

Fig. 1: Known experimental values for heavy particle emission of the even-Z T_z = +21/2 nuclei.

Last updated 3/28/23

Table 1

Observed and predicted β -delayed particle emission from the even-*Z*, $T_z = +21/2$ nuclei. Unless otherwise stated, all Q-values are taken from [2021Wa16] or deduced from values therein. J^{π} values for are taken from ENSDE.

Nuclide	Ex	J^{π}	$T_{1/2}$	Qε	$Q_{\varepsilon p}$	$BR_{\beta p}$	$Q_{\varepsilon \alpha}$	$BR_{\beta\alpha}$	Experimental
¹⁴¹ Nd ¹⁴⁵ Sm ¹⁴⁹ Gd ¹⁵³ Dy ¹⁵⁷ Er		3/2+ 7/2 ⁻ 7/2 ⁻ 7/2 ⁻ 3/2 ⁻	2.54(5) h 340(3) d 9.25(10) d 6.29(10) h 18.65(10) m	1.823(3) 0.616(3) 1.314(4) 2.170(2) 3.420(30)	-3.406(3) -4.192(1) -3.080(3) -1.725(4) -0.173(27)		0.524(4) 2.938(2) 3.715(4) 4.873(6) 5.475(27)		[1961Ra06] [1959Br65] [1968Ch30] [1970Ch09] [1984GrZL]
¹⁶¹ Yb ¹⁶⁵ Hf ¹⁶⁹ W ¹⁷³ Os ¹⁷⁷ Pt		3/2 ⁻ (5/2 ⁻) (5/2 ⁻) (5/2 ⁻) 5/2 ⁻	4.2(2) m 75(3) s 78(6) s* 22.4(9) s 9.8(4) s	4.060(30) 4.810(40) 5.370(30) 6.120(30) 6.677(25)	0.941(29) 2.088(32) 3.154(32) 4.370(32) 5.472(19)		6.574(28) 7.838(40) 9.099(31) 10.427(32) 11.759(32)		[1974Ad10] [1981LiZM] [1990Me12, 1992HeZV] [1995Hi02] [1993Me13]
¹⁸¹ Hg ¹⁸⁵ Pb ^{185m} Pb ¹⁸⁹ Po ¹⁹³ Rn	x	1/2 ⁻ (3/2 ⁻) (13/2 ⁺) (5/2 ⁻)	3.6(1) s 4.3(2) s 6.3(4) s 3.5(5) ms 1.15(27) ms	7.210(25) 8.217(26) 8.217(26)+x 8.640(30) 9.110(30)	6.480(18) 7.515(19) 7.515(19)+x 9.100(24) 9.820(27)	0.014(4)%	12.961(25) 13.905(26) 13.905(26)+x 15.911(30) 16.683(33)	9(3)×10 ⁻⁶ %	[1979Ho10, 1975Ho02, 1971Ho07, 1970HoZZ] [2002An15] [2002An15] [2005Va04] [2006An36, 2006AnZT]

* Weighted average of 76(6) s [1990Me12] and 80(6) s [1992HeZV].

Table 2

Particle separation, Q-values, and measured values for direct particle emission of the even-Z, $T_z = +21/2$ nuclei. Unless otherwise stated, all S and Q-values are taken from [2021Wa16] or deduced from values therein.

