

Fig. 1: Known experimental values for heavy particle emission of the even-Z T_z = +29/2 nuclei.

Last updated 8/7/2023

Table 1

Observed and predicted β -delayed particle emission from the even-Z, $T_z = +29/2$ nuclei. J ^{π} values for ¹⁶¹ Dy, ¹⁴ Er, ¹⁶⁹ Yb, ¹⁷³ hf, ¹⁷⁷ W, ¹⁸¹ Os, and ¹⁸⁵ Pt are tak	<i>cen</i>
from ENSDF. Unless otherwise stated, all O-values are taken from [2021Wa16] or deduced from values therein.	

Nuclide	Ex	J^{π}	$T_{1/2}$	Qε	$Q_{\varepsilon p}$	$Q_{\varepsilon \alpha}$	Experimental
161 5		5 /0±					
¹⁰¹ Dy		5/2+	stable				
¹⁶⁵ Er		$5/2^{-}$	10.36(4) h*	0.377(1)	-5.843(1)	0.516(2)	[1963Zy01, 1963Ry01, 1963Ra15]
¹⁶⁹ Yb		7/2+	32.1047(93) d	0.899(0.8)	-4.675(0)	2.098(1)	[2002Un02]
¹⁷³ Hf		$1/2^{-}$	23.6(1) h	1.469(28)	-3.445(28)	3.438(28)	[1951Wi08]
177 W		$1/2^{-}$	133(3) m**	2.013(28)	-2.414(28)	4.754(28)	[1963Sa14, 1950Wi67]
¹⁸¹ Os		1/2-	105(3) m	2.967(28)	-1.203(25)	5.740(26)	[1966Ho16]
¹⁸⁵ Pt		9/2+	70.9(24) m	3.650(40)	0.275(26)	7.404(29)	[1970FiZZ]
¹⁸⁹ Hg		3/2-	7.9(2) m***	3.960(40)	0.906(32)	8.284(42)	[1975Be17, 1970ErZX, 1950Wi67]
¹⁹³ Pb		$(3/2^{-})$		5.248(12)	2.493(19)	8.928(23)	
¹⁹⁷ Po		$(3/2^{-})$	53(1) s	6.294(13)	4.666(13)	11.659(12)	[1993Wa04]
^{197m} Po	0.199(11)	$(13/2^+)$	25.8(1) s	6.493(17)	4.865(17)	11.858(16)	[2017Al34, 1993Wa04]
²⁰¹ Rn		$(3/2^{-})$	7.0(4) s	6.682(13)	5.545(13)	13.155(13)	[1971Ho01]
^{201m} Rn	0.248(12)	$13/2^{(+)}$	3.8(4) s	6.930(18)	5.793(18)	13.403(18)	[2017Al34, 1971Ho01]
²⁰⁵ Ra		$(3/2^{-})$	210^{+41}_{-26} ms [@]	7.114(24)	6.485(24)	14.168(24)	[1996Le09, 1995Le15]
^{205m} Ra	0.278(31)	$13/2^{(+)}$	$182_{-24}^{+\overline{38}} \text{ ms}^{@@}$	7.392(39)	6.763(39)	14.446(39)	[2017Al34, 1996Le09, 1995Le15]
²⁰⁹ Th	х	$(3/2^{-})$	27	7.55(12)#	7.38(10)#	15.28(10)#	
^{209m} Th	х	(13/2+)	$2.5^{+1.7}_{-0.7}$ ms	7.55(12)#+x	7.38(10)#+x	15.28(10)#+x	[2010He25]

* Weighted average of 10.39(7) h [1963Zy01], 10.34(5) h [1963Ry01] and 10.4(1) h [1963Ra15].

** Weighted average of 10.5(7) m [19052;01], 10.54(9) m [1905K901] and 10.4(1) m [1905K415]. ** Weighted average of 135(3) m [1905Be17], 7.7(2) m [1970ErZX] and 130(3) m [1950Wi67]. [@] Weighted average of 210⁺⁶⁰₋₄₀ ms [1996Le09] and 210⁺⁵⁵₋₃₅ ms [1995Le15]. [@] Weighted average of 170⁺⁶⁰₋₄₀ ms [1996Le09] and 190⁺⁵⁰₋₃₀ ms [1995Le15].

Table 2

Particle separation, Q-values, and measured values for direct particle emission of the even-Z, $T_z = +29/2$ nuclei. Unless otherwise stated, all S and Q-values are taken from [2021Wa16] or deduced from values therein.

