$\label{eq:constraint} \begin{bmatrix} 248 No \\ Q\epsilon\alpha = 12.24\# \, MeV \\ Q\alpha = 9.30\# \, MeV \end{bmatrix}$

Fig. 1: Known experimental values for heavy particle emission of the even-Z T_z = +22 nuclei.

Last updated 4/15/24

Table 1

Observed and predicted β -delayed particle emission from the even-Z, $T_z = +22$ nuclei. J^{π} values for ²⁰⁴Tl and ²⁰⁸Bi are taken from ENSDF. Unless otherwise stated, all Q-values are taken from [2021Wa16] or deduced from values therein.

Nuclide	Ex.	J^{π}	$T_{1/2}$	Qε	$Q_{\varepsilon p}$	$Q_{\varepsilon \alpha}$	Experimental
208 DI		0+	. 11	4.000(2)			
212 PD		0	stable	-4.999(2)			
²¹² Po (ThC')		0^+	294.965(178) ns	-2.252(2)			[2022Be20]
212m1 Po	1.4764(2)*	(8+)	17.1(2) ns	-0.776(2)			[1978Li14]
^{212m2} Po	2.930(10)*	(18^{+})	45.1(6) s	0.678(2)	-4.235(2)	6.886(2)	[1962Pe15]
²¹⁶ Rn		0^+	29(4) µs	-2.003(7)			[2018Sa45]
²²⁰ Ra		0^+	18(2) ms	-1.210(8)			[2000He17]
²²⁴ Th		0^+	1.05(2) s	-0.239(10)			[1978IbZZ]
²²⁸ U		0^+	9.1(2) m	0.296(14)	-3.874(14)	6.561(14)	[1961Ru06]
²³² Pu		0^+	33.7(5) m	1.00(10)#	-2.734(17)#	7.012(17)#	[2000La25, 1973Ja06]
²³⁶ Cm		0^+	410(50) s	1.81(12)#	-1.618(27)	8.07(10)#	[2010Kh06]
²⁴⁰ Cf		0^+	1.00(12) m***	2.32(15)#	-0.45(15)#	9.52(12)#	[1995La09, 1980Vi04]
²⁴⁴ Fm		0^+	3.12(8) ms	2.94(27)#	0.69(27)#	10.88(25)#	[2008Kh10]
²⁴⁸ No		0^+		3.74(29)#	1.73(29)#	12.24(29)#	

* [2020Au03].

** Weighted average of 33.1(8) m [2000La25] and 34.1(7) m [1973Ja06].

*** Weighted average of 0.9(2) m [1995La09] and 1.06(15) m [1980Vi04].

Table 2

Particle separation, Q-values, and measured values for direct particle emission of the even-Z, $T_z = +22$ nuclei. Unless otherwise stated, all S and Q-values are taken from [2021Wa16] or deduced from values therein.

