

Fig. 1: Known experimental values for heavy particle emission of the even-Z T_z = +20 nuclei.

Last updated 2/20/24

Table 1

Observed and predicted β -delayed particle emission from the even-Z, $T_z = +20$ nuclei. Unless otherwise stated, all Q-values are taken from [2021Wa16] or deduced from values therein.

Nuclide	J^{π}	$T_{1/2}$	Qε	$Q_{\varepsilon p}$	$Q_{\mathcal{E}\alpha}$	Experimental	
¹⁸⁴ Hf*	0^{+}	4.12(5) h	-5.20(20#			[1973Wa18]	
$^{188}W*$	0^{+}	69.78(12) d	-4.76(20)#			[2014Un01]	
¹⁹² Os	0^+	stable	-4.290(70)			. ,	
¹⁹⁶ Pt	0^{+}	stable	-3.210(40)				
²⁰⁰ Hg	0^+	stable	-2.463(27)				
²⁰⁴ Pb	0^{+}	$> 1.4 \times 10^{20} \text{ y}$	-0.7638(2)			[2013Be16]	
²⁰⁸ Po	0^{+}	2.888 y	1.401(2)	-2.306(1)	4.452(2)	[1966Ha29]	
²¹² Rn	0^+	24.8(5) m**	-0.031(4)			[1971Go35, 1968Cr02]	
²¹⁶ Ra	0^+	182(10) ns	0.320(9)	-2.829(10)	9,495(8)	[1973No09]	
²²⁰ Th	0^{+}	10.2(4) µs***	0.946(15)	-1.993(15)	9.294(14)	[2019Pa45, 1973Ha32]	
²²⁴ U	0^{+}	396(17) µs	1.880(17)	-0.932(17)	9.574(16)	[2014Lo10]	
²²⁸ Pu	0^+	$1.1^{+2.0}$ s	2.28(10)#	-0.226(25)	9.821(25)#	[2003Ni10]	
²³² Cm	0^+	-0.5	2.91(36)#	0.74(20)#	10.08(23)#		

* 100% β^- emitter

** Weighted average of 22.0(10) m [1971Go35] and 25.5(5) m [1968Cr02].

Table 2

Particle separation, Q-values, and measured values for direct particle emission of the even-Z, $T_z = +20$ nuclei. Unless otherwise stated, all S and Q-values are taken from [2021Wa16] or deduced from values therein.

Nuclide	\mathbf{S}_p	S_{2p}	Qα	BR_{α}	Experimental
¹⁸⁴ Hf	9 072(89)	17 18(40)#	0.80(30)#		
^{188}W	9.061(56)#	16.822(51)#	0.00(30)		
¹⁹² Os	8.821(10)	16.091(35)	0.361(4)		
¹⁹⁶ Pt	8.241(1)	14.787(2)	0.813(2)		
²⁰⁰ Hg	7.698(1)	14.177(2)	0.716(1)		
²⁰⁴ Pb	6.6375(3)	12.342(1)	1.969(1)		
²⁰⁸ Po	4.704(2)	8.262(1)	5.216(1)	99.9958(4)%	[1993Sa14, 1970Ra14, 1969Go23, 1967Ti04, 1966Ha29,
					1955Mo68, 1953AsZZ, 1951Ka03, 1951Ka37, 1947Te01]
²¹² Rn	4.301(4)	7.284(3)	6.385(3)	100%	[1971Go35, 2003Ni10, 2003NiZV, 1970AfZZ, 1970TaZS,
					1968Cr02, 1963Uh01, 1959Ka15, 1955Mo68, 1952Mo23,
					1950Hy27]
²¹⁶ Ra	4.316(11)	6.967(12)	9.526(7)	100%	[1973No09, 2017Su18, 1975No09, 1972No06, 1961Gr43]
²²⁰ Th	4.169(53)	6.534(17)	8.973(11)	100%	[2019Pa45, 1973Ha32, 1991AnZZ, 1973HaWU]
²²⁴ U	3.884(77)	6.038(18)	8.628(7)	100%	[2014Lo10, 2003Ni10, 2003NiZV, 1994AnZY, 1994Ye08,
					1993AnZS, 1993ToZW, 1992To02, 1992ToZV, 1991An10,
					1991An13, 1990AnZU]
²²⁸ Pu	3.760(80)	5.799(26)	7.940(18)	$\approx 100\%*$	[1994An02, 1994Ye08, 2004NiZZ, 2003Ni10, 2003NiZV,
					2001NiZY, 1994AnZX, 1994AnZY]
²³² Cm	3.37(36)#	5.18(20)#	7.80(20)#		

* Based on short half-life.