Nuclide	\mathbf{S}_p	S_{2p}	Qα	BR_{α}	Experimental
1(1					
¹⁶¹ Dy	7.508(1)	14.072(1)	0.343(1)		
¹⁶⁵ Er	6.830(1)	12.718(1)	1.109(1)		
¹⁶⁹ Yb	6.352(2)	11.664(1)	1.721(1)		
¹⁷³ Hf	5.965(28)	10.683(28)	2.539(28)		
^{177}W	5.625(42)	9.798(28)	3.285(40)		
¹⁸¹ Os	5.002(33)	8.833(29)	3.727(38)		
¹⁸⁵ Pt	4.366(38)	7.602(56)	4.437(10)		
¹⁸⁹ Hg	4.544(32)	7.519(40)	4.637(41)	${<}3 imes10^{-7}\%$	[1963Ka17]
¹⁹³ Pb	3.646(33)	6.215(25)	4.972(33)		
¹⁹⁷ Po	2.673(26)	4.233(11)	6.411(3)	71(3)%*	[1996Ta18, 1993Wa04, 1981Sc01, 1987Wo04, 1971Ho01,
					1970HoZT, 1967Le21, 1967Si09, 1965Br17, 1965Si22]
^{197m} Po	2.474(28)	4.034(16)	6.610(11)	56(2)%**	[2002Va13, 1996Ta18, 1993Wa04, 1981Sc01, 1987Wo04,
					1973BoXL, 1971Ho01, 1970HoZT, 1967Le21, 1967Si09,
					1965Br17, 1965Si22]
²⁰¹ Rn	2.408(26)	3.447(11)	6.861(2)	pprox 80~%	[1996Ta18, 1993Wa04, 1971Ho01, 1987He10, 1967Va17
					1965Nu04]
^{201m} Rn	2.160(29)	3.199(16)	7.109(12)	pprox 90~%	[1996Ta18, 1993Wa04, 1971Ho01, 1987He10, 1967Va17
	. ,				1965Nu04]
²⁰⁵ Ra	2.092(34)	2.590(24)	7.486(20)	$\approx 100\%^{***}$	[1996Le09, 1995Le04, 1995Le15, 1987He10]
^{205m} Ra	1.814(46)	2.312(39)	7.764(37)	$\approx 100\%^{***}$	[1996Le09, 1995Le15]
²⁰⁹ Th	1.66(12)	1.70(12)	8.17(11)		- · ·
^{209m} Th	1.66(12)-x	1.70(12)-x	8.17(11)+x	100%	[2010He25, 1996Ik01, 1996IkZY]

* Weighted average of 76(3)% [1993Wa04] and 44(7)% [1981Sc01].