Nuclide	S_p	S _{2p}	Qα	BRα	BR _{SF}	Experimental
²⁰⁸ Pb	8.003(5)	15.381(20)	0.517(1)			
²¹² Po (ThC')	5.799(5)	10.219(1)	8.9542(1)	100%		[2023Sa32, 1991Rv01, 1974Hu15, 1971De52, 1971Gr17, 1961Rv02,
						2022Be20, 2018Sa45, 2018So16, 2017Ap03, 2014Be39, 2013Be31,
						2012Be14, 2003Da24, 2001MoZV, 1982Bo04, 1976GlZM, 1975Sa06,
						1973BoXL, 1972RyZX, 1965Le08, 1960Em01, 1960Ha19, 1960Ry01,
						1957Ec08, 1953Ha09, 1949Me54, 1949Va01, 1948Gh01, 1948Hi21,
212 1						1933Ro03, 1906Ha02]
^{212m1} Po	4.323(5)	8.743(1)	10.4306(2)	$\approx 42\%$		[1984Es01, 1978Li14 , 1979LiZP]
^{212m2} Po	2.869(11)	7.289(10)	11.884(10)	99.93(2)%		[1989Ku08, 1976FrZO, 1962Pe15]
²¹⁶ Rn	5.779(9)	9.855(6)	8.198(6)	100%		[1970Va13 , 2018Sa45, 1961Ru06, 1960Ru02, 1952Or03, 1949Me54]
²²⁰ Ra	5.634(10)	9.523(8)	7.594(5)	100%		[1970Va13, 1961Ru06 , 2018Sa45, 2000He17, 1990An19,
						1990AnZQ, 1989An13, 1988AnZS, 1978IbZZ, 1952Or03,
224						1950OrZZ, 1949Me54]
²²⁴ Th	5.118(12)	8.903(10)	7.299(6)	$\approx 100\%$		[2000He17, 1970Va13, 1961Ru06, 1989An13, 1988AnZS,
						1978IbZZ, 1973ScXO, 1973ScXP, 1960Ru02, 1952Or03,
228						1949Me25]
²²⁸ U	4.899(15)	8.556(14)	6.800(9)	>95%		[1961Ru06 , 1960Ru02, 1952Or03, 1951Me10, 1950OrZZ,
2325				1000		1949Me54j
²³² Pu	4.552(54)	7.832(17)	6.716(10)	$\leq 20\%$		[1973Ja06 , 2000La25, 1952Or03, 1950OrZZ]
²⁵⁰ Cm	4.061(56)	7.075(19)	7.067(5)	18(2)%		[2010Kh06, 2010AsZX]
²⁴⁰ Cf	3.55(21)#	6.034(22)	7.711(4)	98.5(23)%	1.5(2)%	[2010AsZX , 2010Kh06 , 1995La09, 1980Vi04, 1970Si19]
² ***Fm	3.07(29)#	5.00(20)#	8.55(20)#	$<\!1\%$	>97%	[2008Kh10, 2013SvZZ, 2012SvZZ, 1982Bo21, 1982BoZN,
2482.5		1.00/2014	0.00(10)			1980 v104, 1979 Ga06, 1978 GaZW, 1975 Og02]
²⁴⁰ No	2.54(31)#	4.08(23)#	9.30(10)#			

Table 3

direct α emission from ²¹²Po, J^{π} = 0⁺, T_{1/2} = 294.965(178) ns^{*}, BR_{α} = 100%.

$E_{\alpha}(c.m.)$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(abs)$	\mathbf{J}_f^{π}	$E_{daughter}(^{208}\mathrm{Pb})$	coincident γ -rays	R ₀ (fm)	HF
8.95380(12)	8.78486(12)**	100%	0^+	0.0		1.52177(18)	0.992(27)

* [2022Be20].

** Value taken from [1991Ry01], based on adjusted values of 8784.90(12) keV [1974Hu15], 8784.37(7) keV [1972RyZX] and 8784.85(31) keV [1971De52].

Table 4

direct α emission from ²¹²	n1 Po, Ex. =	1.4764(2) MeV*	$J^{\pi} = (8^+), T$	$T_{1/2} = 17.1(2) \text{ ns}^*$	*, $BR_{\alpha} = \approx 42\%$	6***
--	-------------------	----------------	----------------------	----------------------------------	---------------------------------	------

$E_{\alpha}(\text{c.m.})$	$E_{\alpha}(lab)$	$I_{\alpha}(abs)$	J_f^π	$E_{daughter}(^{208}\mathrm{Pb})$	coincident γ-rays	R ₀ (fm)	HF
10.376(30)	10.180(30)**	≈42%***	0^+	0.0		1.52177(18)	≈ 124
* [2020Au03 ** [1978Li14 ** [1984Es0]]. ŀ]. l].						

Table 5

Table 5	
direct α emission from ^{212m2} Po*, Ex. = 2.930(10) MeV**, J ^{π} = (18 ⁺), T ₁	$_{1/2} = 45.1(6) \text{ s}^{***}, BR_{\alpha} = 99.93(2)\%^{@}$

