16.9(20)%		0.0		1.4662(37)	$1.3_{-0.2}^{+0.3}$

* All values from [1971Go35], except where noted.

** [2020Ko17].

Table 5

direct α emission from ²	13 Ra, $J_i^{\pi} = 1/2^{-1}$	$T_{1/2} = 2.83(5) \text{ m}^*,$	$BR_{\alpha} = 89(2)\%^{3}$
--	------------------------------------	----------------------------------	-----------------------------

$E_{\alpha}(c.m.)$	$E_{\alpha}(\text{lab})^{**}$	$I_{\alpha}(\text{rel})^*$	$I_{\alpha}(abs)$	J_f^π	Edaughter(²⁰⁹ Rn)	coincident γ-rays	R ₀ (fm)	HF
6.349(6)	6.230(6)	0.7(3)%	0.44(17)%	(3/2 ⁻)***	0.5113	0.1106(2), 0.1830(2), 0.2152(2), 0.2181(2), 0.2964(2), 0.3283(1), 0.5113(3)	1.4638(22)	$4.5^{+3.2}_{-1.4}$
6.536(4)	6.413(4)	0.7(3)%	0.44(17)%	(5/2-)***	0.3283	0.1106(2), 0.2181(2), 0.3283(1)	1.4638(22)	27^{+19}_{-8}
6.647(3)	6.522(3)	13.9(22)%	8.3(13)%	3/2-	0.2149	0.106(1), 0.1106(2), 0.2152(2)	1.4638(22)	$4.1_{-0.7}^{+0.9}$
6.752(3)	6.625(3)	100(4)%	59.6(22)%	$1/2^{-}$	0.1103	0.1103	1.4638(22)	1.49(10)
6.862(3)	6.733(3)	30.7(31)%	18.3(18)%	5/2-	0.0		1.4638(22)	13.0(15)

* [2017Lo13].

** [2006Ku26].

*** Reported as $(5/2^{-})$ for the 511 keV state and $3/2^{-}$ for the 328 keV state in [2017Lo17].

Table 6

direct α emission from ^{213m}Ra, Ex. = 1.770(5) MeV, $J_i^{\pi} = 17/2^-$, $T_{1/2} = 2.20(5)$ ms*, $BR_{\alpha} = 0.6(4)\%^*$.

$E_{\alpha}(c.m.)$	$E_{\alpha}(\text{lab})^{**}$	$I_{\alpha}(\text{rel})^*$	$I_{\alpha}(abs)$	\mathbf{J}_f^{π}	$E_{daughter}(^{209}\mathrm{Rn})$	coincident γ-rays	R ₀ (fm)	HF
8.426(9)	8.268(9)**	5.2(21)%**	0.021(16)%	3/2-	0.2149	0.106(1), 0.1106(2), 0.2152(2)	1.4638(22)	$1.7^{+6.2}_{-0.8} \times 10^4$
8.517(7)	8.357(7)***	43(29)%***	0.17(12)%	$1/2^{-}$	0.1103	0.1103	1.4638(22)	$4^{+10}_{-2} \times 10^3$
8.630(4)	8.468(4) [@]	100%	0.41(27)%	$5/2^{-}$	0.0		1.4638(22)	$3^{+\bar{7}}_{-2} \times 10^3$

* [2006Ku26].

** Weighted average of 8.270(20) MeV; 4(2)% [2006Ku26] and 8.266(10) MeV (adjusted to 8.267(10) in [1991Ry01]); 3(2)% [2006Ku26].

*** Weighted average of 8.355(9) MeV; 33(13)% [2006Ku26] and 8.358(10) MeV (adjusted to 8.359(10) in [1991Ry01]); 28(6)% [2006Ku26].

[@] Weighted average of 8.469(6)(6) MeV; 63(13)% [2006Ku26] and 8.467(5) MeV (adjusted to 8.468(5) in [1991Ry01]); 69(7)% [2006Ku26].

Table 7

direct α emission from ²	17 Th, $J_i^{\pi} = (9/2+), T_1$	$_{/2} = 247(2) \ \mu s^*,$	$BR_{\alpha} = 100\%$.