** Weighted average of 55(2)% [1993Wa04] and 84(9)% [1981Sc01].

*** Based on short half-life.

Table 3

$\frac{\text{direct } \alpha \text{ emi}}{\alpha \text{ emi}}$	ssion from ¹⁹⁷ Po, J_i^7	$T = (3^{-}), T_{1/2} = 5$	$3(1) s^*, BR_{\alpha} =$	= 71(3)%**.					
$E_{\alpha}(\text{c.m.})$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(abs)$	J_f^{π}	$E_{daughter}(^{193}\mathrm{Pb}$) coinciden	t γ-rays	$R_0 (fm)^@$	HF	
6.411(2)	6.281(2)***	71(3)%**	(3 ⁻)	0.0			1.5044(24	4) 1.19(8)
* [1993 ** Weig *** [19	Wa04]. ghted average of 76(96Ta18].	3)% [1993Wa04]	and 44(7)% [1	1981Sc01].					
Table 4 direct α emi	ssion from ^{197m} Po, 1	Ex. = 199(11) keV	$V^*, \mathbf{J}_i^{\pi} = (13/2^+)$	⁺), $T_{1/2} = 25.8(1)$ s	$***, BR_{\alpha} = 56(2)\%$	***.			
$E_{\alpha}(c.m.)$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(\text{rel})$	$I_{\alpha}(abs)$	$\mathbf{J}_f^{\boldsymbol{\pi}}$	$E_{daughter}(^{193}\text{Pb})$	coinciden	t γ-rays	$R_0 (fm)^@$	HF
5.739(25) 6.512(1)	5.622(25) ^{@@} 6.380(1) [@]	≥0.05(3)% 100%	≥0.03(2)% 56(2)%	(13/2 ⁺) (13/2 ⁺)	0.757(1) 0.0	0.757(1)		1.5044(24) 1.5044(24)	$1.9^{+2.9}_{-0.7}$ $1.86(12)$
* [2017 ** [199 *** We [@] [1996 [@] @ [20	A134]. 3Wa04]. ighted average of 55 5Ta18]. 02Va13].	5(2)% [1993Wa04] and 84(9)% [[1981Sc01].					
Table 5 direct α emi	ssion from 201 Rn, J ²	$\pi = (3^{-}), T_{1/2} = 7$	$T.0(4)$ s*, BR_{α}	$= \approx 80 \%^*.$					
$E_{\alpha}(\text{c.m.})$	$E_{\alpha}(lab)$	$I_{\alpha}(abs)$	J_f^π	$E_{daughter}(^{197}\text{Po})$	coincident	γ-rays	$R_0 (fm)^@$	HF	
6.861(2)	6.724(2)**	$\approx 80~\%^*$	(3-)	0.0			1.5156(71	1) ≈ 1.6	
* [1971 ** Weig	Ho01]. ghted average of 6.7	25(2) MeV [1996	Ta18] and 6.72	237(25) MeV [1993	3Wa04].				
Table 6 direct α emi	ssion from ^{201m} Rn,	$Ex. = 248(12) \text{ ke}^{3}$	$V^*, J_i^{\pi} = 13/2^{(-1)}$	⁺⁾ , $T_{1/2} = 3.8(4) s^*$	**, $BR_{\alpha} = \approx 90 \%$ *	*.			
$E_{\alpha}(c.m.)$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(abs)$	${ m J}_f^\pi$	$E_{daughter}(^{197})$	Po) coincide	ent γ-rays	R_0 (fm)	@ HF	
6.910(2)	6.733(2)***	$pprox 90~\%^{**}$	13/2 ⁽⁺⁾	0.199(11)			1.5156(7	71) ≈ 1.1	.6
* [2017 ** [197 *** We	A134]. 1Ho01]. ighted average of 6.	773(2) MeV [199	6Ta18] and 6.7	7721(25) MeV [199	93Wa04].				
Table 7 direct α emi	ssion from ²⁰⁵ Ra, J_i^2	$\tau = (3^-), T_{1/2} = 2$	10^{+41}_{-26} ms*, <i>BF</i>	$R_{\alpha} = \approx 100 \%.$					
$E_{\alpha}(\text{c.m.})$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(abs)$	J_f^{π}	<i>E</i> _{daughter} (²⁰¹ Rn)	coincident	γ-rays	R ₀ (fm) [@]	HF	
7.498(8)	7.352(8)**	pprox 100~%	(3 ⁻)	0.0			1.5269(91)) $1.5^{+0.5}_{-0.3}$	

* Weighted average of 210^{+60}_{-40} ms [1996Le09] and 210^{+55}_{-35} ms [1995Le15]. ** Weighted average of 7.340(20) MeV [1996Le09], 7.350(25) MeV [1995Le15], and 7.340(20) MeV [1995Le04]. In addition [1987He10] report one peak from 205 Ra at 7.360(20) MeV which may an unresolved combination of the two isomers.

Table 8

$E_{\alpha}(c.m.)$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(abs)$	${\sf J}_f^{\pi}$	$E_{daughter}(^{201}\mathrm{Rn})$	coincident γ -rays	$R_0 \; (fm)^@$	HF
7.519(16)	7.372(16)**	$\approx 100~\%$	13/2 ⁽⁺⁾	0.248(12)		1.5269(91)	$1.5_{-0.4}^{+0.5}$
* Weight ** Weigl	ed average of 210^{+60}_{-40} nted average of 7.370) ms [1996Le09) (20) MeV [1990] and 210 ⁺⁵⁵ m 6Le09], and 7.3	s [1995Le15]. 75(25) MeV [1995Le15].		
Table 9 direct α emis	sion from ^{209m} Th*, E	Ex. = unk, $J_i^{\pi} = ($	$(13/2^+), T_{1/2} = 1$	$2.5^{+1.7}_{-0.7} \text{ ms}^{**}, BR_{\alpha} = 10$	0 %.		
Table 9direct α emis $E_{\alpha}(c.m.)$	sion from 209m Th*, E E_{lpha} (lab)	$Ex. = unk, J_i^{\pi} = (I_{\alpha}(abs))$	$(13/2^+), T_{1/2} =$ J_f^{π}	$2.5^{+1.7}_{-0.7} \text{ ms}^{**}, BR_{\alpha} = 10$ $E_{daughter}(^{205}\text{Ra})$	0 %. coincident γ-rays	$R_0 (fm)^@$	HF

** Weighted average of 8.123(25) MeV [2010He25], and 8.080(50) MeV [1996Ik01].

direct α emission from ^{205m}Ra, Ex. = 278(31) keV, $J_i^{\pi} = 13/2^{(+)}$, $T_{1/2} = 182^{+38}_{-24}$ ms*, $BR_{\alpha} = \approx 100$ %.