$E_{\alpha}(\text{c.m.})$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(\text{rel})$	$I_{\alpha}(abs)$	J_f^π	$E_{daughter}(^{208}\mathrm{Pb})$	coincident γ-rays	R ₀ (fm)	HF	
8.689(8) 9.270(10) 11.884(10)	8.525(8) 9.095(10) 11.660(10)	100% 1.2(2)% 2.1(3)%	96.8% 2.1(3)%	5 ⁻ 1.2(2)%	3.195(13) 3 ⁻ 0 ⁺	0.570, 2.614 2.614(14) 0.0	1.52177(2.614	18) 3.6(4) > 1.52177 1.52177	
* All val ** [2020 *** [196 @ [1989	lues from [1976F)Au03]. 62Pe15]. Ku08].	rZO], except v	where noted	1.					
Table 6 direct α emission	ssion from ²¹⁶ Rn,	$J^{\pi} = 0^+, T_{1/2}$	$\mu_2 = 45(5) \ \mu_2$	$s^*, BR_{\alpha} = 1$	00%.				
$E_{\alpha}(\text{c.m.})$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(ab)$	s) J	$\int_{f}^{\pi} E_{d}$	daughter ⁽²¹² P0)	coincident γ -rays	R ₀ (fm)	HF	
8.202(10)	8.050(10)**	100%	. 0) ⁺ 0.	0		1.5658(59) 1.03	8(12)
* [1961] ** [1970	Ru06].)Va13].								
Table 7 direct α emission	ssion from ²²⁰ Ra,	$J^{\pi} = 0^+, T_{1/2}$	$h_2 = 18(2) \text{ m}$	$s^*, BR_{\alpha} = 1$	00%.				
$E_{\alpha}(c.m.)$	$E_{\alpha}(\text{lab})^{**}$	$I_{\alpha}(\text{rel})$	$I_{\alpha}(a)$	bs) J	$f_f^{\pi} = E_{daughter} (^{21})$	⁶ Rn) coincident	γ-rays	R ₀ (fm)	HF
7.03 7.591(7)	6.90 7.453(7)***	1.0(4)% 100%	1.0(4 99%	4)% 2	$^{+}_{+}$ 0.461(2) [@] + 0.0	0.4614(2)	<u>ð</u>	1.5539(57) 1.5539(57)	$2.6^{+2.3}_{-1.0} \\ 0.99(11)$

* [2000He17].

** In addition to those listed, [2000He17] reported a 5(3)% 7393(15) MeV α transition to a state at 58(18) keV in ²¹⁶Rn, which would be very unlikely in this nucleus.

*** Weighted average of 7.455(10) MeV [1970Va13] and 7.450(10) MeV [1961Ru06].

@ [2007Wu02].

Table 8

Table	ð						
direct	α emission	from ²²⁴ T	h, $J^{\pi} = 0^{+}$	$^{+}, T_{1/2} = 1$	1.05(2) s*,	$BR_{\alpha} = \approx 1$	00%.

$E_{\alpha}(\text{c.m.})$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(\text{rel})$	$I_{\alpha}(abs)$	\mathbf{J}_f^{π}	E _{daughter} (²²⁰ Ra) [@]	coincident γ-rays [@]	R ₀ (fm)	HF
6.82	6.70	0.6(4)%	0.5(3)%	(3^{-})	0.474(2)	0.1784(2), 0.2957(2)	1.5385(27)	$\begin{array}{c} 3^{+4}_{-1} \\ 1.5^{+1.1}_{-0.5} \\ 0.91^{+0.13}_{-0.10} \\ 0.962(31) \end{array}$
6.89	6.77	1.9(8)%	1.5(6)%	4^{+}	0.4101(2)	0.1784(2), 0.2316(2)	1.5385(27)	
7.122(8)	6.995(8)**	24(3)%	19(2)%	2^{+}	0.1784(2)	0.1784(2)	1.5385(27)	
7.293(7)	7.163(7)***	100%	79(2)%	0^{+}	0.0		1.5385(27)	

* [1978IbZZ].

** Weighted average of 6.984(15) MeV [2000He17] and 7.000(10) MeV [1970Va13].

*** Weighted average of 7.156(10) MeV [2000He17] and 7.170(10) MeV [1970Va13].

@ [2011Br05].

Table 9 direct α emission from ²²⁸U, $J^{\pi} = 0^+$, $T_{1/2} = 9.1(2)$ m*, $BR_{\alpha} = > 95\%$.