Table 3

direct α emission from ²⁰⁸Po*, $J^{\pi} = 0^+$, $T_{1/2} = 2.888$ y, $BR_{\alpha} = 99.9958(4)\%^{**}$

$E_{\alpha}(\text{c.m.})$	$E_{\alpha}(\text{lab})^{***}$	$I_{\alpha}(\text{rel})$	$I_{\alpha}(abs)$	$\mathbf{J}_f^{\boldsymbol{\pi}}$	$E_{daughter}(^{204}\text{Pb})$	coincident γ -rays	R ₀ (fm)	HF
4.303(15) 5.215(2)	4.220(15) 5.115(2)***	$\begin{array}{c} 2.4(7)\times 10^{-4}\% \\ 100\% \end{array}$	$2.4(7) imes 10^{-4}\%$ 99.9958(4)%**	$2^+_{0^+}$	0.899 [@] 0.0	0.899 [@]	1.42967(74) 1.42967(74)	$\begin{array}{c} 0.54^{+0.22@@}_{-0.12} \\ 0.98(2) \end{array}$

* All values from [1966Ha29], except where noted.

** [1993Sa14] report a BR $_{\epsilon}$ equal to 0.0042(4)%.

*** Weighted average from [1991Ry01] based on 5.114(3) MeV [1970Ra14] (modified to 5.113(3) MeV), 5.116(2) MeV [1969Go23], 5.118(5) MeV [1967Ti04] (modified to 5.120(3) MeV), 5.110(5) MeV [1966Ha29] and 5.108(3) MeV [1953AsZZ] (modified to 5.114(3) MeV).

 $e^{(0)}$ [2010Ch02]. $e^{(0)}$ This unphysically low HF value may indicate that the branching ratio is too high or that the reported transition is incorrect.

Table 4 direct α emission from ²¹²Rn*, $J^{\pi} = 0^+$, $T_{1/2} = 24.8(5)$ m**, $BR_{\alpha} = 100\%$ **

$E_{\alpha}(\text{c.m.})$	$E_{\alpha}(\text{lab})^{***}$	$I_{\alpha}(\text{rel})$	$I_{\alpha}(abs)$	$\mathbf{J}_f^{\boldsymbol{\pi}}$	$E_{daughter}(^{208}\text{Po})$	coincident γ -rays	R ₀ (fm)	HF
5.996(3)	5.883(3)	0.050(5)%	0.050(5)%	2^{+}	0.687	0.687	1.4343(25)	$1.43_{-0.16}^{+0.19}$
6.382(3)	6.262(3)	100%	99.95(5)%	0^+	0.0		1.4343(25)	1.01(2)

* All values from [1971Go35], except where noted.

** Weighted average of 22.0(10) m [1971Go35] and 25.5(5) m [1968Cr02].

*** This low HF value may indicate that the branching ratio is too high or that the reported transition is incorrect.

Table	5
Lanc	~

direct α emission from	216 Ra*, $J^{\pi} = 0^+$, $T_{1/2} =$	$182(10)$ ns, $BR_{\alpha} = 100\%$
-------------------------------	---	-------------------------------------

$E_{\alpha}(c.m.)$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(abs)$	\mathbf{J}_f^{π}	$E_{daughter}(^{212}\mathrm{Rn})$	coincident γ-rays	R ₀ (fm)	HF
9.525(8)	9.349(8)	100%	0+	0.0		1.5433(36)	1.05(6)

* All values from [1973No09].