$E_{\alpha}(\text{c.m.})$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(\text{rel})$	$I_{\alpha}(abs)$	J_f^{π}	$E_{daughter}(^{213}\text{Ra})$	coincident γ -rays	R_0 (fm)	HF	
8.616(5) 8.890(5) 9.437(5)	8.457(5)** 8.726(5)*** 9.263(5) [@]	3.8(2)%** 1.7(1)%*** 100%	3.5(1)% 1.6(1)% 95.0(3)%	(3/2 ⁻) (5/2 ⁻) 1/2 ⁻	0.8221 0.5461 0.0	0.8221(1) 0.5461(1)	1.5091(22) 1.5091(22) 1.5091(22)	24.3(14) 286(23) 106(6)	

*** Weighted average of 257(2) µs [2005Ku31], 237(2) µs [2002He29] and 247(3) µs [2009QiZZ].

** Weighted average of 8.460(7) MeV, I_{α} (rel) = 3.1(2)% [2005Ku31] and 8.455(5) MeV, I_{α} (rel) = 3.9(1)% [2002He29].

*** Weighted average of 8.727(8) MeV, I_{α} (rel) = 1.6(1)% [2005Ku31] and 8.725(5) MeV, I_{α} (rel) = 1.9(1)% [2002He29].

[@] Weighted average of 9.269(9) MeV, [2005Ku31] and 9.261(5) MeV [2002He29].

Table 8

direct α emissio	rect α emission from ²²¹ U*, T _{1/2} = 0.66(14) μ s, BR_{α} = 100%.									
$E_{\alpha}(\text{c.m.})$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(abs)$	J_f^π	$E_{daughter}(^{217}\mathrm{Th})$	coincident γ -rays	R ₀ (fm)	HF			
9.889(50)	9.710(50)	100%	(9/2+)	0.0		1.525(15)	$1.1_{-0.4}^{+0.5}$			

* All values from [2015Kh09].