$E_{\alpha}(c.m.)$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(\text{rel})$	$I_{\alpha}(abs)$	$\mathbf{J}_f^{\boldsymbol{\pi}}$	$E_{daughter}(^{224}\text{Th})^{**}$	coincident γ-rays**	R ₀ (fm)	HF
6.514	6.400	0.7(2)%	0.5(2)%	4 ⁺	0.2841(5)	0.0981(3), 0.1860(3)	1.5237(51)	$\begin{array}{c} 9^{+6}_{-3} \\ 9^{+7}_{-3} \\ 0.94^{+0.21}_{-0.16} \\ 0.98(8) \end{array}$
6.555	6.440	1.0(4)%	0.7(3)%	(1 ⁻)	0.2510(3)	0.0981(3), 0.1529(3), 0.246(3)	1.5237(51)	
6.708	6.590	41(8)%	29(4)%	2 ⁺	0.0981(3)	0.0981(3)	1.5237(51)	
6.799(10)	6.680(10)	100(6)%	70(4)%	0 ⁺	0.0		1.5237(51)	

* All values from [1961Ru06], except where noted .

** [1991Sc08].

Table 10

direct α emission from ²³²Pu*, J^{π} = 0⁺, T_{1/2} = 33.7(5) m**, BR_{α} = \leq 20%.

$E_{\alpha}(\text{c.m.})$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(\text{rel})$	$I_{\alpha}(abs)$	\mathbf{J}_f^{π}	$E_{daughter}(^{228}\mathrm{U})$	coincident γ-rays	R ₀ (fm)	HF
6.657(10) 6.716(10)	6.542(10) 6.600(10)	61% 100%	≤7.6% ≤12.4%	$2^+_{0^+}$	0.059(14) 0.0	0.059(14)	1.487(50) 1.487(50)	>0.55 >0.60

* All values from [1973Ja06]. except where noted.

** Weighted average of 33.1(8) m [2000La25] and 34.1(7) m [1973Ja06].

Table 11

direct α emission from ²³⁶Cm, J^{π} = 0⁺, T_{1/2} = 410(50) s*, *BR*_{α} = 18(2)%.

$E_{\alpha}(c.m.)$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(\text{rel})$	$I_{\alpha}(abs)$	J_f^{π}	$E_{daughter}(^{232}\mathrm{Pu})$	coincident γ -rays	R ₀ (fm)	HF
7.013(5) 7.067(5)	6.894(5)** 6.894(5)**	$\approx 25\%^{***}$ 100%***	$\approx 4\%$ $\approx 14\%$	$2^+_{0^+}$	0.054(7) 0.0	0.054(7)	1.5181(67) 1.5181(67)	≈ 2.4 ≈ 1.0

* [2010Kh06].

** [2010AsZX].

*** Estimated by evaluator based on Fig 1b in [2010AsZX].

Table 12

Table	14						
direct	α emission	from ²⁴⁰	Cf, $J^{\pi} =$	$0^+, T_{1/2} =$	= 1.00(12) m	*, $BR_{\alpha} =$	98.5(23)%**

$E_{\alpha}(\text{c.m.})$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(\text{rel})$	$I_{\alpha}(abs)$	\mathbf{J}_f^{π}	$E_{daughter}(^{236}\mathrm{Cm})$	coincident γ -rays	R ₀ (fm)	HF
7.663(4)	7.535(4)**	≈ 33%***	$\approx 25\%$	2+	0.054(7)	0.046(6)	1.5027(72)	≈1.9
7.709(4)	7.581(4)**	100%***	pprox 75%	0^+	0.0		1.5027(72)	≈ 0.9

* Weighted average of 0.9(2) m [1995La09] and 1.06(15) m [1980Vi04].

** [2010Kh06].

** [2010AsZX].

References used in the Tables

- [1] 1906Ha02 O. Hahn, Phys. Z. 7, 412 (1906).
- [2] 1933R003 S. Rosenblum, G. Dupouy, J. Phys. Radium 4, 262 (1933). https://doi.org/10.1051/jphysrad:0193300405026200
- [3] 1948Gh01 A. Ghiorso, W. W. Meinke, G.T.Seaborg, Phys.Rev. 74, 695 (1948). https://doi.org/10.1103/PhysRev.74.695
- [4] 1948Hi21 J. M. Hill, Proc. Cambridge Phil. Soc. 44, 440 (1948). https://doi.org/10.1017/S0305004100024439
- [5] 1949Me54 W. W. Meinke, A. Ghiorso, G. T. Seaborg, Phys. Rev. 75, 314 (1949). https://doi.org/10.1103/PhysRev.75.314
- [6] 1949Va01 F. W. Van Name, Jr., Phys. Rev. 75, 100 (1949). https://doi.org/10.1103/PhysRev.75.100
- [7] 1951Me10 W. W. Meinke, A. Ghiorso, G. T. Seaborg, Phys. Rev. 81, 782 (1951). https://doi.org/10.1103/PhysRev.81.782
- [8] 1952Or03 D. A. Orth, Thesis, Univ. California (1952).; UCRL-1059 (1952).