Table 6

direct α emission from ²²⁰	${}^{0}\mathrm{Th}, J^{\pi} = 0$	$^{+}, T_{1/2} =$	10.2(4) µs*,	$BR_{\alpha} = 100\%$
--	----------------------------------	-------------------	--------------	-----------------------

$E_{\alpha}(c.m.)$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(abs)$	\mathbf{J}_f^{π}	$E_{daughter}(^{216}\mathrm{Ra})$	coincident γ -rays	R ₀ (fm)	HF
8.969(13)	8.806(13)**	100%	0^+	0.0		1.6051(43)	2.53(10)***

* Weighted average of 10.4(4) µs [2019Pa45] and 9.7(6) µs [1973Ha32].

** Weighted average of 8.813(13) MeV [2019Pa45] and 8.790(20) MeV [1973Ha32].

*** Expect this transition to be an unhindered $0^+ \rightarrow 0^+$. The reason for the larger HF is unknown.

Table 7

direct α emission from ²²⁴U*, $J^{\pi} = 0^+$, $T_{1/2} = 396(17) \ \mu$ s, $BR_{\alpha} = 100\%$

$E_{\alpha}(c.m.)$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(\text{rel})$	$I_{\alpha}(abs)$	\mathbf{J}_f^{π}	$E_{daughter}(^{220}\mathrm{Th})$	coincident γ -rays	R ₀ (fm)	HF
8.242(18) 8.633(8)	8.095(11) 8.479(8)	3.5(8)% 100%	3.4(8)% 96.6(8)%	$2^+_{0^+}$	0.387(2) 0.0	0.387(2)	1.5514(30) 1.5514(30)	$2.2^{+0.7}_{-0.5}$ $1.009(10)$

* All values from [2014Lo10].

Table 8

direct α emission from ²²⁸ P	$T_{\rm u}, J^{\pi} = 0^+, T_1$	$_{1/2} = 1.1^{+2.0}_{-0.5} \text{ s*}, BR$	$\alpha = \approx 100\%$
--	---------------------------------	---	--------------------------

$E_{\alpha}(\text{c.m.})$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(abs)$	\mathbf{J}_f^{π}	$E_{daughter}(^{224}\text{U})$	coincident γ -rays	R ₀ (fm)	HF
7.949(20)	7.810(20)**	≈100%	0^{+}	0.0		1.480(42)	$1.1^{+2.0}_{-0.5}$

* [2003Ni10].

* [1994An02, 1994Ye08].

References used in the Tables

- [1] 1947Te01 D. H. Templeton, J. J. Howland, I. Perlman, Phys. Rev. 72, 758 (1947). https://doi.org/10.1103/PhysRev.72.758
- [2] 1950Hy27 E. K. Hyde, A. Ghiorso, G. T. Seaborg, Phys. Rev. 77, 765 (1950). https://doi.org/10.1103/PhysRev.77.765
- [3] 1951Ka03 D. G. Karraker, D. H. Templeton, Phys. Rev. 81, 510 (1951). https://doi.org/10.1103/PhysRev.81.510
- [4] 1951Ka37 D. G. Karraker, A. Ghiorso, D. H. Templeton, Phys. Rev. 83, 390 (1951). https://doi.org/10.1103/PhysRev.83.390
- [5] 952Mo23 F. F. Momyer, E. K. Hyde, A. Ghiorso, W. E. Glenn, Phys. Rev. 86, 805 (1952). https://doi.org/10.1103/PhysRev.86.805
- [6] 1953AsZZ F. Asaro, Thesis, Univ. California (1953); UCRL-2180 (1953).