Nuclide	\mathbf{S}_p	S_{2p}	Qα	BR_{α}	Experimental
141 N.J	6 704(7)	11.812(4)	0.608(2)		
145 S.m	0.794(7)	11.012(4) 11.027(1)	-0.098(3)		
149 C d	0.324(3)	11.227(1) 10.420(2)	1.113(3)	$42(12) \times 10^{-4}$	[1067C - 22 1066W:12 1065C:06 1065M-48]
153 D	0.119(10)	10.439(3)	3.099(3)	4.5(12)×10 %	[190/G032, 1900W112, 1905S100, 1905W1446]
Dy	5.715(40)	9.532(5)	3.557(5)*	0.0113(17)%	[19/4100/, 196/G032, 19/8ATZZ, 19/4PeZS, 19/410ZN, 19/410ZQ, 1965Ma51, 1964Ma19, 1960Ma47, 1960To05, 1958To27]
¹⁵⁷ Er	5.164(47)	8.836(28)	3.305(27)		
¹⁶¹ Yb	4.822(36)	7.851(16)	3.154(31)		
¹⁶⁵ Hf	4.282(40)	6.920(32)	3.774(32)		
¹⁶⁹ W	3.813(32)	6.028(32)	4.293(32)		
¹⁷³ Os	3.160(39)	4.930(32)	5.055(6)	$0.020^{+0.010}_{-0.004}\%$	[1995Hi02, 1971Bo06, 1973Be67, 1971BoZK]
¹⁷⁷ Pt	2.777(17)	3.843(19)	5.643(3)	5.7(5)%	[1979Ha10, 2004GoZZ, 1992MeZW, 1992Bo04, 1982HeZM, 1973BoXL, 1970Ha18, 1966Si08]
¹⁸¹ Hg	2.324(16)	2.971(17)	6.284(4)	26.3(41)%**	[1979Ha10 , 1996Pa01, 1992BoZO, 1990SaZU, 1986Ke03, 1984ScZQ, 1982HeZM, 1970Ha18, 1969NaZT, 1969NaZU]
¹⁸⁵ Pb	1.947(19)	2.314(18)	6.695(5)	42(25)%***	[2005Va04, 2002An15, 1984ScZQ, 1982HeZM, 1980Sc09, 1975Ca06, 1974CaYE]
^{185m} Pb	1.947(19)-x	2.314(18)-x	6.695(5) + x	50(25)%	[2002Va15 , 2005Va04, 1975Ca06, 1974CaYE
¹⁸⁹ Po	1.516(25)	1.013(23)	7.694(15)	$\approx 100\%^{@}$	[2005Va04 , 2000AnZZ, 1999An52]
¹⁹³ Rn	1.172(38)	0.466(26)	8.040(12)	100%@	[2006An36 , 2006AnZT]

* From α energy, 3.559(4) in [2021Wa16].

** Sum of α intensities from [1979Ha10].

*** Weighted average of 50(25)% [2002AN15] and 34(25)% [2005Va04].

[@] Based on short Half-life.

Table 3

direct α emiss	Here α emission from ¹⁴⁹ Gd, $J^{\pi} = 7/2^{-}$, $T_{1/2} = 9.25(10) d^*$, $BR_{\alpha} = 4.3(12) \times 10^{-4} \%^{**}$.												
$E_{\alpha}(\text{c.m.})$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(abs)$	J_f^{π}	$E_{daughter}(^{145}\mathrm{Sm})$	coincident γ -rays	R ₀ (fm)	HF						
3.099(5)	3.016(5)***	$4.3(12) \times 10^{-4}\%^{**}$	7/2-	0.0		1.5722(55)	$2.5^{+1.1}_{-0.7}$						

* [1968Ch30].

** Weighted average of $4.0(12) \times 10^{-4}$ % [1966Wi12] and $4.6(15) \times 10^{-4}$ % [19665Si06].

*** 3.018(5) MeV in [1967Go32] (adjusted to 3.016(5) MeV in 1999Ry01).

Table 4

direct α emission from ¹⁵³ Dy, J ^{π} = 7/2 ⁻ , 7	$f_{1/2} = 6.29(10) \text{ h}^*, BR_{\alpha} = 0.0113(17)\%^{**}.$
---	--