- [9] 1953Ha09 T. Hayashi, Y. Ishizaki, I. Kumabe, J. Phys. Soc. Jpn 8, 110 (1953). https://doi.org/10.1143/JPSJ.8.110
- [10] 1957Ec08 A. Eckhardt, K. Heilig, Exp. Tech. Phys. 5, 13 (1957).
- [11] 1960Em01 G. T. Emery, W. R. Kane, Phys. Rev. 118, 755 (1960). https://doi.org/10.1103/PhysRev.118.755
- [12] 1960Ha19 U. Hauser, W. Kerler, Z. Phys. 158, 405 (1960). https://doi.org/10.1007/BF01327018
- [13] 1960Ry01 A. Rytz, Compt. Rend. 250, 3156 (1960)
- [14] 1960Ru02 C. P. Ruiz, F. Asaro, I. Perlman, UCRL-9093, 47 (1960).
- [15] 1961Ru06 C. P. Ruiz, Thesis, Univ. California (1961).; UCRL-9511 (1961).
- [16] 1961Ry02 A. Rytz, Helv. Phys. Acta 34, 240 (1961).
- [17] 1962Pe15 I. Perlman, F. Asaro, A. Ghiorso, A. Larsh, R. Latimer, Phys. Rev. 127, 917 (1962). https://doi.org/10.1103/PhysRev.127.917
- [18] 1965Le08 C. -F. Leang, Compt. Rend. 260, 3037 (1965).
- [19] 1970Si19 R. J. Silva, R. L. Hahn, K. S. Toth, M. L. Mallory, C. E. Bemis, Jr., P. F. Dittner, O. L. Keller, Phys. Rev. C2, 1948 (1970). https://doi.org/10.1103/PhysRevC. 2.1948
- [20] 1970Va13 K. Valli, E. K. Hyde, J. Borggreen, Phys. Rev. C1, 2115 (1970). https://doi.org/10.1103/PhysRevC.1.2115
- [21] 1971De52 H. Del Castillo, R. Roos, A. Tejera, F. Alba, Rev. Mex. Fis. 20, 17 (1971).
- [22] 1971Gr17 B. Grennberg, A. Rytz, Metrologia 7, 65 (1971). https://doi.org/10.1088/0026-1394/7/2/005
- [23] 1972RyZX A. Rytz, B. Grennberg, D. J. Gorman, Proc. Int. Conf. Atomic Masses and Fund. Constants, 4th, Teddington, England (1971)., J. H. Sanders, A. H. Wapstra, Eds., Plenum Press, New York, p. 1 (1972).
- [24] 1973BoXL J. D. Bowman, E. K. Hyde, R. E. Eppley, LBL-1666, p. 4 (1973).
- [25] 1973Ja06 U. Jager, H. Munzel, G. Pfennig, Z. Phys. 258, 337 (1973).
- [26] 1973ScXO P.A. Schuster, V.E. Viola, R.G. Clark, REPT MNC-4028-12 P58.
- [27] 1973ScXP P.A. Schuster, V.E. Viola, R.G. Clark, , REPT ORO-3491-21 P165.
- [28] 1974Hu15 E. Huenges, H. Vonach, J. Labetzki, Nucl. Instrum. Methods 121, 307 (1974). https://doi.org/10.1016/0029-554X(74).90081-0
- [29] 1975Og02 Y. T. Oganessian, A. S. Iljinov, A. G. Demin, S. P. Tretyakova, Nucl. Phys. A239, 353 (1975). https://doi.org/10.1016/0375-9474(75).90456-X
- [30] 1975Sa06 S. Sanyal, R. K. Garg, S. D. Chauhan, S. L. Gupta, S. C. Pancholi, Phys. Rev. C12, 318 (1975). https://doi.org/10.1103/PhysRevC.12.318
- [31] 1976FrZO K. Fransson, M. af Ugglas, P. Carle, T. Erikson, USIP-76-09 (1976).
- [32] 1976GIZM P. Glassel, E. Huenges, P. Maier-Komor, H. Rosler, H. J. Scheerer, H. Vonach, D. Semrad, Proc. Intern. Conf. Atomic Masses, Paris, p. 110 (1976).
- [33] 1978GaZW H. Gaeggeler, A. S. Iljinov, G. S. Popeko, W. Seidel, G. M. Ter-Akopian, S. P. Tretyakova, JINR-E7-10880 (1978).
- [34] 1978IbZZ R. Ibowski, W. Scholz, J. Bisplinghoff, H. Ernst, J. Rama Rao, T. Mayer-Kuckuk, JUL-Spez-15, p. 19 (1978)
- [35] 1978Li14 R. M. Lieder, J. P. Didelez, H. Beuscher, D. R. Haenni, M. Muller-Veggian, A. Neskakis, C. Mayer-Boricke, Phys. Rev. Lett. 41, 742 (1978). https://doi.org/10.1103/PhysRevLett.41.742
- [36] 1979Ga06 H. Gaeggeler, A. S. Iljinov, G. S. Popeko, W. Seidel, G. M. Ter-Akopian, S. P. Tretyakova, Z. Phys. A289, 415 (1979). https://doi.org/10.1007/BF01409394
- [37] 1979LiZP R. M. Lieder, J. P. Didelez, D. R. Haenni, M. Muller-Veggian, A. Neskakis, C. Mayer-Boricke, JUL-Spez-36, p. 38 (1979).
- [38] 1980Vi04 V. E. Viola, Jr., A. C. Mignerey, H. Breuer, K. L. Wolf, B. G. Glagola, W. W. Wilcke, W. U. Schroder, J. R. Huizenga, D. Hilscher, J. R. Birkelund, Phys. Rev. C22, 122 (1980). https://doi.org/10.1103/PhysRevC.22.122
- [39] 1982Bo04 J D Bowman, R E Eppley, E K Hyde, Phys Rev C25, 941 (1982). https://doi.org/10.1103/PhysRevC.25.941
- [40] 1982Bo21 D. D. Bogdanov, M. P. Ivanov, G. S. Popeko, A. M. Rodin, G. M. Ter-Akopian, V. I. Vakatov, A. S. Voronin, Phys. Lett. 113B, 213 (1982). https://doi.org/10.1016/0370-2693(82).90823-1
- [41] 1982BoZN H. Bohn, T. Faestermann, H. U. Kaufl, P. Kienle, W. Kurfurst, GSI-82-1, p. 49 (1982).