- [7] 1955Mo68 F. F. Momyer, Jr. , E. K. Hyde, J. Inorg. Nucl. Chem. 1, 274 (1955). https://doi.org/10.1016/0022-1902(55)80033-4
- [8] 1959Ka15 V. A. Karnaukhov, Zh. Eksp. Teor. Fiz. 36, 1933 (1959); Soviet Phys. JETP 9, 1375 (1959).
- [9] **1961Gr43** R. D. Griffioen, R. D. Macfarlane, UCRL-10023, p. 50 (1961).
- [10] 1963Uh01 J. Uhler, W. Forsling, B. Astrom, Arkiv Fysik 24, 421 (1963).
- [11] 1966Ha29 G. R. Hagee, R. C. Lange, J. T. McCarthy, Nucl. Phys. 84, 62 (1966). https://doi.org/10.1016/0029-5582(66)90433-0
- [12] 1967Ti04 E. Tielsch-Cassel, Nucl. Phys. A100, 425 (1967). https://doi.org/10.1016/0375-9474(67)90419-8
- [13] 1968Cr02 P. D. Croft, J. M. Alexander, K. Street, Jr., Phys. Rev. 165, 1380 (1968). https://doi.org/10.1103/PhysRev.165.1380
- [14] 1970AfZZ V. P. Afanasiev, M. Bochvarova, N. A. Golovkov, I. I. Gromova, R. B. Ivanov, V. I. Kuzin, Y. V. Norseev, V. G. Chumin, JINR-P6-4972 (1970).
- [15] 1969Go23 N. A. Golovkov, S. Guetkh, B. S. Dzhelepov, Y. V. Norseev, V. A. Khalkin, V. G. Chumin, Izv. Akad. Nauk SSSR, Ser. Fiz. 33, 1622 (1969); Bull. Acad. Sci. USSR, Phys. Ser. 33, 1489 (1970).
- [16] 1970Ra14 K. Raichev, L. Tron, Acta Phys. 28, 263 (1970).
- [17] 1970TaZS N. I. Tarantin, A. P. Kabachenko, A. V. Demyanov, N. S. Ivanov, Proc. Int. Conf. Mass Spectrosc., Kyoto (1969), K. Ogata, T. Hayakawa, Eds., University Park Press, Baltimore, p. 548 (1970).
- [18] 1971Go35 N. A. Golovkov, R. B. Ivanov, A. Kolaczkowski, Y. V. Norseev, V. G. Chumin, Izv. Akad. Nauk SSSR, Ser. Fiz. 35, 2272 (1971); Bull. Acad. Sci. USSR, Phys. Ser. 35, 2063 (1972).
- [19] 1972No06 T. Nomura, K. Hiruta, T. Inamura, M. Odera, Phys. Lett. 40B, 543 (1972). https://doi.org/10.1016/0370-2693(72)90477-7
- [20] 1973Ha32 O. Hausser, W. Witthuhn, T. K. Alexander, A. B. McDonald, J. C. D.Milton, A. Olin, Phys. Rev. Lett. 31, 323 (1973). https://doi.org/10.1103/PhysRevLett.31.323
- [21] 1973HaWU O. Hausser, W. Witthuhn, T. K. Alexander, A. B. McDonald, J. C. D. Milton, A. Olin, AECL-4505, p. 16 (1973).
- [22] 1973No09 T. Nomura, K. Hiruta, T. Inamura, M. Odera, Nucl. Phys. A217, 253 (1973). https://doi.org/10.1016/0375-9474(73)90195-4
- [23] 1973No09 T. Nomura, K. Hiruta, T. Inamura, M. Odera, Nucl. Phys. A217, 253 (1973). https://doi.org/10.1016/0375-9474(73)90195-4
