

Fig. 1: Known experimental values for heavy particle emission of the even-Z T_z = +19 nuclei.

Last updated 1/13/23

Table 1

Observed and predicted β -delayed particle emission from the even-Z, $T_z = +19$ nuclei. Unless otherwise stated, all Q-values are taken from [2021Wa16] or deduced from values therein.

Nuclide	Ex.	J^{π}	$T_{1/2}$	Qε	$Q_{\varepsilon p}$	$Q_{\varepsilon \alpha}$	Experimental
182 LIF *		0^+	$8.00(0) \times 10^{6} \mathrm{m}$	4 28(20)#			[2004Wa16]
186W		0^+	stable $(3) \times 10^{\circ}$ y	-3.900(60)			[2004 0010]
¹⁹⁰ Os		0^{+}	stable	-3.125(5)			
¹⁹⁴ Pt		$\overset{\circ}{0^+}$	stable	-2.228(1)			
¹⁹⁸ Hg		0^+	stable	-1.374(1)			
²⁰² Pb		0^{+}	$5.25(28) \times 10^4 \text{ y}$	0.040(4)	-5.567(4)	1.215(4)	[1981Na15]
²⁰⁶ Po		0^+	8.8(1) d	1.840(9)	-1.707(4)	5.367(4)	[1956Jo34]
²¹⁰ Rn		0^+	144(6) m	2.367(9)	-0.528(5)	7.999(9)	[1971Go35]
²¹⁴ Ra		0^+	2.47(2) s**	1.051(10)	-1.500(6)	9.640(9)	[2009MuZV, 2006Ku26]
^{214m} Ra	1.865(30)	8^+	68.6(20) µs	2.916(10)	0.365(6)	11.505(9)	[2006Ku26]
²¹⁸ Th		0^+	117(5) ns***	1.520(60)	-0.812(13)	10.900(14)	[1982Ch29, 1973Ha32, 1973No09]
²²² U		0^+	4.7(7) μs	2.21(10)	0.044(53)	10.997(78)	[2015Kh09]
²²⁶ Pu		0^+		2.81(23)#	0.97(20)#	11.14(22)#	

* 100% β^- emitter.

** Weighted average of 2.485(25) s [2009MuZV] and 2.46(3) s [2006Ku26].

*** Weighted average of 125(5) ns [1982Ch29], 122(8) ns [1973Ha32] and 96(7) ns [1973No09].

Table 2

Particle separation, Q-values, and measured values for direct particle emission of the even-Z, $T_z = +19$ nuclei. Unless otherwise stated, all S and Q-values are taken from [2021Wa16] or deduced from values therein.

Nuclide	S_p	S_{2p}	Qα	BR_{α}	Experimental
182 LLF	8 54(12)	15.01/20)#	1 202(0)		
186 337	8.34(13) 8.402(14)	15.91(30)#	1.203(9)		
190 O	8.405(14)	13.387(40)	1.110(0)		
¹⁹⁰ Os	8.018(8)	14.618(3)	1.376(1)		
¹⁹⁴ Pt	7.513(1)	13.456(2)	1.523(0)		
¹⁹⁸ Hg	7.104(0)	12.888(1)	1.381(1)		
²⁰² Pb	6.049(15)	11.015(4)	2.589(4)		
²⁰⁶ Po	4.412(6)	7.657(4)	5.327(1)	5.2(4)%	[1971Go35, 1970Ra14, 1968Go11, 1970AfZZ, 1967Le08,
					1967Ti04, 1961Fo05, 1956Bu12, 1955Mo68, 1951Ka37,
					1947Te011
²¹⁰ Rn	4.010(7)	6.713(4)	6.159(2)	96(1)%	[1971Go35, 1955Mo68 , 1955Mo69, 1952Mo23]
²¹⁴ Ra	3.642(7)	5.826(6)	7.273(3)	$\approx 100\%$	[2006Ku26, 2015Kh09, 2009MuZV, 2000He17, 1974Ho27,
					1968Lo15, 1961Gr42]
214m Ra	1.777(7)	3.961(6)	9.138(3)	0.09(7)%	[2006Ku26]
²¹⁸ Th	3.625(15)	5.503(13)	9.849(9)	100%	[1973No09, 2018Br13, 2015Kh09, 1982Ch29, 1973Ha32,
					1973Hi06]
²²² U	3.391(79)	4.995(54)	9.416(8)*	100%	[2023Lu04, 2015Kh09, 1983Hi12]
²²⁶ Pu	3.28(22)#	4.69(20)#	8.93(22)#		