- [42] 1984Es01 K Eskola, P Eskola, M M Fowler, H Ohm, E N Treher, J B Wilhelmy, D Lee, G T Seaborg, Phys Rev C29, 2160 (1984). https://doi.org/10.1103/PhysRevC.29.2160
- [43] 1988AnZS A. N. Andreev, D. D. Bogdanov, A. V. Eremin, A. P. Kabachenko, O. A. Orlova, G. M. Ter-Akopyan, V. I. Chepigin, JINR-P7-88-830 (1988).
- [44] 1989An13 A. N. Andreev, D. D. Bogdanov, A. V. Eremin, A. P. Kabachenko, O. A. Orlova, G. M. Ter-Akopyan, V. I. Chepigin, Yad. Fiz. 50, 619 (1989); Sov. J. Nucl. Phys. 50, 381 (1989).
- [45] 1989Ku08 H. Kudo, T. Nomura, K. Sueki, M. Magara, N. Yoshida, Nucl. Phys. A 494, 203 (1989). https://doi.org/10.1016/0375-9474(89)90019-5
- [46] 1990An19 A. N. Andreev, D. D. Bogdanov, V. I. Chepigin, A. P. Kabachenko, S. Sharo, G. M. Ter-Akopian, A. V. Eremin, Z. Phys. A337, 229 (1990).
- [47] 1990AnZQ A. N. Andreev, D. D. Bogdanov, A. V. Eremin, A. P. Kabachenko, G. M. Ter-Akopyan, V. I. Chepigin, Sh. Sharo, Program and Thesis, Proc. 40th Ann. Conf. Nucl. Spectrosc. Struct. At. Nuclei, Leningrad, p. 131 (1990).
- [48] **1991Ry01** A Rytz, At Data NuclData Tables **47**, 205 (1991). https://doi.org/10.1016/0092-640X(91)90002-L
- [49] 1991Sc08 M. R. Schmorak, Nucl. Data Sheets 63, 139 (1991). https://doi.org/10.1016/S0090-3752(05).80003-1
- [50] 1995La09Yu. A. Lazarev, I. V. Shirokovsky, V. K. Utyonkov, S. P. Tretyakova, V. B. Kutner, Nucl. Phys. A588, 501 (1995). https://doi.org/10.1016/0375-9474(95).00002-I
- [51] 2000He17 F. P. Hessberger, S. Hofmann, D. Ackermann, V. Ninov, M. Leino, S. Saro, A. Andreyev, A. Lavrentev, A. G. Popeko, A. V. Yeremin, Eur. Phys. J. A 8, 521 (2000); Erratum Eur. Phys. J. A 9, 433 (2000). https://doi.org/10.1007/s100500070075
- [52] 2000La25 C. A. Laue, K. E. Gregorich, R. Sudowe, J. L. Adams, M. R. Lane, D. M. Lee, C. A. McGrath, D. A. Shaughnessy, D. A. Strellis, E. R. Sylwester, P. A. Wilk, D. C. Hoffman, Phys. Rev. C61, 067603 (2000). https://doi.org/10.1103/PhysRevC.61.067603
- [53] 2001MoZV V. A. Morozov, N. V. Morozova, Yu. V. Norseev, Zh. Sereeter, V. B. Zlokazov, JINR-E13-2001-168 (2001).
- [54] 2003Da24 F. A. Danevich, A. Sh. Georgadze, V. V. Kobychev, B. N. Kropivyansky, A. S. Nikolaiko, O. A. Ponkratenko, V. I. Tretyak, S. Yu. Zdesenko, Yu. G. Zdesenko, P. G. Bizzeti, T. F. Fazzini, P. R. Maurenzig, Phys. Rev. C 68, 035501 (2003). https://doi.org/10.1103/PhysRevC.68.035501