- [24] 1973Wa18 T. E. Ward, Y. Y. Chu, J. B. Cumming, Phys. Rev. C8, 340 (1973). https://doi.org/10.1103/PhysRevC.8.340
- [25] 1975No09 T. Nomura, K. Hiruta, M. Yoshie, H. Ikezoe, T. Fukuda, O. Hashimoto, Phys. Lett. 58B, 273 (1975). https://doi.org/10.1016/0370-2693(75)90650-4
- [26] 1990AnZU A. N. Andreev, D. D. Bogdanov, A. V. Eremin, A. P. Kabachenko, O. N. Malyshev, G. M. Ter-Akopyan, V. I. Chepigin, JINR-P7-90-232 (1990).
- [27] 1991An10 A. N. Andreev, D. D. Bogdanov, V. I. Chepigin, A. P. Kabachenko, O. N. Malyshev, G. M. Ter-Akopian, A. V. Yeremin, Z. Phys. A338, 363 (1991).
- [28] 1991An13 A. N. Andreev, D. D. Bogdanov, A. V. Eremin, A. P. Kabachenko, O. N. Malyshev, G. M. Ter-Akopyan, V. I. Chepigin, Yad. Fiz. 53, 895 (1991); Sov. J. Nucl. Phys. 53, 554 (1991).
- [29] 1991AnZZ A. N. Andreev, D. D. Bogdanov, A. V. Eremin, A. P. Kabachenko, O. N. Malyshev, G. M. Ter-Akopyan, V. I. Chepigin, Program and Thesis, Proc. 41st Ann. Conf. Nucl. Spectrosc. Struct. At. Nuclei, Minsk, p. 120 (1991).
- [30] 1992To02 K. S. Toth, H. J. Kim, J. W. McConnell, C. R. Bingham, D. C. Sousa, Phys. Rev. C45, 856 (1992). https://doi.org/10.1103/PhysRevC.45.856
- [31] 1992ToZV K. S. Toth, H. J. Kim, J. W. McConnell, C. R. Bingham, D. C. Sousa, Contrib. 6th Intern. Conf. on Nuclei Far from Stability + 9th Intern. Conf. on Atomic Masses and Fundamental Constants, Bernkastel-Kues, Germany, PE37 (1992).
- [32] 1993AnZS A. N. Andreyev, D. D. Bogdanov, V. I. Chepigin, M. Florek, A. P. Kabachenko, O. N. Malyshev, S. Sharo, G. M. Ter-Akopian, M. Veselsky, A. V. Yeremin, Proc. 6th Intern. Conf. on Nuclei Far from Stability + 9th Intern. Conf. on Atomic Masses and Fundamental Constants, Bernkastel-Kues, Germany, 19-24 July, 1992, R. Neugart, A. Wohr, Eds., p. 759 (1993).
- [33] 1993Sa14 S. K. Saha, R. Guin, J. Phys. (London) G19, 603 (1993). https://doi.org/10.1088/0954-3899/19/4/015
- [34] 1993ToZW K. S. Toth, H. J. Kim, J. W. McConnell, C. R. Bingham, D. C. Sousa, Proc. 6th Intern. Conf. on Nuclei Far from Stability + 9th Intern. Conf. on Atomic Masses and Fundamental Constants, Bernkastel-Kues, Germany, 19-24 July, 1992, R. Neugart, A. Wohr, Eds., p. 707 (1993).