* From α decay of ²²²U. 9.481(51) MeV in [2021Wa16].

Table 3

direct α emissio	rect α emission from ²⁰⁰ Po, $J^{\pi} = 0^+$, $T_{1/2} = 8.8(1) d^*$, $BR_{\alpha} = 5.2(4)\%^{***}$.									
$E_{\alpha}(c.m.)$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(abs)$	\mathbf{J}_f^{π}	$E_{daughter}(^{202}\text{Pb})$	coincident γ-rays	R ₀ (fm)]	HF			
5.327(2)	5.223(2)**	5.2(4)%***	0^+	0.0		1.4547(10)	1.05(8)			

* [1956Jo14].

** Weighted average of 5.224(2) MeV [1968Go11] and 5.222(3) MeV [1970Ra14].

*** From [1971Go35]. [1967Le08] reports 5.45% with no error bar.

Table 4

|--|

$E_{\alpha}(\text{c.m.})$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(\text{rel})$	$I_{\alpha}(abs)$		${ m J}_f^\pi$	$E_{daughter}(^2$	²⁰⁶ Po)	coincident γ-ray	s R_0 (fm)]	HF
5.455(3) 6.155(3)	5.351(3)* 6.038(3)	$\begin{array}{l} 5.6(3)\times 10^{-3}\%\\ 100\%\end{array}$	* $5.4(3) \times 96(1)\%$	10 ⁻³ %	${0^+ \over 0^+}$	0.700(4) 0.0		0.700	1.4568(22) 1.4568(22)	6.7(4) 0.97(2)
* [1971 ** [195	1Go35]. 55Mo68].									
Table 5 direct α em	ission from ²¹⁴ R	a*, $J^{\pi} = 0^+$, $T_{1/2}$	= 2.47(2) s**, <i>B</i> F	$R_{\alpha} = \approx 100$	0%.					
$E_{\alpha}(\text{c.m.})$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(\text{rel})$	$I_{\alpha}(abs)$	J_f^π	E _{daugh}	ter(²¹⁰ Rn	coinc	ident γ-rays	R ₀ (fm)]	HF
6.629(5) 7.271(4)	6.505(5) 7.135(4)	0.16(3)% 100%	0.16(3)% 99.84(3)%	$2^+_{0^+}$	0.6439 0.0)	0.643	39	1.4557(12) 1.4557(12)	$2.6^{+0.6}_{-0.4}$ $0.997(8)$
* All v ** Wei	alues from [2006 ghted average of	Ku26], except wh 2.485(25) s [2009	ere noted. MuZV] and 2.46	6(3) s [200	6Ku26].					
Table 6 direct α em	ission from ^{214m}	Ra*, Ex. = 1.865.2	$2 \text{ keV}, J^{\pi} = 8^+, T$	_{1/2} = 68.6	(20) µs, B	$R_{\alpha} = 0.09(7)$	7)%.			
$E_{\alpha}(\text{c.m.})$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(\text{rel})$ I	_α (abs)	${ m J}_f^\pi$	E_{daugh}	ter(²¹⁰ Rn	coincid	lent γ-rays	R ₀ (fm)]	HF
7.429(30) ≈ 8.509 9.120(30)	$7.290(30) \\ \approx 8.350^{**} \\ 8.950(30)$	6.6(33)%50.18(3)%0100%9	.4(46) × 10 ⁻³ % .16(3)% 1(6)%	${8^+ \over 2^+ \over 0^+}$	1.710(0.6439 0.0	30))	0.2031 0.6439	, 0.6439, 0.8178	1.4557(12) 1.4557(12) 1.4557(12)	$14(12) \\ >6 \times 10^{3} \\ 8^{+30}_{-4} \times 10^{3}$
* All v ** tent	alues from [2006 atively assigned	Ku26], except wh [2006Ku26].	ere noted.							
Table 7 direct α em	ission from ²¹⁸ Tl	h, $J^{\pi} = 0^+$, $T_{1/2} =$	117(5) ns*, BR_{α}	= 100%.						
$E_{\alpha}(c.m.)$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(abs)$	J_f^{π}	Edaughte	r(²¹⁴ Ra)	coinc	cident γ-ra	R_0 (fm))] HF	
9.846(10)	9.665(10)*	** 100%	0^+	0.0				1.5487((30) 0.95(4	•)
* Weig ** [197	hted average of 1 73No09].	125(5) ns [1982Ch	29], 122(8) ns [1	973Ha32]	and 96(7)	ns [1973No	009].			
Table 8 direct α em	ission from ²²² U	$J^{\pi} = 0^+, T_{1/2} = 4$	4.7(7) μ s*, BR_{α} =	= 100%.						
$E_{\alpha}(\text{c.m.})$	$E_{\alpha}(\text{lab})$	$I_{\alpha}(abs)$	\mathbf{J}_{f}^{π}	Edaughter	(²¹⁸ Th)	coinci	ident γ-ray	R_0 (fm)] HF	
9.416(8)	9.246(8)**	100%	0^+	0.0				1.529(1	5) 0.70(10)
* [2015	5Kh091.									