- [55] 2007Wu02 S. -C. Wu, Nucl. Data Sheets 108, 1057 (2007). https://doi.org/10.1016/j.nds.2007.04.001
- [56] 2008Kh10 J. Khuyagbaatar, S. Hofmann, F. P. Hessberger, D. Ackermann, H. G. Burkhard, S. Heinz, B. Kindler, I. Kojouharov, B. Lommel, R. Mann, J. Maurer, K. Nishio, Yu. Novikov, Eur. Phys. J. A 37, 177 (2008). https://doi.org/10.1140/epja/i2008-10608-4
- [57] 2010AsZX M. Asai, K. Tsukada, N. Sato, T. K. Sato, A. Toyoshima, T. Ishii, Y. Nagame, JAEA-Review 2010-056, p. 21 (2010).
- [58] 2010Kh06 J. Khuyagbaatar, F. P. Hessberger, S. Hofmann, D. Ackermann, V. S. Comas, S. Heinz, J. A. Heredia, B. Kindler, I. Kojouharov, B. Lommel, R. Mann, K. Nishio, A. Yakushev, Eur. Phys. J. A 46, 59 (2010). https://doi.org/10.1140/epja/i2010-11026-9
- [59] 2011Br05 E. Browne, J. K. Tuli, Nucl. Data Sheets 112, 1115 (2011). https://doi.org/10.1016/j.nds.2011.03.002
- [60] 2012Be14 P. Belli, R. Bernabei, R. S. Boiko, V. B. Brudanin, F. Cappella, V. Caracciolo, R. Cerulli, D. M. Chernyak, F. A. Danevich, S. d'Angelo, E. N. Galashov, A. Incicchitti, V. V. Kobychev, M. Laubenstein, V. M. Mokina, D. V. Poda, R. B. Podviyanuk, O. G. Polischuk, V. N. Shlegel, Yu. G. Stenin, J. Suhonen, V. I. Tretyak, Ya. V. Vasiliev, Phys. Rev. C 85, 044610 (2012). https://doi.org/10.1103/PhysRevC.85.044610
- [61] 2012SvZZ A. I. Svirikhin, M. L. Chelnokov, V. I. Chepigin, M. Gupta, I. N. Izosimov, D. E. Katrasev, O. N. Malyshev, S. Mullins, A. G. Popeko, E. A. Sokol, A. V. Yeremin, Proc. Intern. Symposium Exotic Nuclei, Vladivostok, (Russia)., 1-6 October 2012, Yu. E. Penionzhkevich, Eds., p. 175 (2012).
- [62] 2013Be31 G. Bellini, for the Borexino Collaboration, Eur. Phys. J. A 49, 92 (2013). https://doi.org/10.1140/epja/i2013-13092-9
- [63] 2013SvZZ A. Svirikhin, A. Andreev, V. Dushin, M. Chelnokov, V. Chepigin, M. Gupta, A. Isaev, I. Izosimov, D. Katrasev, A. Kuznetsov, O. Malyshev, A. Minkova, S. Mullins, A. Popeko, E. Sokol, A. Yeremin, Proc. 5th Intern. Workshop Nuclear Fission and Fission-Product Spectroscopy, Caen, France, p. 03005 (2013); EPJ Web of Conf. 62 (2013). https://doi.org/10.1051/epjconf/20136203005