$E_{\alpha}(\text{c.m.})$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(\text{rel})$)	$I_{\alpha}(abs)$		J_f^{π}	Edaughte	_{er} (¹⁴⁹ Gd)	coincident	γ-rays	R ₀ (fm)	HF
3.394(5) 3.557(5)	3.305(5)* 3.464(5)*	** 0.09(7 ** 100%)%** **	2.12e ⁻⁶ % 0.01133(1	7)%**	5/2 ⁻ 0.0	0.165 7/2 ⁻		0.165		1.560(21) 1.560(21)	$50^{+190}_{-30}\\0.9^{+0.5}_{-0.3}$
* [197 ** [19 *** [1	0Ch09]. 74To07]. 967Go32].											
Table 5 direct α em	nission from ¹⁷³	³ Os, $J^{\pi} = (5/2^{-})$, T _{1/2} = 22.4	4(9) s*, <i>BR</i>	$\alpha = 0.020^+_{}$	$-10_{-4}\% **.$						
$E_{\alpha}(\text{c.m.})$	$E_{\alpha}(lab)$	$I_{\alpha}(abs$	5)	$\mathbf{J}_{f}^{\pmb{\pi}}$		$E_{daughter}(^{1}$	¹⁶⁹ W)	coincident γ	-rays	R ₀ (fm)	HF	
5.055(7)	4.938(7)	* 0.0113	33(17)%**	(5/2)	0.0				1.562(24)	7^{+9}_{-4}	
* [199 ** [19 Table 6 direct α em	5Hi02]. 71Bo06]. nission from ¹⁷⁷	7 Pt*, J ^{π} = (5/2 ⁻¹)), $T_{1/2} = 9.8$	(4) s**, <i>BF</i>	$R_{\alpha} = 5.7(5)$	%.						
$E_{\alpha}(\text{c.m.})$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(\text{rel})$	$I_{\alpha}(ab)$	s) .	\int_{f}^{π}	Edaughter	(¹⁷³ Os)	coincident γ	-rays I	R ₀ (fm)	HF	
5.561(10) 5.655(6)	5.435(10) 5.527(6)	13(2)% 100(8)%	0.65(: 5.0(4)	5)% %	(7/2 ⁻) (5/2 ⁻)	0.0916(1 0.0)***	0.0916***	1	1.563(37) 1.563(37)	$\begin{array}{c} 3.9^{+1.2}_{-0.9} \\ 1.41^{+0.29}_{-0.24} \end{array}$	
* All v ** [19 *** [1	values from [19 93Me13]. 991Ka05].	79Ho10], excep	t where note	d.								
Table 7 direct α em	nission from ¹⁸¹	Hg*, $J^{\pi} = 1/2^{-1}$, T _{1/2} = 3.6(1) s, BR_{α} =	=26.3(41)%	6.						
$E_{\alpha}(\text{c.m.})$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(\text{rel})$	$I_{\alpha}(abs)$	$\mathbf{J}_f^{\boldsymbol{\pi}}$	$E_{daughter}(^{1}$	¹⁷³ Os) c	coincident γ	-rays		R ₀ (fm)	HF	
6.050(10) 6.072(10) 6.142(5)	5.916(10) 5.938(10) 6.006(5)	5.2(24)% 7.0(21)% 100(17)%	1.2(5)% 1.6(4)% 23(4)%	(5/2 ⁻) (3/2 ⁻) (1/2 ⁻)	0.2398(4) 0.2142(5) 0.1474(4)	() () ()).0809, 0.09).2142).1474	24, 0.1474, 0.1	587, 0.2398	1.5250(3) 1.5250(3) 1.5250(3)	$\begin{array}{cccc} 3) & 64^{+28}_{-17} \\ 3) & 27^{+10}_{-7} \\ 3) & 0.87^{+0.}_{-0.} \end{array}$	32 21
6.208(10)	6.071(10)	1.7(4)%	0.39(7)%		0.0810(4)	0	0.0810			1.5250(3)	3) 23^{+11}_{-6}	

 \ast All values from [1979Ho10], except where noted.