References used in the Tables

- [1] 1951Ha83 K. L. Hall, UCRL-1460 (1951).
- [2] 1951Ka37 D. G. Karraker, A. Ghiorso, D. H. Templeton, Phys. Rev. 83, 390 (1951). https://doi.org/10.1103/PhysRev.83.390
- [3] 952Mo23 F. F. Momyer, E. K. Hyde, A. Ghiorso, W. E. Glenn, Phys. Rev. 86, 805 (1952). https://doi.org/10.1103/PhysRev.86.805
- [4] 1955Mo68 F. F. Momyer, Jr., E. K. Hyde, J. Inorg. Nucl. Chem. 1, 274 (1955). https://doi.org/10.1016/0022-1902(55)80033-4
- [5] 1955Mo69 F. F. Momyer, Jr. , F. Asaro, E. K. Hyde, J. Inorg. Nucl. Chem. 1, 267 (1955). https://doi.org/10.1016/0022-1902(55)80032-2
- [6] 1960Li14 M. Lindner, K. V. Marsh, J. A. Miskel, R. J. Nagle, J. Inorg. Nuclear Chem. 15, 194 (1960). https://doi.org/10.1016/0022-1902(60)80034-6
- [7] 1961Gr42 R. D. Griffioen, R. D. Macfarlane, UCRL-10023, p. 47 (1961).
- [8] 1966Br20 L. Broman, K. Karlsson, Nucl. Instr. Methods 44, 174 (1966). https://doi.org/10.1016/0029-554X(66)90463-0
- [9] 1966El09 J. S. Eldridge, W. S. Lyon, ORNL-3889, p. 49 (1966).
- [10] 1967Ti04 E. Tielsch-Cassel, Nucl. Phys. A100, 425 (1967). https://doi.org/10.1016/0375-9474(67)90419-8
- [11] 1967Va22 K. Valli, W. Treytl, E. K. Hyde, Phys. Rev. 161, 1284 (1967). https://doi.org/10.1103/PhysRev.161.1284
- [12] 1968Lo15 Y. V. Lobanov, V. A. Durin, Yadern. Fiz. 8, 849 (1968); Soviet J. Nucl. Phys. 8, 493 (1969).
- [13] 1968Va10 K. Valli, E. K. Hyde, UCRL-17989, p. 17 (1968)
- [14] 1968Va18 K. Valli, E. K. Hyde, Phys. Rev. 176, 1377 (1968). https://doi.org/10.1103/PhysRev.176.1377
- [15] 1969MaZT R. D. Macfarlane, ORO-3820-1 (1969).
- [16] 1970DaZM J. M. Dairiki, Thesis, Univ. California (1970); UCRL-20412 (1970).
- [17] 1970J026 A. G. Jones, A. H. W. Aten, Jr., Radiochim. Acta 13, 176 (1970).
- [18] 1970TaZS N. I. Tarantin, A. P. Kabachenko, A. V. Demyanov, N. S. Ivanov, Proc. Int. Conf. Mass Spectrosc., Kyoto (1969), K. Ogata, T. Hayakawa, Eds., University Park Press, Baltimore, p. 548 (1970).
- [19] 1971Go35 N. A. Golovkov, R. B. Ivanov, A. Kolaczkowski, Y. V. Norseev, V. G. Chumin, Izv. Akad. Nauk SSSR, Ser. Fiz. 35, 2272 (1971); Bull. Acad. Sci. USSR, Phys. Ser. 35, 2063 (1972).
- [20] 1971Jo19 B. Jonson, M. Alpsten, A. Appelqvist, G. Astner, Nucl. Phys. A174, 225 (1971). https://doi.org/10.1016/0375-9474(71)90660-9
- [21] 1971Ra18 H. L. Ravn, P. Bogeholt, Phys. Rev. C4, 601 (1971). https://doi.org/10.1103/PhysRevC.4.601
- [22] 1972Em01 J. F. Emery, S. A. Reynolds, E. I. Wyatt, G. I. Gleason, Nucl. Sci. Eng. 48, 319 (1972). https://doi.org/10.13182/NSE72-A22489
- [23] 1973Ha32 O. Hausser, W. Witthuhn, T. K. Alexander, A. B. McDonald, J. C. D.Milton, A. Olin, Phys. Rev. Lett. 31, 323 (1973). https://doi.org/10.1103/PhysRevLett.31.323
- [24] 1973HaZO O. Hausser, W. Witthuhn, T. K. Alexander, A. B. McDonald, J. C. D. Milton, A. Olin, S. J. Skorka, AECL-4595, p. 19 (1973).
- [25] 1976Ra37 D. G. Raich, H. R. Bowman, R. E. Eppley, J. O. Rasmussen, I. Rezanka, Z. Phys. A279, 301 (1976); Erratum Z. Phys. A282, 124 (1977). https://doi.org/10.1007/BF01408303
- [26] 1981An11 O. Ando, K. Miyano, Int. J. Appl. Radiat. Isotop. 32, 381 (1981). https://doi.org/10.1016/S0020-708X(81)81004-6
- [27] 1983He09 P. Herzog, H. Walitzki, K. Freitag, H. Hildebrand, K. Schlosser, Z. Phys. A311, 351 (1983). https://doi.org/10.1007/BF01415691
- [28] 1989Ab18 A. Abzouzi, M. S. Antony, V. B. Ndocko Ndongue, J. Radioanal. Nucl. Chem. 137, 381 (1989). https://doi.org/10.1007/BF02162466
- [29] 1993Wa04 J. Wauters, P. Dendooven, M. Huyse, G. Reusen, P. Van Duppen, P. Lievens, and the ISOLDE Collaboration, Phys. Rev. C47, 1447 (1993). https://doi.org/10.1103/PhysRevC.47.1447
- [30] 2000He17 F. P. Hessberger, S. Hofmann, D. Ackermann, V. Ninov, M. Leino, S. Saro, A. Andreyev, A. Lavrentev, A. G. Popeko, A. V. Yeremin, Eur. Phys. J. A 8, 521 (2000); Erratum Eur. Phys. J. A 9, 433 (2000). https://doi.org/10.1007/s100500070075