- [35] 1994AnZX A. N. Andreev, D. D. Bogdanov, A. V. Eremin, A. P. Kabachenko, O. N. Malyshev, A. G. Popeko, R. N. Sagaidak, G. M. Ter-Akopyan, V. I. Chepigin, Program and Thesis, Proc. 44th Ann. Conf. Nucl. Spectrosc. Struct. At. Nuclei, Kharkov, p. 89 (1994).
- [36] 1994AnZY A. N. Andreev, D. D. Bogdanov, A. V. Eremin, A. P. Kabachenko, O. N. Malyshev, A. G. Popeko, R. N. Sagaidak, G. M. Ter-Akopyan, V. I. Chepigin, Program and Thesis, Proc. 44th Ann. Conf. Nucl. Spectrosc. Struct. At. Nuclei, Kharkov, p. 85 (1994).
- [37] 1994Ye08 A. V. Yeremin, A. N. Andreyev, D. D. Bogdanov, G. M. Ter-Akopian, V. I. Chepigin, V. A. Gorshkov, A. P. Kabachenko, O. N. Malyshev, A. G. Popeko, R. N. Sagaidak, S. Sharo, E. N. Voronkov, A. V. Taranenko, A. Yu. Lavrentjev, Nucl. Instrum. Methods Phys. Res. A350, 608 (1994). https://doi.org/10.1016/0168-9002(94)91265-3
- [38] 2003Ni10 K. Nishio, H. Ikezoe, S. Mitsuoka, K. Satou, C. J. Lin, Phys. Rev. C68, 064305 (2003). https://doi.org/10.1103/PhysRevC.68.064305
- [39] 2003NiZV K. Nishio, H. Ikezoe, S. Mitsuoka, K. Satou, C. J. Lin, Japan Atomic Energy Res. Inst. Tandem VDG Ann. Rept., 2002, p. 42 (2003); JAERI-Review 2003-028 (2003).
- [40] **2003NiZY** Y. Nir-El, unpublished (2003).
- [41] 2004NiZZ K. Nishio, H. Ikezoe, S. Mitsuoka, K. Satou, C. J. Lin, INDC(JPN)-192/U (JAERI-Conf 2004-005), p. 167 (2004).
- [42] 2010Ch02 C. J. Chiara, F. G. Kondev, Nucl. Data Sheets 111, 141 (2010). https://doi.org/10.1016/j.nds.2009.12.002
- [43] 2013Be16 J. W. Beeman, F. Bellini, L. Cardani, N. Casali, S. Di Domizio, E. Fiorini, L. Gironi, S. S. Nagorny, S. Nisi, F. Orio, L. Pattavina, G. Pessina, G. Piperno, S. Pirro, E. Previtali, C. Rusconi, C. Tomei, M. Vignati, Eur. Phys. J. A 49, 50 (2013). https://doi.org/10.1140/epja/i2013-13050-7
- [44] 2014Lo10 A. Lopez-Martens, K. Hauschild, K. Rezynkina, O. Dorvaux, B. Gall, F. Dechery, H. Faure, A. V. Yeremin, M. L. Chelnokov, V. I. Chepigin, A. V. Isaev, I. N. Izosimov, D. E. Katrasev, A. N. Kuznetsov, A. A. Kuznetsova, O. N. Malyshev, A. G. Popeko, E. A. Sokol, A. I. Svirikhin, J. Piot, J. Rubert, Eur. Phys. J. A 50, 132 (2014). https://doi.org/10.1140/epja/i2014-14132-8
- [45] 2017Su18 M. D. Sun, Z. Liu, T. H. Huang, W. Q. Zhang, J. G. Wang, X. Y. Liu, B. Ding, Z. G. Gan, L. Ma, H. B. Yang, Z. Y. Zhang, L. Yu, J. Jiang, K. L. Wang, Y. S. Wang, M. L. Liu, Z. H. Li, J. Li, X. Wang, H. Y. Lu, C. J. Lin, L. J. Sun, N. R. Ma, C. X. Yuan, W. Zuo, H. S. Xu, X. H. Zhou, G. Q. Xiao, C. Qi, F. S. Zhang, Phys. Lett. B 771, 303 (2017). https://doi.org/10.1016/j. physletb.2017.03.074
- [46] 2019Pa45 E. Parr, J. F. Smith, P. T. Greenlees, K. Auranen, P. A. Butler, R. Chapman, D. M. Cox, D. M. Cullen, L. P. Gaffney, T. Grahn, E. T. Gregor, L. Grocutt, A. Herzan, R. -D. Herzberg, D. Hodge, U. Jakobsson, R. Julin, S. Juutinen, J. Keatings, J. Konki, M. Leino, P. P. McKee, C. McPeake, D. Mengoni, A. K. Mistry, K. F. Mulholland, B. S. Nara Singh, G. G. O'Neill, J. Pakarinen, P. Papadakis, J. Partanen, P. Peura, P. Rahkila, P. Ruotsalainen, M. Sandzelius, J. Saren, M. Scheck, C. Scholey, M. Siciliano, M. Smolen, J. Sorri, P. Spagnoletti, K. M. Spohr, S. Stolze, M. J. Taylor, J. Uusitalo, Phys. Rev. C 100, 044323 (2019). https://doi.org/10.1103/PhysRevC.100.044323
- [47] 2021Wa16 M. Wang, W. J. Huang, F. G. Kondev, G. Audi, S. Naimi, Chin. Phys. C 45, 030003 (2021). https://doi.org/10.1088/1674-1137/abddaf