0.57(16)%

** Sum of α intensities from [1979Ha10].

6.148(10)

Table 8

6.287(10)

direct α emission from ¹⁸⁵Pb*, $J^{\pi} = (3/2^{-})$, $T_{1/2} = 6.3(4)$ s, $BR_{\alpha} = 42(25)\%^{**}$.

0.13(3)%

 $(5/2^{-})$

0.0

$E_{\alpha}(\text{c.m.})$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(\text{rel})$	$I_{\alpha}(abs)$	${ m J}_f^{\pi}$	$E_{daughter}(^{173}\mathrm{Os})$	coincident γ -rays	R ₀ (fm)	HF
6.427(5) 6.629(5) 6.693	6.288 (5) 6.486 (5) 6.548	100(4)% 79(5)% <0.6%	24(14)% 18(11)% <1.4%	(3/2 ⁻) (3/2 ⁻) 1/2 ⁻	0.269 0.064 0.0	0.269, 0.205	1.495(11) 1.495(11) 1.495(11)	$\begin{array}{c} 1.7^{+2.8}_{-0.8} \\ 13^{+22}_{-6} \\ > 700 \end{array}$

1.5250(33)

 23_{-6} 70_{-20}^{+60}

* All values from [2002An15], except where noted. ** Weighted average of 50(250% [2002AN15] and 34(25)% [2005Va04].

Table 9

$E_{\alpha}(\text{c.m.})$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(abs)$	J_f^{π}	$E_{daughter}(^{173}\mathrm{Os})$	coincident γ -rays	R ₀ (fm)	HF
6.550(5)	6.408 (5)	50(25)%	(13/2+)	x		1.495(11)	$1.7^{+1.9}_{-0.7}$

direct α emission from ^{185m}Pb*, Ex = unk, J^{π} = (13/2⁺), T_{1/2} = 4.3(2) s, BR_{α} =50(25)%.

* All values from [2002An15].

Table 10

direct α emission from ¹⁸⁹Po*, J^{π} = (7/2⁻), T_{1/2} = 3.5(5) ms, BR_{α} =100%.

$E_{\alpha}(c.m.)$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(\text{rel})$	$I_{\alpha}(abs)$	\mathbf{J}_f^{π}	$E_{daughter}(^{173}\mathrm{Os})$	coincident γ -rays	R ₀ (fm)	HF
7.416(15) 7.467(20)	7.259(15) 7.309(20)	100(21)% 15(7)%	80(12)% 12(5)%	(5/2 ⁻)	0.280 0.226	0.280 0.226	1.4991(51) 1.4991(51)	$0.18^{+0.07}_{-0.05}**$ $1.8^{+1.8}_{-0.7}$
7.695(20)	7.53(20)	10(8)%	8(6)%	(3/2-)	0.0		1.4991(51)	14_{-7}^{+49}

* All values from [2005Va04].

** The reason for this unphysically low value is unknown.

Table 11

direct α emission from ¹⁹³Rn*, J^{π} = , T_{1/2} = 1.15(27) ms, *BR*_{α} =100%.

$E_{\alpha}(c.m.)$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(\text{rel})$	$I_{\alpha}(abs)$	\mathbf{J}_f^{π}	$E_{daughter}(^{173}\mathrm{Os})$	coincident γ-rays	R ₀ (fm)	HF
7.848(15) 8.042(20)	7.685(15) 7.875(20)	100(27)% 35(19)%	74(20)% 26(12)%	(5/2-)	0.194 0.0	0.194	1.561(16) 1.561(16)	${}^{1.0^{+0.8}_{-0.5}}_{10^{+14}_{-6}}$

* All values from [20006An14].