- [31] **2000Ni02** K. Nishio, H. Ikezoe, S. Mitsuoka, J. Lu, Phys. Rev. C**61**, 034309 (2000). https://doi.org/10.1103/PhysRevC.61.034309
- [32] 2002He29 F. P. Hessberger, S. Hofmann, I. Kojouharov, D. Ackermann, S. Antalic, P. Cagarda, B. Kindler, B. Lommel, R. Mann, A. G. Popeko, S. Saro, J. Uusitalo, A. V. Yeremin, Eur. Phys. J. A 15, 335 (2002). https://doi.org/10.1140/epja/i2002-10038-4
- [33] 2005Ku31 P. Kuusiniemi, F. P. Hessberger, D. Ackermann, S. Hofmann, B. Sulignano, I. Kojouharov, R. Mann, Eur. Phys. J. A 25, 397 (2005). https://doi.org/10.1140/epja/i2005-10117-0
- [34] 2005KuZV P. Kuusiniemi, F. P. Hessberger, D. Ackermann, S. Hofmann, K. Nishio, B. Sulignano, I. Kojouharov, R. Mann, GSI 2005-1, p. 76 (2005).
- [35] 2005Li17 Z. Liu, J. Kurcewicz, P. J. Woods, C. Mazzocchi, F. Attallah, E. Badura, C. N. Davids, T. Davinson, J. Doring, H. Geissel, M. Gorska, R. Grzywacz, M. Hellstrom, Z. Janas, M. Karny, A. Korgul, I. Mukha, M. Pfutzner, C. Plettner, A. Robinson, E. Roeckl, K. Rykaczewski, K. Schmidt, D. Seweryniak, H. Weick, Nucl. Instrum. Methods Phys. Res. A543, 591 (2005). https://doi.org/10.1016/j.nima.2004.12.023
- [36] 2005YeZZ A. V. Yeremin, A. V. Belozerov, M. L. Chelnokov, V. I. Chepigin, V. A. Gorshkov, A. P. Kabachenko, O. N. Malyshev, Yu. Ts. Oganessian, A. G. Popeko, R. N. Sagaidak, A. V. Shutov, A. I. Svirikhin, Ch. Briancon, K. Hauschild, A. Korichi, A. Lopez-Martens, O. Dorvaux, Proc. Intern. Symposium Exotic Nuclei, Peterhof, Russia, July 5-12, 2004, Yu. E. Penionzhkevich, E. A. Cherepanov, Eds., World Scientific, Singapore, p. 206 (2005).
- [37] 2006Ku26 P. Kuusiniemi, F. P. Hessberger, D. Ackermann, S. Antalic, S. Hofmann, K. Nishio, B. Sulignano, I. Kojouharov, R. Mann, Eur. Phys. J. A 30, 551 (2006). https://doi.org/10.1140/epja/i2006-10148-y
- [38] 2009QiZZ J. Qian, Thesis, Yale University, New Haven CT (2009).
- [39] 2015Kh09 J. Khuyagbaatar, A. Yakushev, Ch. E. Dullmann, D. Ackermann, L. L-. Andersson, M. Block, H. Brand, D. M. Cox, J. Even, U. Forsberg, P. Golubev, W. Hartmann, R. -D. Herzberg, F. P. Hessberger, J. Hoffmann, A. Hubner, E. Jager, J. Jeppsson, b. Kindler, J. V. Kratz, J. Krier, N. Kurz, B. Lommel, M. Maiti, S. Minami, A. K. Mistry, C. M. Mrosek, I. Pysmenetska, D. Rudolph, L. G. Sarmiento, H. Schaffner, M. Schadel, B. Schausten, J. Steiner, T. Torres De Heidenreich, J. Uusitalo, M. Wegrzecki, N. Wiehl, V. Yakusheva, Phys. Rev. Lett. 115, 242502 (2015). https://doi.org/10.1103/PhysRevLett.115.242502
- [40] 2017Lo13 Ch. Lorenz, L. G. Sarmiento, D. Rudolph, D. E. Ward, M. Block, F. P. Hessberger, D. Ackermann, L. -L. Andersson, M. L. Cortes, C. Droese, M. Dworschak, M. Eibach, U. Forsberg, P. Golubev, R. Hoischen, I. Kojouharov, J. Khuyagbaatar, D. Nesterenko, I. Ragnarsson, H. Schaffner, L. Schweikhard, S. Stolze, J. Wenzl, Phys. Rev. C 96, 034315 (2017). https://doi.org/10.1103/PhysRevC.96.034315
- [41] 2019Zh54 M. M. Zhang, Y. L. Tian, Y. S. Wang, X. H. Zhou, Z. Y. Zhang, H. B. Yang, M. H. Huang, L. Ma, C. L. Yang, Z. G. Gan, J. G. Wang, H. B. Zhou, S. Huang, X. T. He, S. Y. Wang, W. Z. Xu, H. W. Li, X. X. Xu, L. M. Duan, Z. Z. Ren, S. G. Zhou, H. S. Xu, Phys. Rev. C 100, 064317 (2019). https://doi.org/10.1103/PhysRevC.100.064317
- [42] 2020Be23 P. Belli, R. Bernabei, F. Cappella, V. Caracciolo, R. Cerulli, F. A. Danevich, A. Incicchitti, D. V. Kasperovych, V. V. Kobychev, G. P. Kovtun, N. G. Kovtun, M. Laubenstein, D. V. Poda, O. G. Polischuk, A. P. Shcherban, S. Tessalina, V. I. Tretyak, Phys. Rev. C 102, 024605 (2020). https://doi.org/10.1103/PhysRevC.102.024605
- [43] 2020Ko17 F. G. Kondev, Nucl. Data Sheets 166, 1 (2020). https://doi.org/10.1016/j.nds.2020.05.001
- [44] 2021Wa16 M. Wang, W. J. Huang, F. G. Kondev, G. Audi, S. Naimi, Chin. Phys. C 45, 030003 (2021). https://doi.org/10.1088/1674-1137/abddaf