- [64] 2014Be39 P. Belli, R. Bernabei, F. Cappella, V. Caracciolo, R. Cerulli, F. A. Danevich, A. Di Marco, A. Incicchitti, D. V. Poda, O. G. Polischuk, V. I. Tretyak, Eur. Phys. J. A 50, 134 (2014). https://doi.org/10.1140/epja/i2014-14134-6
- [65] **2017Ap03** E. Aprile, for the XENON Collaboration, Phys. Rev. D **95**, 072008 (2017). https://doi.org/10.1103/PhysRevD.95.072008
- [66] 2018Sa45 A. Saamark-Roth, L. G. Sarmiento, D. Rudolph, J. Ljungberg, B. G. Carlsson, C. Fahlander, U. Forsberg, P. Golubev, I. Ragnarsson, D. Ackermann, L. -L. Andersson, M. Block, H. Brand, D. M. Cox, A. Di Nitto, Ch. E. Dullmann, K. Eberhardt, J. Even, J. M. Gates, J. Gerl, K. E. Gregorich, C. J. Gross, R. -D. Herzberg, F. P. Hessberger, E. Jager, J. Khuyagbaatar, B. Kindler, I. Kojouharov, J. V. Kratz, J. Krier, N. Kurz, B. Lommel, A. Mistry, C. Mokry, J. P. Omtvedt, P. Papadakis, J. Runke, K. Rykaczewski, M. Schadel, H. Schaffner, B. Schausten, P. Thorle-Pospiech, N. Trautmann, T. Torres, A. Turler, A. Ward, N. Wiehl, A. Yakushev, Phys. Rev. C 98, 044307 (2018). https://doi.org/10.1103/PhysRevC.98.044307
- [67] 2018So16 A. Sonay, M. Deniz, H. T. Wong, M. Agartioglu, G. Asryan, J. H. Chen, S. Kerman, H. B. Li, J. Li, F. K. Lin, S. T. Lin, B. Sevda, V. Sharma, L. Singh, M. K. Singh, M. K. Singh, V. Singh, A. K. Soma, S. W. Yang, Q. Yue, I. O. Yildirim, M. Zeyrek, for the TEXONO Collaboration, Phys. Rev. C 98, 024602 (2018). https://doi.org/10.1103/PhysRevC.98.024602
- [68] 2021Wa16 M. Wang, W. J. Huang, F. G. Kondev, G. Audi, S. Naimi, Chin. Phys. C 45, 030003 (2021). https://doi.org/10.1088/1674-1137/abddaf
- [69] 2022Be20 B. Bergmann, J. Jelinek, Eur. Phys. J. A 58, 106 (2022). https://doi.org/10.1140/epja/s10050-022-00757-z
- [70] 2023Sa32 A. M. Sanchez, R. Mora Rodriguez, Appl. Radiat. Isot. 200, 110953 (2023). https://doi.org/10.1016/j.apradiso.2023.110953