References used in the Tables

- [1] 1958To27 K. S. Toth, J. O. Rasmussen, Phys. Rev. 109, 121 (1958). https://doi.org/10.1103/PhysRev.109.121
- [2] 1959Br65 A. R. Brosi, B. H. Ketelle, H. C. Thomas, R. J. Kerr, Phys. Rev. 113, 239 (1959). https://doi.org/10.1103/PhysRev.113.239
- [3] 1960Ma47 R. D. Macfarlane, UCRL-9566, p. 46 (1960).
- [4] 1960To05 K. S. Toth, J. O. Rasmussen, Nuclear Phys. 16, 474 (1960). https://doi.org/10.1016/S0029-5582(60)81008-5
- [5] 1961Ra06 L. A. Rayburn, Phys. Rev. 122, 168 (1961). https://doi.org/10.1103/PhysRev.122.168
- [6] 1964Ma19 R. D. Macfarlane, D. W. Seegmiller, Nucl. Phys. 53, 449 (1964). https://doi.org/10.1016/0029-5582(64)90624-8
- [7] 1965Ma48 I. Mahunka, M. Mahunka, T. Fenyes, Yadern. Fiz. 2, 201 (1965); Soviet J. Nucl. Phys. 2, 143 (1966).
- [8] 1965Ma51 I. Mahunka, T. Fenyes, Izv. Akad. Nauk SSSR, Ser. Fiz. 29, 1121 (1965); Bull. Acad. Sci. USSR, Phys. Ser. 29, 1126 (1966).
- [9] 1965Si06 A. Siivola, G. Graeffe, Nucl. Phys. 64, 161 (1965). https://doi.org/10.1016/0029-5582(65)90848-5
- [10] 1966Si08 A. Siivola, Nucl. Phys. 84, 385 (1966). https://doi.org/10. 1016/0029-5582(66)90377-4
- [11] 1966Wi12 I. R. Williams, K. S. Toth, T. H. Handley, Nucl. Phys. 84, 609 (1966). https://doi.org/10.1016/0029-5582(66)91018-2
- [12] 1967Go32 N. A. Golovkov, K. Y. Gromov, N. A. Lebedev, B. Makhmudov, A. S. Rudnev, V. G. Chumin, Izv. Akad. Nauk SSSR, Ser. Fiz. 31, 1618 (1967); Bull. Acad. Sci. USSR, Phys. Ser. 31, 1657 (1968).
- [13] 1968Ch30 Y. Y. Chu, E. M. Franz, G. Friedlander, Phys. Rev. 175, 1523 (1968). https://doi.org/10.1103/PhysRev.175.1523 bibitem1969NaZT 1969NaZT R. A. Naumann, Proc. Int. Conf. Radioactivity in Nucl. Spectrosc., Nashville, Tenn (1969), J. H. Hamilton, J. C. Manthuruthil, Eds., Gordon and Breach, New York, N. Y., Vol. I, p. 449 (1972).
- [14] 1969NaZU R. Naumann, REPT PPAD-665-E.
- [15] 1970Ch09 Y. Y. Chu, E. M. Franz, G. Friedlander, Phys. Rev. C1, 1826 (1970). https://doi.org/10.1103/PhysRevC.1.1826