** [2023Lu04].

References used in the Tables

- [1] 1947Te01 D. H. Templeton, J. J. Howland, I. Perlman, Phys. Rev. 72, 758 (1947). https://doi.org/10.1103/PhysRev.72.758
- [2] 1951Ka37 D. G. Karraker, A. Ghiorso, D. H. Templeton, Phys. Rev. 83, 390 (1951). https://doi.org/10.1103/PhysRev.83.390
- [3] **952Mo23** F. F. Momyer, E. K. Hyde, A. Ghiorso, W. E. Glenn, Phys. Rev. **86**, 805 (1952). https://doi.org/10.1103/PhysRev.86.805
- [4] 1955Mo69 F. F. Momyer, Jr. , F. Asaro, E. K. Hyde, J. Inorg. Nucl. Chem. 1, 267 (1955). https://doi.org/10.1016/0022-1902(55)80032-2

- [5] 1956Bu12 W. E. Burcham, B. C. Haywood, Proc. Phys. Soc. (London) 69A, 862 (1956). https://doi.org/10.1088/0370-1298/69/11/410
- [6] 1956Jo34 W. John, Jr., Phys. Rev. 103, 704 (1956). https://doi.org/10.1103/PhysRev.103.704
- [7] 1961Fo05 W. Forsling, T. Alvager, Ark. Fys. 19, 353 (1961).
- [8] 1961Gr42 R. D. Griffioen, R. D. Macfarlane, UCRL-10023, p. 47 (1961).
- [9] 1967Le08 Y. Le Beyec, M. Lefort, Nucl. Phys. A99, 131 (1967). https://doi.org/10.1016/0375-9474(67)90213-8
- [10] 1967Ti04 E. Tielsch-Cassel, Nucl. Phys. A100, 425 (1967). https://doi.org/10.1016/0375-9474(67)90419-8
- [11] 1968Go11 M. A. Golovkov, L. Gueth, S. Gueth, E. Daroczy, B. Dzhelepov, Y. Norseyev, V. Khalkin, V. Chumin, Contrib. Intern. Conf. Nucl. Struct., Dubna, p. 56 (1968).
- [12] 1968Lo15 Y. V. Lobanov, V. A. Durin, Yadern. Fiz. 8, 849 (1968); Soviet J. Nucl. Phys. 8, 493 (1969).
- [13] 1970AfZZ V. P. Afanasiev, M. Bochvarova, N. A. Golovkov, I. I. Gromova, R. B. Ivanov, V. I. Kuzin, Y. V. Norseev, V. G. Chumin, JINR-P6-4972 (1970).
- [14] 1970Ra14 K. Raichev, L. Tron, Acta Phys. 28, 263 (1970).
- [15] 1971Go35 N. A. Golovkov, R. B. Ivanov, A. Kolaczkowski, Y. V. Norseev, V. G. Chumin, Izv. Akad. Nauk SSSR, Ser. Fiz. 35, 2272 (1971); Bull. Acad. Sci. USSR, Phys. Ser. 35, 2063 (1972).
- [16] 1973Ha32 O. Hausser, W. Witthuhn, T. K. Alexander, A. B. McDonald, J. C. D.Milton, A. Olin, Phys. Rev. Lett. 31, 323 (1973). https://doi.org/10.1103/PhysRevLett.31.323
- [17] 1973Hi06 K. Hiruta, T. Nomura, T. Inamura, M. Odera, Phys. Lett. 45B, 244 (1973). https://doi.org/10.1016/0370-2693(73)90194-9
- [18] 1973No09 T. Nomura, K. Hiruta, T. Inamura, M. Odera, Nucl. Phys. A217, 253 (1973). https://doi.org/10.1016/0375-9474(73)90195-4
- [19] 1974Ho27 P. Hornshoj, P. G. Hansen, B. Jonson, Nucl. Phys. A230, 380 (1974). https://doi.org/10.1016/0375-9474(74)90144-4
- [20] 1981Na15 H. Nagai, O. Nitoh, M. Honda, Radiochim. Acta 29, 169 (1981).
- [21] 1982Ch29 A. Chevallier, J. Chevallier, S. Khazrouni, L. Kraus, I. Linck, D. C. Radford, N. Schulz, J. Phys. (Paris) 43, 1597 (1982). https://doi.org/10.1051/jphys:0198200430110159700