References used in the Tables

- [1] 1950Wi67 G. Wilkinson, Phys. Rev. 80, 495 (1950). https://doi.org/10.1103/PhysRev.80.495
- [2] 1951Wi08 G. Wilkinson, H. G. Hicks, Phys. Rev. 81, 540 (1951). https://doi.org/10.1103/PhysRev.81.540
- [3] 1963Ka17 M. Karras, G. Andersson, M. Nurmia, Arkiv Fysik 23, 57 (1963).
- [4] 1963Ra15 G. V. S. Rayudu, L. Yaffe, Can. J. Chem. 41, 2544 (1963). https://doi.org/10.1139/v63-374
- [5] 1963Ry01 H. Ryde, L. Persson, K. Oelsner-Ryde, Arkiv Fysik 23, 171 (1963).
- A. J. 407 [6] **1963Sa14** Santoni, A. Caruette, Valentin, J. Phys. (Paris) 24, (1963). https://doi.org/10.1051/jphys:01963002406040701
- [7] 1963Zy01 J. Zylicz, Z. Sujkowski, J. Jastrzebski, O. Wolczek, S. Chojnacki, I. Yutlandov, Nucl. Phys. 42, 330 (1963). https://doi.org/10.1016/0029-5582(63)90740-5
- [8] 1965Br17 C. Brun, Y. Le Beyec, M. Lefort, Phys. Letters 16, 286 (1965). https://doi.org/10.1016/0031-9163(65)90854-1
- [9] 1965Nu04 M. Nurmia, K. Valli, E. K. Hyde, UCRL-16580, p. 80 (1965).
- [10] 1965Si22 A. Siivola, UCRL-11828, p. 26 (1965).
- [11] 1966Ho16 K. J. Hofstetter, P. J. Daly, Phys. Rev. 152, 1050 (1966). https://doi.org/10.1103/PhysRev.152.1050
- [12] 1967Le21 Y. Le Beyec, M. Lefort, Arkiv Fysik 36, 183 (1967)
- [13] **1967Si09** A. Siivola, Nucl. Phys. A**101**, 129 (1967). https://doi.org/10.1016/0375-9474(67)90292-8
- [14] 1967Va17 K. Valli, M. J. Nurmia, E. K. Hyde, Phys. Rev. 159, 1013 (1967). https://doi.org/10.1103/PhysRev.159.1013
- [15] 1970ErZX B. R. Erdal, M. Finger, R. Foucher, J. P. Husson, J. Jastrzebski, A. Johnson, C. Sebille, R. Henck, R. Regal, P. Siffert, G. Astner, E. Beck, A. Kjelberg, F. Munnich, P. Patzelt, Proc. Int. Conf. Prop. Nuclei Far from Region of Beta-Stability, Leysin, Switzerland, Vol. 2, p. 1045 (1970); Cern 70-30 (1970).
- [16] 1970FiZZ M. Finger, R. Foucher, J. P. Husson, J. Jastrzebski, A. Johnson, C. Sebille, R. Henck, J. M. Kuchly, R. Regal, P. Siffert, G. Astner, B. R. Erdal, E. Hagebo, A. Kjelberg, F. Munnich, P. Patzelt, E. Beck, H. Kugler, CERN-70-29 (1970).
- [17] 1970HoZT CONF Leysin Vol1 P523, CERN 70-30.
- [18] 1971Ho01 P. Hornshoj, K. Wilsky, P. G. Hansen, A. Lindahl, O. B. Nielsen, Nucl. Phys. A163, 277 (1971). https://doi.org/10.1016/0375-9474(71)90536-7
- [19] 1973BoXL J. D. Bowman, E. K. Hyde, R. E. Eppley, LBL-1666, p. 4 (1973).
- [20] 1975Be17 V. Berg, R. Foucher, A. Hoglund, Nucl. Phys. A244, 462 (1975). https://doi.org/10.1016/0375-9474(75)90552-7
- [21] 1981Sc01 W. Schier, J. Chervenak, A. C. DiRienzo, H. Enge, D. Grogan, J. Molitoris, M. Salomaa, A. Sperduto, Phys. Rev. C23, 261 (1981). https://doi.org/10.1103/PhysRevC.23.261