- [16] 1970Ha18 P. G. Hansen, H. L. Nielsen, K. Wilsky, M. Alpsten, M. Finger, A. Lindahl, R. A. Naumann, O. B. Nielsen, Nucl. Phys. A148, 249 (1970).
- [17] 1970HoZZ P. Hornshoj, CONF Leysin Vol1 P487, CERN 70-30
- [18] 1971Bo06 J. Borggreen, E. K. Hyde, Nucl. Phys. A162, 407 (1971). https://doi.org/10.1016/0375-9474(71)90994-8
- [19] 1971BoZK J. Borggreen, REPT UCRL-20426, P25, J Borggreen, 9/14/71.
- [20] 1971H007 P. Hornshoj, K. Wilsky, P. G. Hansen, B. Jonson, M. Alpsten, G. Andersson, A. Appelqvist, B. Bengtsson, O. B. Nielsen, Phys. Lett. 34B, 591 (1971).
- [21] 1973Be67 E. E. Berlovich, P. P. Vaishnis, V. D. Vitman, Y. V. Elkin, E. I. Ignatenko, Y. N. Novikov, V. K. Tarasov, Izv. Akad. Nauk SSSR, Ser. Fiz. 37, 1052 (1973); Bull. Acad. Sci. USSR, Phys. Ser. 37, No. 5, 122 (1974).
- [22] 1973BoXL J. D. Bowman, E. K. Hyde, R. E. Eppley, LBL-1666, p. 4 (1973).
- [23] 1974Ad10 I. Adam, G. Beyer, M. Gonusek, K. Y. Gromov, K. U. Zibert, V. G. Kalinnikov, A. Latuszynski, S. M. Strusny, M. Yakhim, Izv. Akad. Nauk SSSR, Ser. Fiz. 38, 1572 (1974); Bull. Acad. Sci. USSR, Phys. Ser. 38, No. 8, 10 (1974).
- [24] 1974PeZS I. Penev, K. Zuber, Y. Zuber, A. Lyatushinskii, A. V. Potempa, Program and Thesis, Proc. 24th Ann. Conf. Nucl. Spectrosc. Struct. At. Nuclei, Kharkov, p. 106 (1974).
- [25] 1974To07 K. S. Toth, C. R. Bingham, W. -D. Schmidt-Ott, Phys. Rev. C 10, 2550 (1974). https://doi.org/10.1103/PhysRevC.10.2550
- [26] 1974ToZN K. S. Toth, R. L. Hahn, E. Newman, C. R. Bingham, W. -D. Schmidt-Ott, ORNL-4937, p. 53 (1974).
- [27] 1974ToZQ K. S. Toth, CONF Nashville(Reactions Between Complex Nuclei), Vol1 P156 (1974).
- [28] 1974CAYE C. Cabot,, REPT Univ Paris, IPN 1974 Annual, PR1 (1974).
- [29] 1975Ca06 C. Cabot, C. Deprun, H. Gauvin, B. Lagarde, Y. Le Beyec, M. Lefort, Nucl. Phys. A241, 341 (1975). https://doi.org/10.1016/0375-9474(75)90323-1
- [30] 1975Ho02 P.Hornshoj, K.Wilsky, P.G.Hansen, B.Jonson, Phys. Lett. 55B, 53 (1975).
- [31] 1978AfZZ V.P.Afanasev, L.Kh.Batist, E.E.Berlovich, K.Ya.Gromov, V.G.Kalinnikov, T.Kozlovski, Ya.Kormitski, K.A.Mezilev, F.V.Moroz, Yu.N.Novikov, V.N.Panteleev, A.G.Polyakov, V.I.Raiko, E.Rurarz, V.K.Tarasov, Yu.V.Yushkevich, Program and Theses, Proc.28th Ann.Conf.Nucl.Spectrosc.Struct.At.Nuclei, Alma-Ata, p.70 (1978).