- [22] 1983Hi12 R. Hingmann, H. -G. Clerc, C. -C. Sahm, D. Vermeulen, K. -H. Schmidt, J. G. Keller, Z. Phys. A313, 141 (1983). https://doi.org/10.1007/BF02115854
- [23] 2000He17 F. P. Hessberger, S. Hofmann, D. Ackermann, V. Ninov, M. Leino, S. Saro, A. Andreyev, A. Lavrentev, A. G. Popeko, A. V. Yeremin, Eur. Phys. J. A 8, 521 (2000); Erratum Eur. Phys. J. A 9, 433 (2000). https://doi.org/10.1007/s100500070075
- [24] 2004Vo16 C. Vockenhuber, F. Oberli, M. Bichler, I. Ahmad, G. Quitte, M. Meier, A. N. Halliday, D. -C. Lee, W. Kutschera, P. Steier, R. J. Gehrke, R. G. Helmer, Phys. Rev. Lett. 93, 172501 (2004). https://doi.org/10.1103/PhysRevLett.93.172501
- [25] 2006Ku26 P. Kuusiniemi, F. P. Hessberger, D. Ackermann, S. Antalic, S. Hofmann, K. Nishio, B. Sulignano, I. Kojouharov, R. Mann, Eur. Phys. J. A 30, 551 (2006). https://doi.org/10.1140/epja/i2006-10148-y
- [26] 2009MUZV A. Musumarra, F. Farinon, C. Nociforo, H. Geissel, G. Baur, K. -H. Behr, A. Bonasera, F. Bosch, D. Boutin, A. Brunle, L. Chen, A. Del Zoppo, C. Dimopoulou, A. Di Pietro, T. Faestermann, P. Figuera, K. Hagino, R. Janik, C. Karagiannis, P. Kienle, S. Kimura, R. Knobel, I. Kojouharov, C. Kozhuharov, T. Kuboki, J. Kurcewicz, N. Kurz, K. Langanke, M. Lattuada, S. A. Litvinov, Yu. A. Litvinov, G. Martinez-Pinedo, M. Mazzocco, F. Montes, Y. Motizuki, F. Nolden, T. Ohtsubo, Y. Okuma, Z. Patyk, M. G. Pellegriti, W. Plass, S. Pietri, Z. Podolyak, A. Prochazka, C. Scheidenberger, V. Scuderi, B. Sitar, M. Steck, P. Strmen, B. Sun, T. Suzuki, I. Szarka, D. Torresi, H. Weick, J. S. Winfield, M. Winkler, H. J. Wollersheim, T. Yamaguchi, Proc. Intern. Conf. on Nuclear Structure and Dynamics, 09, Dubrovnik, Croatia, 4-8 May, 2009, M. Milin, T. Niksic, S. Szilner, D. Vretenar, Eds., p. 415 (2009); AIP Conf. Proc. 1165 (2009). https://doi.org/10.1063/1.3232139
- [27] 2015Kh09 J. Khuyagbaatar, A. Yakushev, Ch. E. Dullmann, D. Ackermann, L. L-. Andersson, M. Block, H. Brand, D. M. Cox, J. Even, U. Forsberg, P. Golubev, W. Hartmann, R. -D. Herzberg, F. P. Hessberger, J. Hoffmann, A. Hubner, E. Jager, J. Jeppsson, b. Kindler, J. V. Kratz, J. Krier, N. Kurz, B. Lommel, M. Maiti, S. Minami, A. K. Mistry, C. M. Mrosek, I. Pysmenetska, D. Rudolph, L. G. Sarmiento, H. Schaffner, M. Schadel, B. Schausten, J. Steiner, T. Torres De Heidenreich, J. Uusitalo, M. Wegrzecki, N. Wiehl, V. Yakusheva, Phys. Rev. Lett. 115, 242502 (2015). https://doi.org/10.1103/PhysRevLett.115.242502
- [28] 2018Br13 N. T. Brewer, V. K. Utyonkov, K. P. Rykaczewski, Yu. Ts. Oganessian, F. Sh. Abdullin, R. A. Boll, D. J. Dean, S. N.