- [22] 1987He10 F. P. Hessberger, S. Hofmann, G. Munzenberg, A. B. Quint, K. Summerer, P. Armbruster Europhys. Lett. 3, 895 (1987).
- [23] 1987Wo04 J. Wouters, D. Vandeplassche, E. van Walle, N. Severijns, L. Vanneste, Nucl. Instrum. Methods Phys. Res. B26, 463 (1987). https://doi.org/10.1016/0168-583X(87)90796-8
- [24] 1993Wa04 J. Wauters, P. Dendooven, M. Huyse, G. Reusen, P. Van Duppen, P. Lievens, and the ISOLDE Collaboration, Phys. Rev. C47, 1447 (1993). https://doi.org/10.1103/PhysRevC.47.1447
- [25] 1995Le04 M. J. Leddy, S. J. Freeman, J. L. Durell, A. G. Smith, S. J. Warburton, D. J. Blumenthal, C. N. Davids, C. J. Lister, H. T. Penttila, Phys. Rev. C51, R1047 (1995). https://doi.org/10.1103/PhysRevC.51.R1047
- [26] 1995Le15 M. Leino, J. Aysto, T. Enqvist, A. Jokinen, M. Nurmia, A. Ostrowski, W. H. Trzaska, J. Uusitalo, K. Eskola, Acta Phys. Pol. B26, 309 (1995).
- [27] 1996Ik01 H. Ikezoe, T. Ikuta, S. Hamada, Y. Nagame, I. Nishinaka, K. Tsukada, Y. Oura, T. Ohtsuki, Phys. Rev. C54, 2043 (1996). https://doi.org/10.1103/PhysRevC.54.2043
- [28] 1996IkZY H. Ikezoe, T. Ikuta, Y. Nagame, S. Hamada, I. Nishinaka, T. Ohtsuki, K. Tsukada, Y. Oura, Japan Atomic Energy Res. Inst. Tandem VDG Ann. Rept., 1995, p. 57 (1996); JAERI-Review 96-011 (1996).
- [29] 1996Le09 M. Leino, J. Uusitalo, R. G. Allatt, P. Armbruster, T. Enqvist, K. Eskola, S. Hofmann, S. Hurskanen, A. Jokinen, V. Ninov, R. D. Page, W. H. Trzaska, Z. Phys. A355, 157 (1996). https://doi.org/10.1007/s002180050093
- [30] 1996Ta18 R. B. E. Taylor, S. J. Freeman, J. L. Durell, M. J. Leddy, A. G. Smith, D. J. Blumenthal, M. P. Carpenter, C. N. Davids, C. J. Lister, R. V. F. Janssens, D. Seweryniak, Phys. Rev. C54, 2926 (1996). https://doi.org/10.1103/PhysRevC.54.2926
- [31] 2002Un02 M. P. Unterweger, Appl. Radiat. Isot. 56, 125 (2002). https://doi.org/10.1016/S0969-8043(01)00177-4
- [32] 2002Va13 K. Van de Vel, A. N. Andreyev, M. Huyse, P. Van Duppen, J. F. C. Cocks, O. Dorvaux, P. T. Greenlees, K. Helariutta, P. Jones, R. Julin, S. Juutinen, H. Kettunen, P. Kuusiniemi, M. Leino, M. Muikku, P. Nieminen, K. Eskola, R. Wyss, Phys. Rev. C 65, 064301 (2002). https://doi.org/10.1103/PhysRevC.65.064301
- [33] 2010He25 J. A. Heredia, A. N. Andreyev, S. Antalic, S. Hofmann, D. Ackermann, V. F. Comas, S. Heinz, F. P. Hessberger, B. Kindler, J. Khuyagbaatar, B. Lommel, R. Mann, Eur. Phys. J. A 46, 337 (2010). https://doi.org/10.1140/epja/i2010-11058-1
- [34] 2017Al34 N. A. Althubiti, D. Atanasov, K. Blaum, T. E. Cocolios, T. Day Goodacre, G. J. Farooq-Smith, D. V. Fedorov, V. N. Fedosseev, S. George, F. Herfurth, K. Heyde, S. Kreim, D. Lunney, K. M. Lynch, V. Manea, B. A. Marsh, D. Neidherr, M. Rosenbusch, R. E. Rossel, S. Rothe, L. Schweikhard, M. D. Seliverstov, A. Welker, F. Wienholtz, R. N. Wolf, K. Zuber, for the ISOLTRAP Collaboration, Phys. Rev. C 96, 044325 (2017). https://doi.org/10.1103/PhysRevC.96. 044325
- [35] 2021Wa16 M. Wang, W. J. Huang, F. G. Kondev, G. Audi, S. Naimi, Chin. Phys. C 45, 030003 (2021). https://doi.org/10.1088/1674-1137/abddaf