- [32] 1979Ha10 E. Hagberg, P. G. Hansen, P. Hornshoj, B. Jonson, S. Mattsson, P. Tidemand-Petersson, Nucl. Phys. A318, 29 (1979). https://doi.org/10.1016/0375-9474(79)90467-6
- [33] 1979Ho10 S. Hofmann, W. Faust, G. Munzenberg, W. Reisdorf, P. Armbruster, K. Guttner, H. Ewald, Z. Phys. A291, 53 (1979). https://doi.org/10.1007/BF01415817
- [34] 1980Sc09 U. J. Schrewe, P. Tidemand-Petersson, G. M. Gowdy, R. Kirchner, O. Klepper, A. Plochocki, W. Reisdorf, E. Roeckl, J. L. Wood, J. Zylicz, R. Fass, D. Schardt, Phys. Lett. 91B, 46 (1980). https://doi.org/10.1016/0370-2693(80)90659-0
- [35] 1981LiZM C. F. Liang, P. Paris, G. Bastin, J. Obert, J. C. Putaux, Proc. Int. Conf. Nuclei Far from Stability, Helsingor, Denmark, Vol. 2, P709 (1981); CERN-81-09 (1981).
- [36] 1982HeZM F. P. Hessberger, S. Hofmann, G. Munzenberg, W. Reisdorf, J. R. H. Schneider, P. Armbruster, GSI-82-1, 64 (1982).
- [37] 1984GrZL K. E. Gregorich, K. J. Moody, P. Juergens, D. Lee, G. T. Seaborg, LBL-16870, p. 77 (1984).
- [38] 1984ScZQ J. Schneider GSI-84-3 (thesis) (1984).
- [39] 1986Ke03 J. G. Keller, K. -H. Schmidt, F. P. Hessberger, G. Munzenberg, W. Reisdorf, H. -G. Clerc, C. -C. Sahm, Nucl. Phys. A452, 173 (1986). https://doi.org/10.1016/0375-9474(86)90514-2
- [40] 1990Me12 F. Meissner, W. -D. Schmidt-Ott, V. Freystein, T. Hild, E. Runte, H. Salewski, R. Michaelsen, Z. Phys. A337, 45 (1990).
- [41] 1990SaZU J. Sauvage, C. Bourgeois, P. Kilcher, F. Le Blanc, B. Roussiere, M. I. Macias-Marques, F. Braganca Gil, M. G. Porquet, H. Dautet, and the ISOCELE Collaboration, IPNO-DRE 90-11 (1990).
- [42] 1992Bo04 M. Borromeo, D. Bonatsos, H. Muther, A. Polls, Nucl. Phys. A539, 189 (1992). https://doi.org/10.1016/0375-9474(92)90266-M
- [43] 1992BoZO V. A. Bolshakov, A. G. Dernyatin, K. A. Mezilev, Yu. N. Novikov, A. V. Popov, Yu. Ya. Sergeev, V. I. Tikhonov, V. A. Sergienko, G. V. Veselov, Contrib. 6th Intern. Conf. on Nuclei Far from Stability + 9th Intern. Conf. on Atomic Masses and Fundamental Constants, Bernkastel-Kues, Germany, PE50 (1992)