Dmitriev, J. G. Ezold, L. K. Felker, R. K. Grzywacz, M. G. Itkis, N. D. Kovrizhnykh, D. C. McInturff, K. Miernik, G. D. Owen, A. N. Polyakov, A. G. Popeko, J. B. Roberto, A. V. Sabelnikov, R. N. Sagaidak, I. V. Shirokovsky, M. V. Shumeiko, N. J. Sims, E. H. Smith, V. G. Subbotin, A. M. Sukhov, A. I. Svirikhin, Yu. S. Tsyganov, S. M. Van Cleve, A. A. Voinov, G. K. Vostokin, C. S. White, J. H. Hamilton, M. A. Stoyer, Phys. Rev. C **98**, 024317 (2018). https://doi.org/10.1103/PhysRevC.98.024317

- [29] 2021Wa16 M. Wang, W. J. Huang, F. G. Kondev, G. Audi, S. Naimi, Chin. Phys. C 45, 030003 (2021). https://doi.org/10.1088/1674-1137/abddaf
- [30] 2023Lu04 H. Y. Lu, Z. Liu, Z. H. Li, X. Wang, J. Li, H. Hua, H. Huang, W. Q. Zhang, Q. B. Zeng, X. H. Yu, T. H. Huang, M. D. Sun, J. G. Wang, X. Y. Liu, B. Ding, Z. G. Gan, L. Ma, H. B. Yang, Z. Y. Zhang, L. Yu, J. Jiang, K. L. Wang, Y. S. Wang, M. L. Liu, C. J. Lin, L. J. Sun, N. R. Ma, H. S. Xu, X. H. Zhou, G. Q. Xiao, F. S. Zhang, Phys. Rev. C 108, 014302 (2023). https://doi.org/10.1103/PhysRevC.108.014302