- [44] 1992HeZV W. Heller, R. Binder, H. Bruchertseifer, U. Becker, F. Haberberger, G. Herrmann, J. V. Kratz, M. Mendel, A. Nahler, M. Pense-Maskow, N. Trautmann, N. Wiehl, W. Bruchle, E. Jager, M. Schadel, B. Schausten, J. Alstad, G. Skarnemark, R. Dressler, S. Fischer, A. Ross, B. Eichler, S. Hubener, Univ. Mainz, 1991 Ann. Rept., p. 28 (1992).
- [45] 1992MeZW F. Meissner, W. -D. Schmidt-Ott, H. Salewski, U. Bosch-Wicke, R. Michaelsen, Contrib. 6th Intern. Conf. on Nuclei Far from Stability + 9th Intern. Conf. on Atomic Masses and Fundamental Constants, Bernkastel-Kues, Germany, PE42 (1992).
- [46] 1993Me13 F. Meissner, H. Salewski, W. -D. Schmidt-Ott, U. Bosch-Wicke, V. Kunze, R. Michaelsen, Phys. Rev. C48, 2089 (1993). https://doi.org/10.1103/PhysRevC.48.2089
- [47] 1995Hi02 T. Hild, W. -D. Schmidt-Ott, V. Kunze, F. Meissner, C. Wennemann, H. Grawe, Phys. Rev. C51, 1736 (1995). https://doi.org/10.1103/PhysRevC.51.1736
- [48] 1996Pa01 R. D. Page, P. J. Wood, R. A. Cunningham, T. Davinson, N. J. Davis, A. N. James, K. Livingston, P. J. Sellin, A. C. Shotter, Phys. Rev. C53, 660 (1996). https://doi.org/10.1103/PhysRevC.53.660
- [49] 1999An52 A. N. Andreyev, D. Ackermann, P. Cagarda, J. Gerl, F. Hessberger, S. Hofmann, M. Huyse, A. Keenan, H. Kettunen, A. Kleinbohl, A. Lavrentiev, M. Leino, B. Lommel, M. Matos, G. Munzenberg, C. Moore, C. D. O'Leary, R. D. Page, S. Reshitko, S. Saro, C. Schlegel, H. Schaffner, M. Taylor, P. Van Duppen, L. Weissman, R. Wyss, Eur. Phys. J. A 6, 381 (1999). https://doi.org/10.1007/s100500050359
- [50] 2000AnZZ A. N. Andreyev, D. Ackermann, P. Cagarda, J. Gerl, F. P. Hessberger, S. Hofmann, K. Heyde, M. Huyse, A. Keenan, H. Kettunen, A. Kleinbohl, A. Lavrentiev, M. Leino, B. Lommel, M. Matos, G. Munzenberg, C. Moore, C. D. O'Leary, R. D. Page, S. Reshitko, S. Saro, C. Schlegel, H. Schaffner, M. Taylor, P. Van Duppen, L. Weissman, R. Wyss, GSI 2000-1, p. 16 (2000).
- [51] 2002An15 A. N. Andreyev, K. Van de Vel, A. Barzakh, A. De Smet, H. De Witte, D. V. Fedorov, V. N. Fedoseyev, S. Franchoo, M. Gorska, M. Huyse, Z. Janas, U. Koster, W. Kurcewicz, J. Kurpeta, V. I. Mishin, K. Partes, A. Plochocki, P. Van Duppen, L. Weissman, Eur. Phys. J. A 14, 63 (2002). https://doi.org/10.1007/s10050-002-8790-5
- [52] 2004GoZZ J. T. M. Goon, Thesis, University of Tennessee, Knoxville (2004).
- [53] 2005Va04 K. Van de Vel, A. N. Andreyev, D. Ackermann, H. J. Boardman, P. Cagarda, J. Gerl, F. P. Hessberger, S. Hofmann, M. Huyse, D. Karlgren, I. Kojouharov, M. Leino, B. Lommel, G. Munzenberg, C. Moore, R. D. Page, S. Saro, P. Van Duppen, R. Wyss, Eur. Phys. J. A 24, 57 (2005). https://doi.org/10.1140/epja/i2004-10124-7
- [54] 2006An36 A. N. Andreyev, S. Antalic, M. Huyse, P. Van Duppen, D. Ackermann, L. Bianco, D. M. Cullen, I. G. Darby, S. Franchoo, S. Heinz, F. P. Hessberger, S. Hofmann, I. Kojouharov, B. Kindler, A. -P. Leppanen, B. Lommel, R. Mann, G. Munzenberg, J. Pakarinen, R. D. Page, J. J. Ressler, S. Saro, B. Streicher, B. Sulignano, J. Thomson, R. Wyss, Phys. Rev. C 74, 064303 (2006). https://doi.org/10.1103/PhysRevC.74.064303
- [55] 2006AnZT A. N. Andreyev, S. Antalic, D. Ackermann, L. Bianco, D. Cullen, I. Darby, S. Franchoo, F. P. Hessberger, S. Hofmann, M. Huyse, B. Kindler, I. Kojouharov, A. -P. Leppanen, B. Lommel, R. Mann, G. Munzenberg, R. D. Page, J. Pakarinen, J. J. Ressler, S. Saro, B. Streicher, B. Sulignano, J. Thomson, P. Van Duppen, GSI 2006-1, p. 196 (2006).
- [56] 2021Wa16 M. Wang, W. J. Huang, F. G. Kondev, G. Audi, S. Naimi, Chin. Phys. C 45, 030003 (2021). https://doi.org/ 10.1088/1674-1137/abddaf